Publications
*Corresponding author(s); ‡Undergraduate coauthor; #Equal contributions
At the University of Rochester
22.
Implications of Charge and Heteroatom Dopants on the Thermodynamics and Kinetics of Redox Reactions in Keggin-Type Polyoxometalates
Dagar, M.; De, A.; Lu, Z.; Matson, E. M.*; Thorarinsdottir, A. E.* ACS Mater. Au 2024, DOI: 10.1021/acsmaterialsau.4c00136.
Postdoctoral Publications (@Harvard)
21.
The Role of Metal Accessibility on Carbon Dioxide Electroreduction in Atomically Precise Nanoclusters
Li, Y.#; Stec, G. J.#; Thorarinsdottir, A. E.; McGillicuddy, R. D.; Zheng, S.-L.; Mason, J. A.* Chem. Sci. 2023, 14, 12283–12291.
20.
Oxidation Chemistry of Bicarbonate and Peroxybicarbonate: Implications for Carbonate Management in Energy Storage
Yan, Z.#; Reynolds, K. G.#; Sun, R.; Shin, Y.; Thorarinsdottir, A. E.; Gonzalez, M. I.; Kudisch, B.; Galli, G.; Nocera, D. G.* J. Am. Chem. Soc. 2023, 145, 22213–22221.
19.
Enhanced Activity for the Oxygen Reduction Reaction in Microporous Water
Thorarinsdottir, A. E.#; Erdosy, D. P.#; Costentin, C.*; Mason, J. A.*; Nocera, D. G.* Nat. Catal. 2023, 6, 425–434.
18.
Electrolyte-Induced Restructuring of Acid-Stable Oxygen Evolution Catalysts
Veroneau, S. S.; Thorarinsdottir, A. E.; Loh, D. M.; Hartnett, A. C.; Keane, T. P.; Nocera, D. G.* Chem. Mater. 2023, 35, 3218–3225.
17.
Chemical Challenges that the Peroxide Dianion Presents to Rechargeable Lithium–Air Batteries
Nava, M.; Thorarinsdottir, A. E.; Lopez, N.; Cummins, C. C.*; Nocera, D. G.* Chem. Mater. 2022, 34, 3883–3892. (Invited for Virtual Special Issue “John Goodenough at 100”).
16.
Direct Seawater Splitting by Forward Osmosis Coupled to Water Electrolysis
Veroneau, S. S.; Hartnett, A. C.; Thorarinsdottir, A. E.; Nocera, D. G.* ACS Appl. Energy Mater. 2022, 5, 1403–1408.
15.
Self-Healing Oxygen Evolution Catalysts
Thorarinsdottir, A. E.;# Veroneau, S. S.;# Nocera, D. G.* Nat. Commun. 2022, 13, 1243.
14.
p-Block Metal Oxide Noninnocence in the Oxygen Evolution Reaction in Acid: The Case of Bismuth Oxide
Thorarinsdottir, A. E.; Costentin, C.; Veroneau, S. S.; Nocera, D. G.* Chem. Mater. 2022. 34, 826–835.
13.
Energy Catalysis Needs Ligands with High Oxidative Stability
Thorarinsdottir, A. E.; Nocera, D. G.* Chem Catal. 2021, 1, 32–43. (Invited for Inaugural Issue).
12.
Impactful Role of Cocatalysts on Molecular Electrocatalytic Hydrogen Production
Margarit, C. G.; Asimow, N. G.; Thorarinsdottir, A. E.; Costentin, C.*; Nocera, D. G.* ACS Catal. 2021, 11, 4561–4567.
Graduate Publications (@NU)
11.
Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order
Wang, Y.; Ziebel, M. E.; Sun, L.; Gish, J. T.; Pearson, T. J.; Lu, X.-Z.; Thorarinsdottir, A. E.; Hersam, M. C.; Long, J. R.*; Freedman, D. E.*; Rondinelli, J. M.*; Puggioni, D.*; Harris, T. D.* Chem. Mater. 2021, 33, 8712–8721.
10.
Insensitivity of Magnetic Coupling to Ligand Substitution in a Series of Tetraoxolene Radical-Bridged Fe2 Complexes
Thorarinsdottir, A. E.; Bjornsson, R.; Harris, T. D.* Inorg. Chem. 2020, 59, 4634–4649.
9.
Metal–Organic Framework Magnets
Thorarinsdottir, A. E.; Harris, T. D.* Chem. Rev. 2020, 120, 8716–8789. (Invited for the Porous Framework Chemistry Special Issue).
8.
Building a Sustainable Student-Led Model to Promote Research Safety in Academic Laboratories
Wang, X.; Thorarinsdottir, A. E.; Bachrach, M.; Blayney, M. B.* ACS Cent. Sci. 2019, 5, 1900–1903.
7.
Strong π-Backbonding Enables Record Magnetic Exchange Coupling Through Cyanide
Valdez-Moreira, J. A.; Thorarinsdottir, A. E.; DeGayner, J. A.; Lutz, S. A.; Chen, C.-H.; Losovyj, Y.; Pink, M.; Harris, T. D.*; Smith, J. M.* J. Am. Chem. Soc. 2019, 141, 17092–17097.
6.
Selective Binding and Quantitation of Calcium with a Cobalt-Based Magnetic Resonance Probe
Du, K.; Thorarinsdottir, A. E.; Harris, T. D.* J. Am. Chem. Soc. 2019, 141, 7163–7172.
5.
Dramatic Enhancement in pH Sensitivity and Signal Intensity Through Ligand Modification of a Dicobalt PARACEST Probe
Thorarinsdottir, A. E.; Harris, T. D.* Chem. Commun. 2019, 55, 794–797.
4.
Electronic Effects of Ligand Substitution in a Family of CoII2 PARACEST pH Probes
Thorarinsdottir, A. E.; Tatro, S. M.‡; Harris, T. D.* Inorg. Chem. 2018, 57, 11252–11263.
3.
pH-Dependent Spin State Population and 19F NMR Chemical Shift via Remote Ligand Protonation in an Iron(II) Complex
Gaudette, A. I.; Thorarinsdottir, A. E.; Harris, T. D.* Chem. Commun. 2017, 53, 12962–12965.
2.
Ratiometric pH Imaging with a CoII2 MRI Probe via CEST Effects of Opposing pH Dependences
Thorarinsdottir, A. E.; Du, K.; Collins, J. H. P.; Harris, T. D.* J. Am. Chem. Soc. 2017, 139, 15836–15847.
1.
Spin-Crossover and High-Spin Iron(II) Complexes as Chemical Shift 19F Magnetic Resonance Thermometers
Thorarinsdottir, A. E.; Gaudette, A. I.; Harris, T. D.* Chem. Sci. 2017, 8, 2448–2456.