Self-Assembly Properties of Xylene-Derived Constitutional Isomers of Fmoc-Phenylalanine
Agredo, P.; Mohan, R.; Carter, S. T.; Nilsson, B. L.
Langmuir 2025, 41, 38, 25962–25969. DOI: 10.1021/acs.langmuir.5c02581
Self-Assembly Properties of Xylene-Derived Constitutional Isomers of Fmoc-Phenylalanine
Agredo, P.; Mohan, R.; Carter, S. T.; Nilsson, B. L.
Langmuir 2025, 41, 38, 25962–25969. DOI: 10.1021/acs.langmuir.5c02581
Multicomponent supramolecular hydrogels composed of cationic phenylalanine derivatives and anionic amino acids
Ghosh, S.; Distaffen, H. E.; Jones, C. W.; Nilsson, B. L.
Faraday Discuss. 2025, 260, 260-376, DOI: 10.1039/D4FD00198B
Insights into Membrane Damage by α-Helical and β-Sheet Peptides.
Rangubpit, W.; Distaffen, H. E.; Nilsson, B. L.; Dias, C. L.
Biomolecules 2025, 15, 973. DOI: 10.3390/biom15070973
Multicomponent Supramolecular Hydrogels Composed of Cationic Phenylalanine Derivatives and Anionic Amino Acids
Ghosh, S.; Distaffen, H.E.; Jones, C.W.; Nilsson, B.L.
Faraday Discuss., 2024, DOI: 10.1039/D4FD00198B
Pore Formation by Amyloid-like Peptides: Effects of the Nonpolar–Polar Sequence Pattern
Rangubpit, W.; Sungted, S.; Wong-Ekkabut, J.; Distaffen, H.E.; Nilsson, B.L.; Dias, C.L.
ACS Chem. Neurosci., 2024, 15(18), 3354-3362, DOI: 10.1021/acschemneuro.4c00333
Hybrid Amyloid Quantum Dot Nano-Bio Assemblies to Probe Neuroinflammatory Damage
Chiang, W.; Urban, J.M.; Yanchik-Slade, F.E.; Stout, A.; Hammond, J.M.; Nilsson, B.L.; Gelbard, H.A.; Krauss, T.D.
ACS Chem. Neurosci. 2024, 15(17), 3124-3135 DOI: 10.1021/acschemneuro.4c00183
Peptide Self-Assembly into Amyloid Fibrils: Unbiased All-Atom Simulations
Nilsson, B.L.; Torabfam, G.C.; Dias C.L.
J. Phys. Chem. B., 2024, 128(14) 3320-3328 DOI:
Mol. Pharm. 2023, 20(12), 6090-6103 DOI: 10.1021/acs.molpharmaceut.3c00455
Chirality in Peptide Self-Assembly and Aggregation
Yanchik-Slade, F.E.; von Hofe, J. E.; Nilsson, B.L.
β-Sheet and β-Hairpin Peptide Nanomaterials
Quigley, E.; Nilsson, B.L.
Peptide Bionanomaterials: From Design to Application, Springer International Publishing, 2023, 53-86
Quantum Dot Biomimetic for SARS-CoV-2 to Interrogate Blood–Brain Barrier Damage Relevant to NeuroCOVID Brain Inflammation
Chiang, W.; Stout, A.; Yanchik-Slade, F.; Li, H.; Terrando, N.; Nilsson, B.L; Gelbard, H.A.; Krauss, T.D.
ACS Appl. Nano Mater., 2023, 6(16), 15094-15107 DOI: 10.1021/acsanm.3c02719
Supramolecular phenylalanine-derived hydrogels for the sustained release of functional proteins
Jagrosse, M.L.; Agredo, P.; Abraham, B.L.; Toriki, E.S.; Nilsson, B.L.
Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives
Abraham, B.L.; Agredo, P.; Mensah, S.G.; Nilsson, B.L.
Langmuir, 2022, 38 (50), 15494-15505 DOI: 10.1021/acs.langmuir.2c01394
Using all-atom simulations in explicit solvent to study aggregation of amphipathic peptides into amyloid-like fibrils
Jalali, S.; Yang, Y.; Mahmoudinobar, F.; Singh, S.M.; Nilsson, B.L.; Dias, C.
J. Mol. Liq., 2022, 347, 118283
Side-chain halogen effects on self-assembly and hydrogenation of cationic phenylalanine derivatives
Abraham, B.L.; Mensah, S.G.; Gwinnwell, B.R.; Nilsson, B.L.
J. Soft Matter, 2022, 18 (22), 5999-6008 DOI: 10.1039/D2SM00713D
Peptide Cross-β Nanoarchitectures: Characterizing Self-Assembly Mechanisms, Structure, and Physicochemical Properties
Jones, C.W,; Distaffen, H. E.; Nilsson, B.L.
Molecular Architectonics and Nanoarchitectonics, 2022, 179-207 DOI: 10.1007/978-981-16-4189-3_8
Capacity for increased surface area in the hydrophobic core of beta-sheet peptide bilayer nanoribbons
Jones, C. W.; Morales, C. G.; Eltiste, S. L.; Yanchik-Slade, F. E.; Lee, N. R.; Nilsson, B. L.
J. Pept. Sci. 2021, 27, e3334. DOI: 10.1002/psc.3334
Binding Mechanisms of Amyloid-like Peptides to Lipid Bilayers and Effects of Divalent Cations
ACS Chem. Neurosci. 2021, 12, 2027-2035. DOI: 10.1021/acschemneuro.1c00140
Defining the Landscape of the Pauling-Corey Rippled Sheet: An Orphaned Motif Finding New Homes
Acc. Chem. Res. 2021, 54, 2488-2501. DOI: 10.1021/acs.accounts.1c00084
Multivalent display of chemical signals on self-assembled peptide scaffolds
Pept. Sci. 2021, 113, e24224. DOI: 10.1002/pep2.24224
Quantum Dots for Improved Single-Molecule Localization Microscopy
J. Phys. Chem. B 2021, 125, 2566-2576. DOI: 10.1021/acs.jpcb.0c11545
Effects of Ions and Small Compounds on the Structure of Aβ42 Monomers
J. Phys. Chem. B 2021, 125, 1085-1097. DOI: 10.1021/acs.jpcb.0c09617
Impact of gelation method on thixotropic properties of phenylalanine-derived supramolecular hydrogels
Soft Matter 2020, 16, 10158-10168. DOI: 10.1039/D0SM01217C
Electrostatic interactions regulate the release of small molecules from supramolecular hydrogels
J. Mater. Chem B 2020, 8, 6366-6377. DOI: 10.1039/D0TB01157F
Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators
Langmuir 2019, 35, 14939-14948. DOI: 10.1021/acs.langmuir.9b02971
RNAi therapeutic strategies for acuterespiratory distress syndrome
Translational Research 2019, 214, 30-49. DOI: 10.1016/j.trsl.2019.07.011
Rippled β-Sheet Formation by an Amyloid-β Fragment Indicates Expanded Scope of Sequence Space for Enantiomeric β-Sheet Peptide Coassembly
Molecules 2019, 24, 1983. DOI: 10.3390/molecules24101983
Thermodynamic Stability of Polar and Nonpolar Amyloid Fibrils
J. Chem. Theory Comput. 2019, 15, In Press. DOI: 10.1021/acs.jctc.9b00145
Low-Molecular-Weight Supramolecular Hydrogels for Sustained and Localized in Vivo Drug Delivery
ACS Appl. Bio Mater. 2019, 2, 2116-2124. DOI: 10.1021/acsabm.9b00125
Multicomponent peptide assemblies
Chem. Soc. Rev. 2018, 47, 3659-3720. DOI: 10.1039/C8CS00115D
Comparison of the Self-Assembly Behavior of Fmoc-Phenylalanine and Corresponding Peptoid Derivatives
Cryst. Growth. Des. 2018, 18(2), 623-632. DOI: 10.1021/acs.cgd.7b00709
Balancing Hydrophobicity and Sequence Pattern to Influence Self-Assembly of Amphipathic Peptides
Biopolymers 2018, 110, e23099. DOI: 10.1002/bip.23099
Redox-Sensitive Reversible Self-Assembly of Amino Acid-Naphthalene Diimide Conjugates
Interface Focus 2017, 7, 20160099. DOI: 10.1098/rsfs.2016.0099
Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition
Biomacromolecules 2017, 18, 3591-3599. DOI: 10.1021/acs.biomac.7b00925
Display of Functional Proteins on Supramolecular Peptide Nanofibrils Using a Split-Protein Strategy
Org. Biomol. Chem. 2017, 15, 5279-5283. DOI: 10.1039/C7OB01057E
Self-Assembly, Hydrogelation, and Nanotube Formation by Cation-Modified Phenylalanine Derivatives
Langmuir 2017, 33, 5803-5813. DOI: 10.1021/acs.langmuir.7b00686
Investigating the Effects of Peptoid Substitutions in Self-Assembly of Fmoc-Diphenylalanine Derivatives
Biopolymers 2017, 108, e22994. DOI: 10.1002/bip.22994
Amyloid-Inspired Optical Waveguides from Multicomponent Crystalline Microtubes
ChemNanoMat 2016, 2, 800-804. DOI: 10.1002/cnma.201600123
Functional Delivery of siRNA by Disulfide-Constrained Cyclic Amphipathic Peptides
ACS Med. Chem. Lett. 2016, 7, 584-589. DOI: 10.1021/acsmedchemlett.6b00031
Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives
Langmuir 2016, 32, 787-799. DOI: 10.1021/acs.langmuir.5b03227
Mechanisms of Tau and Aβ-induced Excitotoxicity
Brain Res. 2016, 1634, 119-131. DOI: 10.1016/j.brainres.2015.12.048
Spontaneous Transition of Self-Assembled Hydrogel Fibrils into Crystalline Microtubes Enables a Rational Strategy to Stabilize the Hydrogel State
Langmuir 2015, 31, 9933-9942. DOI: 10.1021/acs.langmuir.5b01953
Multicomponent Dipeptide Hydrogels as Extracellular Matrix-Mimetic Scaffolds for Cell Culture Applications
Chem. Commun. 2015, 51, 11260-11263. DOI: 10.1039/C5CC03162A
Proteolytic Stability of Amphipathic Peptide Hydrogels Composed of Self-Assembled Pleated β-Sheet or Coassembled Rippled β-Sheet Fibrils
Chem. Commun. 2014, 50, 10133-10136. DOI: 10.1039/C4CC04644G
Selective Suspension of Single-Walled Carbon Nanotubes Using β-Sheet Polypeptides
J. Phys. Chem. C 2014, 118, In press. DOI: 10.1021/jp410870y
Reversible Photocontrol of Self-Assembled Peptide Hydrogel Viscoelasticity
Polym. Chem. 2014, 5, 241-248. DOI: 10.1039/C3PY00903C
Sequence Length Determinants for Self-Assembly of Amphipathic β-Sheet Peptides
Biopolymers 2013, 100, 738-750. DOI: 10.1002/bip.22248
Fluorescence Detection of Cationic Amyloid Fibrils in Human Semen
Bioorg. Med. Chem. Lett. 2013, 23, 5199-5202. DOI: 10.1016/j.bmcl.2013.06.097
Effects of Varied Sequence Pattern on the Self-Assembly of Amphipathic Peptides
Biomacromolecules 2013, 14, 3267-3277. DOI: 10.1021/bm400876s
Self-Assembly of Amphipathic β-Sheet Peptides: Insights and Applications
Biopolymers 2012, 98, 169-184. DOI: 10.1002/bip.22058
Coassembly of Enantiomeric Amphipathic Peptides into Amyloid-Inspired Rippled β-Sheet Fibrils
J. Am. Chem. Soc. 2012, 134, 5556-5559. DOI: 10.1021/ja301642c
Seminal Plasma Accelerates Semen-derived Enhancer of Viral Infection (SEVI) Fibril Formation by the Prostatic Acid Phosphatase (PAP[248-286]) Peptide
J. Biol. Chem. 2012, 287, 11842-11849. DOI: 10.1074/jbc.M111.314336
Turn Nucleation Perturbs Amyloid-β Self-Assembly and Cytotoxicity
J. Mol. Biol. 2012, 421, 315-328. DOI: 10.1016/j.jmb.2012.01.055
An Azobenzene Photoswitch Sheds Light on Turn Nucleation in Amyloid-β Self-Assembly
ACS Chem. Neurosci. 2012, 3, 211-220. DOI: 10.1021/cn2001188
Role of Amino Acid Hydrophobicity, Aromaticity and Molecular Volume on IAPP(20-29) Amyloid Self-Assembly
Proteins 2012, 80, 1053-1065. DOI: 10.1002/prot.24007
Self-Assembled Amino Acids and Dipeptides as Noncovalent Hydrogels for Tissue Engineering
Polym. Chem. 2012, 3, 18-33. DOI: 10.1039/C1PY00335F
Complementary π–π Interactions Induce Multi-Component Coassembly into Functional Fibrils
Langmuir 2011, 27, 11145-11156. DOI: 10.1021/la202070d
Tuning β-Sheet Peptide Self-Assembly and Hydrogelation Behavior by Modification of Sequence Hydrophobicity and Aromaticity
Biomacromolecules 2011, 12, 2735-2745. DOI: 10.1021/bm200510k
Effect of C-Terminal Modification on the Self-Assembly and Hydrogelation of Fluorinated Fmoc-Phe
Langmuir 2011, 27, 4029-4039. DOI: 10.1021/la1048375
Enhancement of HIV-1 Infectivity by Simple, Self-Assembling Modular Peptides
Biophys. J. 2011, 100, 1325-1334. DOI: 10.1016/j.bpj.2011.01.037
Clarifying the Influence of Core Amino Acid Hydrophobicity, Secondary Structure Propensity, and Molecular Volume on Amyloid-β 16-22 Self-Assembly
Mol. BioSyst. 2011, 7, 497-510. DOI: 10.1039/C0MB00210K
Probing Aromatic, Hydrophobic, and Steric Effects on the Self-Assembly of an Amyloid-β Fragment Peptide
Mol. BioSyst. 2011, 7, 486-496. DOI: 10.1039/C0MB00080A
Stabilizing Self-Assembled Fmoc-F5-Phe Hydrogels by Co-Assembly with PEG-Functionalized Monomers
Chem. Commun. 2011, 47, 475-477. DOI: 10.1039/C0CC02217A
Amyloid Binding Small Molecules Efficiently Block SEVI and Semen-Mediated Enhancement of HIV-1 Infection
J. Biol. Chem. 2010, 285, 35488-35496. DOI: 10.1074/jbc.M110.163659
The Influence of Side-Chain Halogenation on the Self-Assembly and Hydrogelation of Fmoc-Phenylalanine Derivatives
Soft Matter 2010, 6, 3220-3231. DOI: 10.1039/c0sm00018c
A Reductive Trigger for Peptide Self-Assembly and Hydrogelation
J. Am. Chem. Soc. 2010, 132, 9526-9527. DOI: 10.1021/ja1025535
Self-Assembly and Hydrogelation Promoted by F5-Phenylalanine
Soft Matter 2010, 6, 475-479. DOI: 10.1039/b916738b
The Effect of Increasing Hydrophobicity on the Self-Assembly of Amphipathic β-Sheet Peptides
Mol. BioSyst. 2009, 5, 1058-1069. DOI: 10.1039/b904439f