Christensen, S.M., J.Ye,, and T.H. Eichbush. 2006. RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site. PNAS (in press)
Christensen, S.M., A. Bibillo and T.H. Eickbush. 2005. Role of the Bombyx mori R2 element N-terminal domain in the target-primed reverse transcription (TPRT) reaction.Nucleic Acids Res. 33(20):6461-8.
(PubMed)
Averbeck, K.T. and T.H. Eickbush. 2005. Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus. Genetics 171:1837-46.
(PubMed)
Zhang, X. and T.H. Eickbush. 2005. Characterization of active R2 retrotransposition in the rDNA locus of Drosophila simulans. Genetics 170:195-205.
(PubMed)
Christensen, S.M. and T.H. Eickbush. 2005. R2 target primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA. Mol. Cell. Biol. 25:6617-6628.
(PubMed)
Ye, J., C.E. Perez-Gonzalez, D.G. Eickbush and T.H. Eickbush. 2005. Competition between R1 and R2 retrotransposable elements in the 28S rRNA genes of insects. Cytogenet. Genome Res. 110:299-306.
(PubMed)
Ruschak, A.M., D.H. Mathews, A. Bibillo, S.L. Spinelli, J.L. Childs, T.H. Eickbush and D.H. Turner. 2004. Secondary Structure models of the 3' untranslated regions of diverse R2 RNAs. RNA 10:978-987.
(PubMed)
Christensen, S. and Eickbush, T. H. 2004. Footprint of the R2Bm protein on its target site before and after cleavage in the presence and absence of RNA. J. Mol. Biol. 336:1035-1045.
(PubMed)
Bibillo, A. and T.H. Eickbush. 2004. End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon. J. Biol. Chem. 279:14945-14953.
(PubMed)
Perez-Gonzalez, C.E., W.D. Burke and T.H. Eickbush. 2003. R1 and R2 retrotransposition and deletion in the rDNA loci on the X and Y chromosomes of Drosophila melanogaster. Genetics 165:675-685.
(PubMed)
Burke, W.D., D. Singh and T.H. Eickbush. 2003. R5 retrotransposons insert into a family of infrequently transcribed 28S rRNA genes of planaria. Mol. Biol. Evol. 20:1260-1270.
(PubMed)
Eickbush, D.G. and T.H. Eickbush. 2003. Transcription of endogenous and exogenous R2 elements in the rRNA gene locus of Drosophila melanogaster. Mol. Cell Biol. 23:3825-3836.
(PubMed)
Ye, J., Yang, Z, Hayes, J. J. and Eickbush, T. H. 2002. R2 retrotransposition on assembled nucleosomes depends upon the translational position of the target site. EMBO J. 21: 6853-6864. (PubMed)
Perez-Gonzalez, C. E. and Eickbush, T. H. 2002. Rates of R1 and R2 retrotransposition and elimination from the rDNA locus of Drosophila melanogaster. Genetics 162: 799-811.(PubMed)
Bibillo, A. and Eickbush, T. H. 2002. High processivity of the reverse transcriptase from a non-Long Terminal repeat retrotransposon. J. Biol. Chem. 277: 34836-34845. (PubMed)
Eickbush, T. H. and Furano A. V. 2002. Fruit flies and humans respond differently to retrotransposons. Current Opinion in Genetics & Development 12: 669-674. (PubMed)
Eickbush, T. H. 2002. Repair by retrotransposition. Nature Genetics 31:126-127. (PubMed)
Burke, W. D, Malik, H. S., Rich, S. M and Eickbush, T. H. 2002. Ancient lineages of non-LTR retrotransposons in the primitive eukaryote, Giardia lamblia. Mol. Biol. Evol. 19: 619-630.(PubMed)
Bibillo, A. and Eickbush, T. H. 2002. The reverse transcriptase of the R2 non-LTR retrotransposon: Continuous Synthesis of cDNA on Non-Continuous RNA Templates. J. Mol. Biol. 316:459-473.(PubMed)
Eickbush, T.H. and Malik, H. S. 2002. Evolution of retrotransposons. pp. 1111-1144. In Mobile DNA II, N. Craig, R. Craigie, M. Gellert, and A. Lambowitz, eds. American Society of Microbiology Press. Washington D.C.
Eickbush, T.H. 2002. R2 and Related Site-specific non-LTR Retrotransposons. pp. 813-835. In Mobile DNA II, N. Craig, R. Craigie, M. Gellert, and A. Lambowitz, eds. American Society of Microbiology Press. Washington D.C.
Malik, H.S. and Eickbush, T. H. 2001. Phylogenetic analysis of Ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Research 11:1187-1197. (PubMed)
Perez-Gonzalez, C. E. and Eickbush, T. H. 2001. Dynamics of R1 and R2 Elements in the rDNA locus of Drosophila. Genetics 158:1557-1567. (PubMed)
Claypool, J. A., Malik, H. S., Eickbush, T. H. and Sandmeyer, S. B. 2001. A 10 kilodalton domain in the Ty3 gag-pol3p between PR and RT is dispensable for Ty3 transposition. J. Virol. 75:1557-1560. (PubMed)
Gentile, K., Burke, W. D. Lathe, W.C. and Eickbush, T.H. 2001.Multiple lineages of R1 retrotransposable elements can coexist in the rDNA loci of Drosophila. Mol. Biol. Evol. 18: 235-245. (PubMed)
Malik, H. S., Henikoff, S., and Eickbush, T. H. 2000. Poised for contagion: evolutionary origins of the infectious abilities of insect errantiviruses and nematode retroviruses. 2000. Genome Research 10: 1307-1318. (PubMed)
Malik, H.S. Burke, W. D. and Eickbush, T. H. 2000. Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans. Gene 251:101-108. (PubMed)
Eickbush, T.H. 2000. Introns gain ground. Nature 404:940-943. (PubMed)
Malik, H.S. and Eickbush, T. H. 2000. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans. Genetics 154: 193-203. (PubMed)
Eickbush D.G., Luan, D.D., and Eickbush, T. H. 2000. Integration of Bombyx mori R2 sequences into the 28S ribosomal DNA loci of Drosophila melanogaster. Mol. Cell. Biol. 20:213-223. (PubMed)
Yang, J., Malik, H. S., and Eickbush, T. H. 1999. Identification of the endonuclease domain encoded by R2 and other site-specific non-long terminal repeat retrotransposable elements. Proc. Natl. Acad. Sci. USA 96: 7847-7852. (PubMed)
Malik, H. S., Burke, W. D., and Eickbush, T. H. 1999. The age and evolution of non-LTR retrotransposons. Mol. Biol. Evol. 16: 793-805. (PubMed)
Burke, W. D., Malik, H. S., Jones, J. P., and Eickbush, T. H. 1999. The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Mol. Biol. Evol. 16: 502-11. (PubMed)
Malik, H.S., and Eickbush, T.H. 1999. Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR-retrotransposons. J. Virology. 73: 5186-5190. (PubMed)
Eickbush, T.H. 1999. Mobile introns : Retrohoming by complete reverse splicing. Curr. Biol. 9 : R11-R14. (PubMed)
George, J.A. and Eickbush, T.H. 1999. Conserved features at the 5' end of Drosophila R2 retrotransposable elements: implications for transcription and translation. Insect Mol. Biol. 8: 3-10. (PubMed)
Malik, H.S. and Eickbush, T.H. 1999. Retrotransposable elements R1 and R2 in the rDNA units of Drosophila mercatorum:abnormal abdomen revisited. Genetics 151 (2) : 653-665. (PubMed)
Boeke, J.D., Eickbush, T. H., Sandmeyer, S.B. and Voytas, D. F. 1999. Metaviridae, in VirusTaxonomy: ICTV VIIth Report, edited by F. A. Murphy. Springer-Verlag, New York.Boeke, J.D.,
Eickbush, T. H., Sandmeyer, S.B. and Voytas, D. F. 1999. Pseudoviridae, in Virus Taxonomy: ICTV VIIth Report, edited by F. A. Murphy. Springer-Verlag, New York.
Malik, H. S. and Eickbush, T. H. 1998. The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINE elements. Mol. Biol. Evol. 15 (9) : 1123-1134. (PubMed)
Yang, J. and Eickbush, T. H. 1998. RNA-induced changes in the activity of the endonuclease encoded by the R2 retrotransposable element. Mol. Cell. Biol. 18(16) : 3455-3465. (PubMed)
Burke, W.D., Malik, H. S., Lathe III, W. C. and Eickbush, T.H. 1998. Are retrotransposons long-term hitchhikers? Nature 392(6672) : 141-142. (PubMed)
Malik, H. S., Eickbush, T. H. and Goldfarb, D. S. 1997. Evolutionary specialization of the nuclear targeting apparatus. Proc. Natl. Acad. Sci. USA 94: 13738-13742. (PubMed)
Lathe III, W.C. and Eickbush, T.H. 1997. A single lineage of R2 retrotransposable elements is an active, evolutionarily stable component of the Drosophila rDNA locus. Mol. Biol. Evol. 14(12) : 1232-1241. (PubMed)
Eickbush, T.H. 1997. Telomerase and retrotransposons: which came first? Science 277(5328) : 911-912. (PubMed)
Eickbush, T.H., Burke, W.D., Eickbush, D.G. and Lathe III, W.C. 1997. Evolution of R1 and R2 in the rDNA units of the genus Drosophila Genetica 100(1-3) : 49-61. (PubMed)
Mathews, D.H., Banerjee, A.R., Luan, D.D., Eickbush, T.H. and Turner, D.H. 1997. Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element. RNA 3(1) : 1-16. (PubMed)
Luan, D.D. and Eickbush, T.H. 1996. Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase. Mol. Cell. Biol. 16(9) : 4726-4734. (PubMed)
George, J.A., Burke, W.D. and Eickbush, T.H. 1996. Analysis of the 5' junctions of R2 insertions with the 28S gene: implications for non-LTR retrotransposition. Genetics 142(3) : 853-863. (PubMed)
Burke, W.D., Müller, F. and Eickbush, T.H. 1995. R4, a non-LTR retrotransposon specific to the large subunit rRNA gene of nematodes. Nucleic Acids Res. 23(22) : 4628-4634. (PubMed)
Lathe, W.C., Burke, W.D. and Eickbush, T.H. 1995. Evolutionary stability of the R1 retrotransposable element in the genus Drosophila. Mol. Biol. Evol. 12(6) :1094-1105.(PubMed)
Luan, D.D. and Eickbush, T.H. 1995. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol. Cell. Biol. 15(7) : 3882-3891. (PubMed)
Eickbush, D.G., Lathe, W.D., Francino, M.P. and Eickbush, T.H. 1995. R1 and R2 retrotransposable elements ofDrosophila evolve at rates similar to those of nuclear genes. Genetics 139(2) : 685-695. (PubMed)
Eickbush, D.G. and Eickbush, T.H. 1995. Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophilamelanogaster species subgroup. Genetics 139(2) : 671-684. (PubMed)
Eickbush, T.H. Mobile elements of Lepidopteran genomes. 1995. In The Molecular Genetics and Molecular Biology of Lepidoptera, M.R. Goldsmith and A.S. Wilkins, eds. Cambridge University Press. pp. 77-106.
Eickbush, T.H., and Izzo, J.A. Chorion genes: molecular models of evolution. 1995. The Molecular Genetics and Molecular Biology of Lepidoptera, M.R. Goldsmith and A.S. Wilkins, eds. Cambridge University Press. pp. 217-248.
Eickbush, T.H. 1994. Origin and evolutionary relationship of retroelements. Evolutionary Biology of Viruses, S.S. Morse ed., Raven Press. pp 121-157.
Xiong, Y., Burke, W.D., and Eickbush, T.E. 1993. Pao, a highly divergent retrotransposable element from Bombyx mori containing long terminal repeats with tandem copies of the putative R region. Nucleic Acids Res. 21(9) : 2117-2123. (PubMed)
Xiong, Y. and Eickbush, T.H. 1993. Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori. Nucleic Acids Res. 21(5) : 1318. (PubMed)
Luan, D., Korman, M.H., Jakubczak, J.L. and Eickbush, T.H. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72(4) : 595-605. (PubMed)
Burke, W.D., Eickbush, D.G., Xiong, Y., Jakubczak, J.L. and Eickbush, T.H. 1993. Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol. Biol. Evol 10(1) : 163-185. (PubMed)
Eickbush, D.G., Eickbush, T.H. and Werren, J.H. 1992. Molecular characterization of repetitive DNA sequences from a B chromosome. Chromosoma 101(9) : 575-590. (PubMed)
Polakowska, R.R., Eickbush, T.H., Falciano, V., Razvi, F. and Goldsmith, L.A. 1992. Organization and evolution of the human epidermal keratinocyte transglutaminase I gene. Proc. Natl. Acad. Sci. 89(10) : 4476-4480. (PubMed)
Eickbush, T.H. 1992. Transposing without ends: the non-LTR retrotransposable elements. New Biologist 4(5) : 430-440. (PubMed)
Jakubczak, J.L., Zenni, M.K., Woodruff, R.C. and Eickbush, T.H. 1992. Turnover of R1 (Type I) and R2 (Type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. Genetics 131(1) :129-142. (PubMed)
Jakubczak, J., Burke, W.D. and Eickbush, T.H. 1991. Retrotransposable elements R1 and R2 interrupt the rDNA genes of most insects. Proc. Natl. Acad. Sci. 88(8) : 3295-3299. (PubMed)
Xiong, Y. and Eickbush, T.H. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9(10) : 3353-3362.
(PubMed)