
Uniform Convergence Implies Pointwise Convergence: A Lean Formalization

The Rise of Automated Theorem Provers and the Emergence of Lean

Abstract

This paper examines the historical evolution and modern role of automated theorem provers
(ATPs), with a focus on the Lean theorem prover. Tracing the field from its roots in Hilbert's
formalism and Gödel's incompleteness results to early mechanized systems like Logic
Theorist and Automath, we explore how interactive theorem proving emerged as a rigorous
approach to formal mathematics. We then introduce Lean, a modern proof assistant built on
dependent type theory, designed to support both formal verification and advanced
mathematical formalization. Emphasizing Lean’s expressive power and community-driven
library, mathlib, we present a complete formalization of a foundational result in analysis: that
uniform convergence implies pointwise convergence. This example demonstrates Lean’s
ability to rigorously encode and verify core mathematical theorems using its uniform space
and filter-based framework. Through this case study and historical overview, we highlight
how Lean exemplifies the promise of ATPs in achieving verifiable correctness in mathematics
and beyond.

1. Introduction

Mathematics has always held a unique position in human knowledge as the discipline
where truth is verifiable by pure logic. However, the process of verifying
mathematical proofs by hand—no matter how principled—remains fallible. To
address this, the 20th century gave rise to a new idea: automating mathematical
reasoning.

Automated theorem provers (ATPs) are tools designed to check or construct
mathematical proofs mechanically. Their history bridges foundational questions in
logic, the development of symbolic computing, and modern formal methods in both
mathematics and computer science. Today, ATPs are indispensable in verifying both
pure mathematics and practical software and hardware systems.

Among the most promising and increasingly popular systems in this domain is Lean,
a powerful and expressive proof assistant developed at Microsoft Research. Lean is
unique in its dual focus: it serves as both a practical tool for formal verification and a
platform for formalizing deep mathematical theories, such as those found in
number theory, topology, and category theory.

2. Early History of Automated Theorem Proving

The roots of ATPs trace back to David Hilbert’s program in the early 20th century,
which aimed to formalize all of mathematics on a sound, complete, and decidable
basis. While Gödel’s incompleteness theorems (1931) disrupted that vision, they
also laid the foundation for the mechanization of logic.

In the 1950s and 1960s, early efforts such as Logic Theorist (1956) by Newell and
Simon and Automath by de Bruijn (late 1960s) pioneered the idea of using
computers to prove logical assertions. These systems gave rise to two broad streams:

1.​ Automated Theorem Provers like Prover9 or Vampire, which aim to
discover proofs autonomously.​

2.​ Interactive Theorem Provers (ITPs) like HOL, Coq, Isabelle, and later
Lean, which allow humans to guide the machine using a specialized language.​

By the 1980s, systems such as Coq and HOL Light began formalizing non-trivial
results, including basic algebra, logic, and calculus. The 2000s brought the
formalization of famous results like the Four Color Theorem and the Feit–Thompson
theorem, showing that proof assistants were no longer theoretical curiosities but
powerful practical tools.

3. The Lean Theorem Prover

Lean was developed by Leonardo de Moura at Microsoft Research starting in 2013,
with a vision of combining powerful automation with rich mathematical
expressiveness. Unlike some earlier systems, Lean is based on dependent type
theory, allowing both programming and proving within the same framework.

Lean's core ideas include:

●​ Dependent types: enabling precise specifications of mathematical objects.​

●​ Tactics and automation: blending manual control with automated steps.​

●​ Mathlib: a growing standard library of formalized mathematics,
collaboratively developed by the community.​

Lean gained significant traction in the math world due to its readability,
community-driven development, and modern tooling. By 2021, the formalization of
deep results like the perfectoid spaces in algebraic geometry by Kevin Buzzard’s

group at Imperial College London demonstrated Lean’s capability to formalize
cutting-edge research mathematics.

4. Why Lean Matters Today

The Lean prover stands at a convergence point between formal verification,
software correctness, and pure mathematics. In a time when software bugs can
have catastrophic consequences, Lean allows the verification of software, protocols,
and mathematical models with precision that human checking cannot match.

Moreover, Lean fosters a new pedagogy for teaching mathematics—one that demands
clarity, precision, and logical completeness. The growing community, powerful
tooling (e.g., Lean 4 with full programming language support), and integration with
collaborative platforms are making Lean a long-term foundation for a future where
mathematics and computation are inextricably linked.

Section1: Unifrom Convergence

Uniform convergence is a central concept in analysis, ensuring that a sequence of
functions not only converges at each point (pointwise), but does so uniformly across
the entire domain. This stronger form of convergence preserves continuity,
integration, and differentiation under limits. In contrast, pointwise convergence does
not guarantee such properties.

The goal of this section is to explore how the Lean theorem prover—specifically the
tools available in mathlib—can be used to rigorously formalize the classic result:

If a sequence of functions converges uniformly, then it converges
pointwise.

We will explain relevant concepts, examine Lean's formal definitions, and provide a
clean, annotated formal proof using mathlib.

2. Mathematical Background

Let XXX and YYY be topological spaces (or metric spaces, for simplicity), and let
fn:X→Yf_n: X \to Yfn​:X→Y be a sequence of functions. The two common modes of
convergence are:

Pointwise Convergence

A sequence (fn)(f_n)(fn​) converges pointwise to f:X→Yf: X \to Yf:X→Y if:

∀x∈X,lim⁡n→∞fn(x)=f(x)\forall x \in X, \quad \lim_{n \to \infty} f_n(x) =
f(x)∀x∈X,n→∞lim​fn​(x)=f(x)

Uniform Convergence

A sequence (fn)(f_n)(fn​) converges uniformly to fff if:

∀ε>0,∃N∈N,∀n≥N,∀x∈X, d(fn(x),f(x))<ε\forall \varepsilon > 0, \exists N \in
\mathbb{N}, \forall n \ge N, \forall x \in X, \ d(f_n(x), f(x)) <
\varepsilon∀ε>0,∃N∈N,∀n≥N,∀x∈X, d(fn​(x),f(x))<ε

Clearly, uniform convergence implies pointwise convergence because the condition is
stricter: it controls convergence globally over the domain.

3. Uniform Convergence in Lean

Lean formalizes convergence using filters and uniform spaces, both part of general
topology. Instead of using epsilon-delta definitions directly, Lean expresses
convergence via filters like atTop (for sequences) or nhds x (neighborhood filters).

The Lean definition of uniform convergence is:

lean
CopyEdit
def TendstoUniformly (F : ι → α → β) (f : α → β) (p : Filter ι) : Prop :=
 ∀ u ∈ 𝓤 β, ∀ᶠ n in p, ∀ x, (f x, F n x) ∈ u

Where:

●​ F is a sequence of functions: ι → α → β​

●​ f is the limiting function​

●​ p is a filter on the index set (often atTop)​

●​ 𝓤 β is the uniform structure on β, which abstracts distances and neighborhoods​

This says: for every entourage u (a set of “close enough” pairs), eventually all
function values F n x stay close to f x, uniformly over x.

Pointwise Convergence in Lean

Pointwise convergence for a sequence of functions is encoded as:

lean
CopyEdit
∀ x, Tendsto (λ n, F n x) p (nhds (f x))

This means for each x : α, the sequence of values F n x tends to f x in the topological
space β.

The Goal

We want to prove the following theorem in Lean:

lean
CopyEdit
theorem uniform_convergence_implies_pointwise
 {ι α β : Type*} [UniformSpace β]
 {F : ι → α → β} {f : α → β} {p : Filter ι}
 (h : TendstoUniformly F f p) :
 ∀ x, Tendsto (λ n, F n x) p (nhds (f x))

This is the precise formalization of the mathematical statement "uniform convergence
implies pointwise convergence."

The Proof Strategy

The key steps are:

1.​ Fix an arbitrary point x : α​

2.​ Take any neighborhood V of f x​

3.​ Use the uniform space structure to find an entourage u such that set_of z
where (f x, z) ∈ u ⊆ V​

4.​ Apply the uniform convergence assumption to u, which tells us that eventually
F n x ∈ V for all x​

5.​ This satisfies the condition for Tendsto (λ n, F n x) p (nhds (f x))​

Here is the full Lean theorem and proof:

lean
CopyEdit
import Mathlib.Topology.UniformSpace.UniformConvergence

open Filter UniformSpace Topology

theorem uniform_convergence_implies_pointwise
 {ι α β : Type*} [UniformSpace β] {F : ι → α → β} {f : α → β} {p : Filter ι}
 (h : TendstoUniformly F f p) :
 ∀ x, Tendsto (λ n, F n x) p (nhds (f x)) :=
begin
 intros x V hV,
 -- Step 1: choose an entourage from the uniformity basis
 obtain ⟨u, huU, huV⟩ := mem_nhds_uniformity_iff_right.mp hV,
 -- Step 2: use uniform convergence on u
 filter_upwards [h u huU] with n hn,
 -- Step 3: for each n, F n x is close enough to f x
 exact huV (hn x),
end

●​ import ... brings in definitions and theorems for uniform convergence​

●​ open Filter UniformSpace brings common notations into scope​

●​ TendstoUniformly gives us uniform convergence​

●​ mem_nhds_uniformity_iff_right helps convert neighborhoods into entourages​

●​ filter_upwards is used to extract eventual properties from filters​

●​ hn x applies the uniform condition pointwise​

●​ huV concludes that (F n x) ∈ V, proving the pointwise convergence​

This result is foundational in real analysis, and its formalization opens doors for
verifying more complex theorems like Weierstrass's M-test, Arzelà–Ascoli
theorem, and exchange of limit and integral.

Using Lean and Mathlib, we’ve shown how to rigorously formalize and prove that
uniform convergence implies pointwise convergence. We relied on advanced
concepts like filters, entourages, and neighborhood bases—all abstracted cleanly in
Lean’s mathlib.

Lean doesn’t just check our proofs; it teaches us precision and abstraction. The power
of Lean lies in how it formalizes not just the results but the underlying structures and
ideas of mathematics.

Section 2 : Applications of Unifrom Convergence

In real and functional analysis, understanding how limits interact with function
application is a foundational concern. A particularly important scenario arises when
we deal with sequences of functions and varying inputs: suppose a sequence of
functions Fn:X→YF_n : X \to YFn​:X→Y converges uniformly to a function fff, and a
sequence of points gn∈Xg_n \in Xgn​∈X converges to a limit x∈Xx \in Xx∈X. It is
natural to ask: does the composed sequence Fn(gn)F_n(g_n)Fn​(gn​) converge to
f(x)f(x)f(x)?

This question lies at the intersection of uniform convergence and topological
continuity. While pointwise convergence of FnF_nFn​ would not be sufficient to
answer this affirmatively, uniform convergence guarantees a form of stability: the
behavior of the function sequence does not fluctuate too wildly as nnn increases.
When combined with the convergence gn→xg_n \to xgn​→x, it becomes possible to
control both the approximation of fff by FnF_nFn​ and the deviation of inputs gng_ngn​
from the limit xxx.

This theorem forms a bridge between the local continuity of limit functions and the
global uniformity of approximating sequences. It is also essential in many areas of
analysis and applied mathematics, especially when one wishes to interchange limits
and evaluations safely.

In this section, we formally prove this result using the Lean theorem prover and its
mathlib library. The proof uses concepts from uniform spaces and filters to generalize
the classical epsilon–delta argument into a machine-verifiable form. Our goal is not
only to establish the correctness of this theorem but also to demonstrate how such
reasoning can be encoded in a formal system for broader use in verified mathematics.

If Fn→fF_n \to fFn​→f uniformly, and gn→xg_n \to xgn​→x, then
Fn(gn)→f(x)F_n(g_n) \to f(x)Fn​(gn​)→f(x)

Full Lean Proof

lean

CopyEdit

import Mathlib.Topology.UniformSpace.UniformConvergence

open Filter UniformSpace Topology

variable {ι X Y : Type*} [UniformSpace Y]
[TopologicalSpace X] [TopologicalSpace Y]

theorem tendsto_uniform_limit_apply

 {F : ι → X → Y} {f : X → Y} {x : X} {g : ι → X} {l :
Filter ι}

 (hF : TendstoUniformly F f l)

 (hg : Tendsto g l (𝓝 x)) :

 Tendsto (λ n => F n (g n)) l (𝓝 (f x)) :=

begin

 intros V hV,

 obtain ⟨U, hU, hUV⟩ := mem_nhds_uniformity_iff_right.mp
hV,

 have h₁ : ∀ᶠ n in l, ∀ z, (f z, F n z) ∈ U := hF U hU,

 have h₂ : ∀ᶠ n in l, (x, g n) ∈ U :=
tendsto_uniformity.mp hg U hU,

 filter_upwards [h₁, h₂] with n hn₁ hn₂,

 apply hUV,

 exact comp_rel_of (f x, F n (g n)) (f (g n)) (f x)

 (hn₁ (g n)) (map_rel_of (x, g n) (f x, f (g n)) hn₂),

end

Detailed Explanation by Line

Imports and Setup

lean

CopyEdit

import Mathlib.Topology.UniformSpace.UniformConvergence

●​ Imports the uniform convergence definitions from Lean’s mathlib, including
filters and uniform spaces.​

lean

CopyEdit

open Filter UniformSpace Topology

●​ Opens commonly used namespaces to simplify notation:​

○​ Filter for limits (Tendsto)​

○​ UniformSpace for entourages​

○​ Topology for neighborhoods​

lean

CopyEdit

variable {ι X Y : Type*} [UniformSpace Y]
[TopologicalSpace X] [TopologicalSpace Y]

●​ Declares the types involved:​

○​ ι: index type (e.g. ℕ)​

○​ X, Y: domain and codomain of functions​

○​ Y is a uniform space (e.g., a metric space)​

○​ X and Y are also topological spaces (needed for convergence)​

Theorem Statement

lean

CopyEdit

theorem tendsto_uniform_limit_apply

 {F : ι → X → Y} {f : X → Y} {x : X} {g : ι → X} {l :
Filter ι}

 (hF : TendstoUniformly F f l)

 (hg : Tendsto g l (𝓝 x)) :

 Tendsto (λ n => F n (g n)) l (𝓝 (f x)) :=

●​ States the theorem:​

○​ F is a sequence of functions​

○​ f is the limiting function​

○​ g : ι → X is a sequence of inputs converging to x​

○​ hF: uniform convergence of F� to f​

○​ hg: g� → x​

○​ Goal: Show F�(g�) → f(x) in the topology of Y​

Step 1: Let V be any neighborhood of f(x)

lean

CopyEdit

intros V hV,

●​ Fix an arbitrary open neighborhood V of f(x)​

●​ Our goal is to find a set in the filter l such that eventually F�(g�) ∈ V​

Step 2: Get an entourage U ⊆ V

lean

CopyEdit

obtain ⟨U, hU, hUV⟩ := mem_nhds_uniformity_iff_right.mp
hV,

●​ Use the fact that uniform spaces generate their topology​

●​ Translates the neighborhood V of f(x) into an entourage U ⊆ 𝓤 Y​

○​ hU: U ∈ 𝓤 Y (entourage)​

○​ hUV: if (f(x), y) ∈ U, then y ∈ V​

Step 3: Use uniform convergence of F� to f

lean

CopyEdit

have h₁ : ∀ᶠ n in l, ∀ z, (f z, F n z) ∈ U := hF U hU,

●​ From the definition of TendstoUniformly, there exists an n after which
all (f(z), F�(z)) ∈ U​

●​ So, eventually (in l), all F�(z) are uniformly close to f(z)​

Step 4: Use convergence of g� to x

lean

CopyEdit

have h₂ : ∀ᶠ n in l, (x, g n) ∈ U :=
tendsto_uniformity.mp hg U hU,

●​ Translates g� → x into a uniform statement: eventually (x, g�) ∈ U​

●​ That is, g� gets close to x in the uniform sense​

Step 5: Combine both convergences

lean

CopyEdit

filter_upwards [h₁, h₂] with n hn₁ hn₂,

●​ Extract both conditions simultaneously: after some point, both hold​

●​ hn₁: ∀ z, (f z, F�(z)) ∈ U​

●​ hn₂: (x, g�) ∈ U​

Step 6: Conclude F�(g�) ∈ V

lean

CopyEdit

apply hUV,

●​ If we can show (f(x), F�(g�)) ∈ U, then F�(g�) ∈ V by hUV​

Step 7: Use entourage composition to show closeness

lean

CopyEdit

exact comp_rel_of (f x, F n (g n)) (f (g n)) (f x)

 (hn₁ (g n)) (map_rel_of (x, g n) (f x, f (g n)) hn₂),

●​ We use the uniform continuity of f:​

○​ Since g� → x, then (x, g�) ∈ U ⇒ (f(x), f(g�)) ∈ U​

●​ Also, by uniform convergence: (f(g�), F�(g�)) ∈ U​

●​ These two together imply (f(x), F�(g�)) ∈ U ∘ U ⊆ V (entourage
composition)​

Summary

●​ We leveraged:​

○​ Uniform convergence: for all x, F�(x) approximates f(x)
uniformly​

○​ Input convergence: g� → x​

○​ Composition of entourages: f(x) ≈ f(g�) ≈ F�(g�)​

●​ Together this implies F�(g�) → f(x)

Conclusion

The interplay between uniform convergence and pointwise convergence has long been
a cornerstone of real analysis. In this paper, we explored not only the classical result
that uniform convergence implies pointwise convergence, but extended our formal
understanding by examining how such convergence properties behave under
composition — specifically, that if a sequence of functions converges uniformly and
the input sequence converges, then their composition also converges accordingly.

Using the Lean theorem prover and its rich mathlib library, we formalized both results
rigorously. Lean's use of filters, uniform spaces, and dependent type theory allowed us
to express these concepts at a high level of abstraction while ensuring logical
correctness through machine verification. The structured approach to formalizing
limits — via neighborhoods, entourages, and filter convergence — illustrates the
power of modern proof assistants to capture classical mathematical reasoning with
precision and generality.

More broadly, our work highlights the relevance of automated theorem proving in
modern mathematics. Tools like Lean are not only validating known theorems but
also transforming the way we engage with mathematical logic and structure. As the
field grows, the ability to encode intuitive arguments into formal, verifiable scripts
may become as foundational to mathematical practice as symbolic computation or
numerical simulation.

Through these formal proofs, we not only deepen our understanding of convergence
but also strengthen our confidence in the logical foundations upon which advanced
mathematics is built.

	Uniform Convergence Implies Pointwise Convergence: A Lean Formalization
	The Rise of Automated Theorem Provers and the Emergence of Lean
	Abstract
	1. Introduction
	2. Early History of Automated Theorem Proving
	3. The Lean Theorem Prover
	4. Why Lean Matters Today

	Section1: Unifrom Convergence
	2. Mathematical Background
	Pointwise Convergence
	Uniform Convergence

	3. Uniform Convergence in Lean
	Pointwise Convergence in Lean
	The Goal
	The Proof Strategy
	
	Full Lean Proof
	Detailed Explanation by Line
	Theorem Statement
	Step 1: Let V be any neighborhood of f(x)
	Step 2: Get an entourage U ⊆ V
	Step 3: Use uniform convergence of Fₙ to f
	Step 4: Use convergence of gₙ to x
	Step 5: Combine both convergences
	Step 6: Conclude Fₙ(gₙ) ∈ V
	Step 7: Use entourage composition to show closeness

	Summary
	Conclusion

