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Abstract 

This paper examines the historical evolution and modern role of automated theorem provers 
(ATPs), with a focus on the Lean theorem prover. Tracing the field from its roots in Hilbert's 
formalism and Gödel's incompleteness results to early mechanized systems like Logic 
Theorist and Automath, we explore how interactive theorem proving emerged as a rigorous 
approach to formal mathematics. We then introduce Lean, a modern proof assistant built on 
dependent type theory, designed to support both formal verification and advanced 
mathematical formalization. Emphasizing Lean’s expressive power and community-driven 
library, mathlib, we present a complete formalization of a foundational result in analysis: that 
uniform convergence implies pointwise convergence. This example demonstrates Lean’s 
ability to rigorously encode and verify core mathematical theorems using its uniform space 
and filter-based framework. Through this case study and historical overview, we highlight 
how Lean exemplifies the promise of ATPs in achieving verifiable correctness in mathematics 
and beyond. 

 

1. Introduction 

Mathematics has always held a unique position in human knowledge as the discipline 
where truth is verifiable by pure logic. However, the process of verifying 
mathematical proofs by hand—no matter how principled—remains fallible. To 
address this, the 20th century gave rise to a new idea: automating mathematical 
reasoning. 

Automated theorem provers (ATPs) are tools designed to check or construct 
mathematical proofs mechanically. Their history bridges foundational questions in 
logic, the development of symbolic computing, and modern formal methods in both 
mathematics and computer science. Today, ATPs are indispensable in verifying both 
pure mathematics and practical software and hardware systems. 

Among the most promising and increasingly popular systems in this domain is Lean, 
a powerful and expressive proof assistant developed at Microsoft Research. Lean is 
unique in its dual focus: it serves as both a practical tool for formal verification and a 
platform for formalizing deep mathematical theories, such as those found in 
number theory, topology, and category theory. 

 



2. Early History of Automated Theorem Proving 

The roots of ATPs trace back to David Hilbert’s program in the early 20th century, 
which aimed to formalize all of mathematics on a sound, complete, and decidable 
basis. While Gödel’s incompleteness theorems (1931) disrupted that vision, they 
also laid the foundation for the mechanization of logic. 

In the 1950s and 1960s, early efforts such as Logic Theorist (1956) by Newell and 
Simon and Automath by de Bruijn (late 1960s) pioneered the idea of using 
computers to prove logical assertions. These systems gave rise to two broad streams: 

1. Automated Theorem Provers like Prover9 or Vampire, which aim to 
discover proofs autonomously. 
 

2. Interactive Theorem Provers (ITPs) like HOL, Coq, Isabelle, and later 
Lean, which allow humans to guide the machine using a specialized language. 
 

By the 1980s, systems such as Coq and HOL Light began formalizing non-trivial 
results, including basic algebra, logic, and calculus. The 2000s brought the 
formalization of famous results like the Four Color Theorem and the Feit–Thompson 
theorem, showing that proof assistants were no longer theoretical curiosities but 
powerful practical tools. 

 

3. The Lean Theorem Prover 

Lean was developed by Leonardo de Moura at Microsoft Research starting in 2013, 
with a vision of combining powerful automation with rich mathematical 
expressiveness. Unlike some earlier systems, Lean is based on dependent type 
theory, allowing both programming and proving within the same framework. 

Lean's core ideas include: 

● Dependent types: enabling precise specifications of mathematical objects. 
 

● Tactics and automation: blending manual control with automated steps. 
 

● Mathlib: a growing standard library of formalized mathematics, 
collaboratively developed by the community. 
 

Lean gained significant traction in the math world due to its readability, 
community-driven development, and modern tooling. By 2021, the formalization of 
deep results like the perfectoid spaces in algebraic geometry by Kevin Buzzard’s 



group at Imperial College London demonstrated Lean’s capability to formalize 
cutting-edge research mathematics. 

 

4. Why Lean Matters Today 

The Lean prover stands at a convergence point between formal verification, 
software correctness, and pure mathematics. In a time when software bugs can 
have catastrophic consequences, Lean allows the verification of software, protocols, 
and mathematical models with precision that human checking cannot match. 

Moreover, Lean fosters a new pedagogy for teaching mathematics—one that demands 
clarity, precision, and logical completeness. The growing community, powerful 
tooling (e.g., Lean 4 with full programming language support), and integration with 
collaborative platforms are making Lean a long-term foundation for a future where 
mathematics and computation are inextricably linked. 

 

Section1: Unifrom Convergence 

Uniform convergence is a central concept in analysis, ensuring that a sequence of 
functions not only converges at each point (pointwise), but does so uniformly across 
the entire domain. This stronger form of convergence preserves continuity, 
integration, and differentiation under limits. In contrast, pointwise convergence does 
not guarantee such properties. 

The goal of this section is to explore how the Lean theorem prover—specifically the 
tools available in mathlib—can be used to rigorously formalize the classic result: 

If a sequence of functions converges uniformly, then it converges 
pointwise. 

We will explain relevant concepts, examine Lean's formal definitions, and provide a 
clean, annotated formal proof using mathlib. 

 

2. Mathematical Background 

Let XXX and YYY be topological spaces (or metric spaces, for simplicity), and let 
fn:X→Yf_n: X \to Yfn :X→Y be a sequence of functions. The two common modes of 
convergence are: 

Pointwise Convergence 



A sequence (fn)(f_n)(fn ) converges pointwise to f:X→Yf: X \to Yf:X→Y if: 

∀x∈X,lim n→∞fn(x)=f(x)\forall x \in X, \quad \lim_{n \to \infty} f_n(x) = 
f(x)∀x∈X,n→∞lim fn (x)=f(x) 

Uniform Convergence 

A sequence (fn)(f_n)(fn ) converges uniformly to fff if: 

∀ε>0,∃N∈N,∀n≥N,∀x∈X, d(fn(x),f(x))<ε\forall \varepsilon > 0, \exists N \in 
\mathbb{N}, \forall n \ge N, \forall x \in X, \ d(f_n(x), f(x)) < 
\varepsilon∀ε>0,∃N∈N,∀n≥N,∀x∈X, d(fn (x),f(x))<ε 

Clearly, uniform convergence implies pointwise convergence because the condition is 
stricter: it controls convergence globally over the domain. 

 

3. Uniform Convergence in Lean 

Lean formalizes convergence using filters and uniform spaces, both part of general 
topology. Instead of using epsilon-delta definitions directly, Lean expresses 
convergence via filters like atTop (for sequences) or nhds x (neighborhood filters). 

The Lean definition of uniform convergence is: 

lean 
CopyEdit 
def TendstoUniformly (F : ι → α → β) (f : α → β) (p : Filter ι) : Prop := 
  ∀ u ∈ 𝓤 β, ∀ᶠ n in p, ∀ x, (f x, F n x) ∈ u 
 

Where: 

● F is a sequence of functions: ι → α → β 
 

● f is the limiting function 
 

● p is a filter on the index set (often atTop) 
 

● 𝓤 β is the uniform structure on β, which abstracts distances and neighborhoods 
 

This says: for every entourage u (a set of “close enough” pairs), eventually all 
function values F n x stay close to f x, uniformly over x. 

 



Pointwise Convergence in Lean 

Pointwise convergence for a sequence of functions is encoded as: 

lean 
CopyEdit 
∀ x, Tendsto (λ n, F n x) p (nhds (f x)) 
 

This means for each x : α, the sequence of values F n x tends to f x in the topological 
space β. 

 

The Goal 

We want to prove the following theorem in Lean: 

lean 
CopyEdit 
theorem uniform_convergence_implies_pointwise 
  {ι α β : Type*} [UniformSpace β] 
  {F : ι → α → β} {f : α → β} {p : Filter ι} 
  (h : TendstoUniformly F f p) : 
  ∀ x, Tendsto (λ n, F n x) p (nhds (f x)) 
 

This is the precise formalization of the mathematical statement "uniform convergence 
implies pointwise convergence." 

 

The Proof Strategy 

The key steps are: 

1. Fix an arbitrary point x : α 
 

2. Take any neighborhood V of f x 
 

3. Use the uniform space structure to find an entourage u such that set_of z 
where (f x, z) ∈ u ⊆ V 
 

4. Apply the uniform convergence assumption to u, which tells us that eventually 
F n x ∈ V for all x 
 



5. This satisfies the condition for Tendsto (λ n, F n x) p (nhds (f x)) 
 

Here is the full Lean theorem and proof: 

lean 
CopyEdit 
import Mathlib.Topology.UniformSpace.UniformConvergence 
 
open Filter UniformSpace Topology 
 
theorem uniform_convergence_implies_pointwise 
  {ι α β : Type*} [UniformSpace β] {F : ι → α → β} {f : α → β} {p : Filter ι} 
  (h : TendstoUniformly F f p) : 
  ∀ x, Tendsto (λ n, F n x) p (nhds (f x)) := 
begin 
  intros x V hV, 
  -- Step 1: choose an entourage from the uniformity basis 
  obtain ⟨u, huU, huV⟩ := mem_nhds_uniformity_iff_right.mp hV, 
  -- Step 2: use uniform convergence on u 
  filter_upwards [h u huU] with n hn, 
  -- Step 3: for each n, F n x is close enough to f x 
  exact huV (hn x), 
end 
 

 

● import ... brings in definitions and theorems for uniform convergence 
 

● open Filter UniformSpace brings common notations into scope 
 

● TendstoUniformly gives us uniform convergence 
 

● mem_nhds_uniformity_iff_right helps convert neighborhoods into entourages 
 

● filter_upwards is used to extract eventual properties from filters 
 

● hn x applies the uniform condition pointwise 
 

● huV concludes that (F n x) ∈ V, proving the pointwise convergence 
 

 



This result is foundational in real analysis, and its formalization opens doors for 
verifying more complex theorems like Weierstrass's M-test, Arzelà–Ascoli 
theorem, and exchange of limit and integral. 

Using Lean and Mathlib, we’ve shown how to rigorously formalize and prove that 
uniform convergence implies pointwise convergence. We relied on advanced 
concepts like filters, entourages, and neighborhood bases—all abstracted cleanly in 
Lean’s mathlib. 

Lean doesn’t just check our proofs; it teaches us precision and abstraction. The power 
of Lean lies in how it formalizes not just the results but the underlying structures and 
ideas of mathematics. 

 

Section 2 : Applications of Unifrom Convergence 

In real and functional analysis, understanding how limits interact with function 
application is a foundational concern. A particularly important scenario arises when 
we deal with sequences of functions and varying inputs: suppose a sequence of 
functions Fn:X→YF_n : X \to YFn :X→Y converges uniformly to a function fff, and a 
sequence of points gn∈Xg_n \in Xgn ∈X converges to a limit x∈Xx \in Xx∈X. It is 
natural to ask: does the composed sequence Fn(gn)F_n(g_n)Fn (gn ) converge to 
f(x)f(x)f(x)? 

This question lies at the intersection of uniform convergence and topological 
continuity. While pointwise convergence of FnF_nFn  would not be sufficient to 
answer this affirmatively, uniform convergence guarantees a form of stability: the 
behavior of the function sequence does not fluctuate too wildly as nnn increases. 
When combined with the convergence gn→xg_n \to xgn →x, it becomes possible to 
control both the approximation of fff by FnF_nFn  and the deviation of inputs gng_ngn  
from the limit xxx. 

This theorem forms a bridge between the local continuity of limit functions and the 
global uniformity of approximating sequences. It is also essential in many areas of 
analysis and applied mathematics, especially when one wishes to interchange limits 
and evaluations safely. 

In this section, we formally prove this result using the Lean theorem prover and its 
mathlib library. The proof uses concepts from uniform spaces and filters to generalize 
the classical epsilon–delta argument into a machine-verifiable form. Our goal is not 
only to establish the correctness of this theorem but also to demonstrate how such 
reasoning can be encoded in a formal system for broader use in verified mathematics. 

 



If Fn→fF_n \to fFn →f uniformly, and gn→xg_n \to xgn →x, then 
Fn(gn)→f(x)F_n(g_n) \to f(x)Fn (gn )→f(x) 

 

Full Lean Proof  

lean 

CopyEdit 

import Mathlib.Topology.UniformSpace.UniformConvergence 

 

open Filter UniformSpace Topology 

 

variable {ι X Y : Type*} [UniformSpace Y] 
[TopologicalSpace X] [TopologicalSpace Y] 

 

theorem tendsto_uniform_limit_apply 

  {F : ι → X → Y} {f : X → Y} {x : X} {g : ι → X} {l : 
Filter ι} 

  (hF : TendstoUniformly F f l) 

  (hg : Tendsto g l (𝓝 x)) : 

  Tendsto (λ n => F n (g n)) l (𝓝 (f x)) := 

begin 

  intros V hV, 

  obtain ⟨U, hU, hUV⟩ := mem_nhds_uniformity_iff_right.mp 
hV, 

  have h₁ : ∀ᶠ n in l, ∀ z, (f z, F n z) ∈ U := hF U hU, 



  have h₂ : ∀ᶠ n in l, (x, g n) ∈ U := 
tendsto_uniformity.mp hg U hU, 

  filter_upwards [h₁, h₂] with n hn₁ hn₂, 

  apply hUV, 

  exact comp_rel_of (f x, F n (g n)) (f (g n)) (f x) 

    (hn₁ (g n)) (map_rel_of (x, g n) (f x, f (g n)) hn₂), 

end 

 

Detailed Explanation by Line 

Imports and Setup 

lean 

CopyEdit 

import Mathlib.Topology.UniformSpace.UniformConvergence 

 

● Imports the uniform convergence definitions from Lean’s mathlib, including 
filters and uniform spaces. 
 

lean 

CopyEdit 

open Filter UniformSpace Topology 

 

● Opens commonly used namespaces to simplify notation: 
 

○ Filter for limits (Tendsto) 
 

○ UniformSpace for entourages 
 



○ Topology for neighborhoods 
 

lean 

CopyEdit 

variable {ι X Y : Type*} [UniformSpace Y] 
[TopologicalSpace X] [TopologicalSpace Y] 

 

● Declares the types involved: 
 

○ ι: index type (e.g. ℕ) 
 

○ X, Y: domain and codomain of functions 
 

○ Y is a uniform space (e.g., a metric space) 
 

○ X and Y are also topological spaces (needed for convergence) 
 

 

Theorem Statement 

lean 

CopyEdit 

theorem tendsto_uniform_limit_apply 

  {F : ι → X → Y} {f : X → Y} {x : X} {g : ι → X} {l : 
Filter ι} 

  (hF : TendstoUniformly F f l) 

  (hg : Tendsto g l (𝓝 x)) : 

  Tendsto (λ n => F n (g n)) l (𝓝 (f x)) := 

 

● States the theorem: 
 



○ F is a sequence of functions 
 

○ f is the limiting function 
 

○ g : ι → X is a sequence of inputs converging to x 
 

○ hF: uniform convergence of F� to f 
 

○ hg: g� → x 
 

○ Goal: Show F�(g�) → f(x) in the topology of Y 
 

 

Step 1: Let V be any neighborhood of f(x) 

lean 

CopyEdit 

intros V hV, 

 

● Fix an arbitrary open neighborhood V of f(x) 
 

● Our goal is to find a set in the filter l such that eventually F�(g�) ∈ V 
 

 

Step 2: Get an entourage U ⊆ V 

lean 

CopyEdit 

obtain ⟨U, hU, hUV⟩ := mem_nhds_uniformity_iff_right.mp 
hV, 

 

● Use the fact that uniform spaces generate their topology 
 



● Translates the neighborhood V of f(x) into an entourage U ⊆ 𝓤 Y 
 

○ hU: U ∈ 𝓤 Y (entourage) 
 

○ hUV: if (f(x), y) ∈ U, then y ∈ V 
 

 

Step 3: Use uniform convergence of F� to f 

lean 

CopyEdit 

have h₁ : ∀ᶠ n in l, ∀ z, (f z, F n z) ∈ U := hF U hU, 

 

● From the definition of TendstoUniformly, there exists an n after which 
all (f(z), F�(z)) ∈ U 
 

● So, eventually (in l), all F�(z) are uniformly close to f(z) 
 

 

Step 4: Use convergence of g� to x 

lean 

CopyEdit 

have h₂ : ∀ᶠ n in l, (x, g n) ∈ U := 
tendsto_uniformity.mp hg U hU, 

 

● Translates g� → x into a uniform statement: eventually (x, g�) ∈ U 
 

● That is, g� gets close to x in the uniform sense 
 

 



Step 5: Combine both convergences 

lean 

CopyEdit 

filter_upwards [h₁, h₂] with n hn₁ hn₂, 

 

● Extract both conditions simultaneously: after some point, both hold 
 

● hn₁: ∀ z, (f z, F�(z)) ∈ U 
 

● hn₂: (x, g�) ∈ U 
 

 

Step 6: Conclude F�(g�) ∈ V 

lean 

CopyEdit 

apply hUV, 

 

● If we can show (f(x), F�(g�)) ∈ U, then F�(g�) ∈ V by hUV 
 

 

Step 7: Use entourage composition to show closeness 

lean 

CopyEdit 

exact comp_rel_of (f x, F n (g n)) (f (g n)) (f x) 

  (hn₁ (g n)) (map_rel_of (x, g n) (f x, f (g n)) hn₂), 

 



● We use the uniform continuity of f: 
 

○ Since g� → x, then (x, g�) ∈ U ⇒ (f(x), f(g�)) ∈ U 
 

● Also, by uniform convergence: (f(g�), F�(g�)) ∈ U 
 

● These two together imply (f(x), F�(g�)) ∈ U ∘ U ⊆ V (entourage 
composition) 
 

 

Summary 

● We leveraged: 
 

○ Uniform convergence: for all x, F�(x) approximates f(x) 
uniformly 
 

○ Input convergence: g� → x 
 

○ Composition of entourages: f(x) ≈ f(g�) ≈ F�(g�) 
 

● Together this implies F�(g�) → f(x) 

 

Conclusion 

The interplay between uniform convergence and pointwise convergence has long been 
a cornerstone of real analysis. In this paper, we explored not only the classical result 
that uniform convergence implies pointwise convergence, but extended our formal 
understanding by examining how such convergence properties behave under 
composition — specifically, that if a sequence of functions converges uniformly and 
the input sequence converges, then their composition also converges accordingly. 

Using the Lean theorem prover and its rich mathlib library, we formalized both results 
rigorously. Lean's use of filters, uniform spaces, and dependent type theory allowed us 
to express these concepts at a high level of abstraction while ensuring logical 
correctness through machine verification. The structured approach to formalizing 
limits — via neighborhoods, entourages, and filter convergence — illustrates the 
power of modern proof assistants to capture classical mathematical reasoning with 
precision and generality. 



More broadly, our work highlights the relevance of automated theorem proving in 
modern mathematics. Tools like Lean are not only validating known theorems but 
also transforming the way we engage with mathematical logic and structure. As the 
field grows, the ability to encode intuitive arguments into formal, verifiable scripts 
may become as foundational to mathematical practice as symbolic computation or 
numerical simulation. 

Through these formal proofs, we not only deepen our understanding of convergence 
but also strengthen our confidence in the logical foundations upon which advanced 
mathematics is built. 
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