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Abstract. In this paper, we work on multilinear restriction and its applications on signal
recovery. Specifically, we will show that sending more signals will have a higher chance of
recovering the original information. We also prove a generalization of Bourgain’s result
on Λq problem for multiple functions and apply it to multiple transmissions.
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1. Introduction

Information transportation has been an important aspect of real life, where we send the
signals between people. In some cases, there will be noises so there will be a chance that
we lost some of the information that was sent out. Donoho and Stark [2] have proved that
although some of the frequencies may be lost, we can still recover the signal uniquely by
Discrete Fourier Transform.

There are also questions regarding how restriction theory affects signal recovery by giving
estimates on the restriction of Uncertainty principles. Moreover, we want to work on
sending multiple copies of a signal to recover uniquely the original one. One can ask whether
we can improve the recovering algorithms are loosening the Uncertainty Principles, i.e the
size of the lost data is larger. We also discuss some drawbacks regarding the computational
aspects of the algorithm.

In this paper, Section 2 will provide basic preliminaries and notations that will be used
throughout the paper. Section 3 will be the core of the paper, where we discuss multilin-
ear restrictions and its applications to signal recovery. We conclude with section 4 for a
generalization of Bourgain’s Λq problem and its applications.
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2. Notation and Preliminaries

Firstly, we define what a signal is.

Definition 2.1 (Signal). A signal f is a function that takes value in Zd
N and maps to C.

For any f : Zd
N → C, we define the Fourier transform to be

f̂(m) = N
−d
2

∑
x

χ(−x ·m)f(x)

where χ(t) = e
2πit
N .

From this definition, one can see that the Inverse Fourier Transform is given by

∨
f(x) =

∑
m

χ(x ·m)f(m).

To see why this is true, we will apply the Inverse Fourier Transform to the Fourier
Transform. We have

N
−d
2

∑
m

χ(x ·m)f̂(m) = N
−d
2

∑
m

χ(x ·m)N
−d
2

∑
x′

χ(−x′ ·m)f(x′)

= N−d
∑
m

∑
x′

χ((x− x′) ·m)f(x′) = f(x).

We also define what a support of a signal is.

Definition 2.2 (spt(f)). The support of a signal f , denoted as spt(f), is

spt(f) = {x ∈ Zd
N : f(x) ̸= 0}.

One of the key property of Fourier transform is that it preserves the L2-norm of the
function. This is called the Plancherel’s formula.

Theorem 2.3 (Plancherel’s theorem). For any signal f : Zd
N → C,

∑
m∈Zd

N

|f̂(m)|2 =
∑
x∈Zd

N

|f(x)|2.
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Proof. We have∑
m∈Zd

N

|f̂(m)|2 =
∑

m∈Zd
N

∣∣∣∣∣N− d
2

∑
x

χ(−x ·m)f(x)

∣∣∣∣∣
2

=
∑

m∈Zd
N

N−d(
∑
x

χ(−x ·m)f(x))(
∑
x

χ(−x ·m)f(x))

=
∑

m∈Zd
N

N−d

(∑
x

χ(−x ·m)f(x)

)(∑
x

χ(x ·m)f(x)

)

=
∑

m∈Zd
N

N−d
∑
x1,x2

χ((x2 − x1) ·m)f(x1)f(x2)

= N−d
∑
x1,x2

f(x1)f(x2)
∑

m∈Zd
N

χ((x2 − x1) ·m).

By Gauss sum, we have for any x ∈ Zd
N ,∑

m∈Zd
N

χ(x ·m) =

{
Nd If x = 0

0 Otherwise
.

Hence ∑
m∈Zd

N

|f̂(m)|2 = N−dNd
∑
x

f(x)f(x) =
∑
x

|f(x)|2.

Given a set S and suppose {f̂(m)}m∈S are lost. Note that we can construct multiple
signals so that its Fourier Transform aligns with the data that isn’t lost, i.e the points
m ̸∈ S. However, one can ask whether the recovered signal is unique or not. We have the
following principle.

Theorem 2.4 (Uncertainty Principle [4]). If f is supported in E, f̂ is supported in S,
then |E| · |S| ≥ Nd.

Proof. From the inverse formula

f(x) = N− d
2

∑
m∈S

χ(x ·m)f̂(m) = N−d
∑
m∈S

χ(x ·m)
∑
x′∈E

χ(x′ ·m)f(x′).

Then

|f(x)| = N−d

∣∣∣∣∣∑
m∈S

χ(x ·m)
∑
x′∈E

χ(x′ ·m)f(x′)

∣∣∣∣∣ ≤ N−d
∑
m∈S

∣∣∣∣∣∑
x′∈E

χ(x′ ·m)f(x′)

∣∣∣∣∣
≤ N−d

∑
m∈S

∑
x′∈E

|f(x′)| = N−d|S|
∑
x′∈E

f(x′).
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Hence∑
x∈E

|f(x)| ≤
∑
x∈E

N−d|S|
∑
x′∈E

f(x′) = N−d|E| · |S|
∑
x′∈E

|f(x)| =⇒ |E| · |S| ≥ Nd.

We have the definition for a set to be (p, q)-restricted.

Definition 2.5 ((p, q)-Restriction [4]). Let S ⊆ Zd
N . We say S satisfies a (p, q)-restriction

if there exists a uniform constant Cp,q such that for any f : Zd
N → C(

1

|S|
∑
m∈S

|f̂(m)|q
) 1

q

≤ Cp,qN
− d

2

∑
x∈Zd

N

|f(x)|p
 1

p

.

For simplicity in calculations, we will define what an Lp norm on a set. In this case, we
want to take account with the counting measure.

Definition 2.6 (∥ · ∥Lp(A)). Given f : Zd
N → C and a set A ⊆ Zd

N , define

∥f∥Lp(A) =

(∑
x∈A

|f(x)|p
) 1

p

, ∥f∥Lp(µA) =

(
1

A

∑
x∈A

|f(x)|p
) 1

p

.

Similarly

∥f∥Lp(µ) =

(
1

Nd

∑
x

|f(x)|p
) 1

p

.

Now, we start with the first condition for a signal to be uniquely recovered.

Theorem 2.7. Let f : Zd
N → C and suppose {f̂(m)}m∈S are lost. If |S| · |spt(f)| < Nd

2 ,
then we can reconstruct f uniquely.

Proof. Suppose f cannot be recovered uniquely, then there exists g : Zd
N → C such

that |spt(f)| = |spt(g)| and f̂ = ĝ away from S. Let h = f − g, then

|spt(h)| ≤ 2|spt(f)|, |spt(ĥ)| ≤ |S|.
By Uncertainty Principle, we get

2|S| · |spt(f)| ≥ |spt(h)| · |spt(ĥ)| ≥ Nd =⇒ |S| · |spt(f)| ≥ Nd

2
,

a contradiction. Hence the reconstruction is unique.
Now, we will develop analogous variations to the Uncertainty principle if we assume

(p, q)-restriction condition.

Theorem 2.8. Suppose f : Zd
N → C is supported in E ⊆ Zd

N , and f̂ : Zd
N → C is supported

in S. Suppose that the restriction estimation holds for a pair (p, q), 1 ≤ p ≤ q <∞. Then

|E|
1
p |S| ≥ Nd

Cp,q
.
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Proof. Suppose f is supported in E and f̂ is supported in S. Then

f(x) = N− d
2

∑
m∈S

χ(x ·m)f̂(m).

By Holder’s inequality,

|f(x)| = N− d
2

∣∣∣∣∣∑
m∈S

χ(x ·m)f̂(m)

∣∣∣∣∣
≤ N− d

2

(∑
m∈S

|χ(x ·m)|
q

q−1

) q−1
q
(∑

m∈S
|f̂(m)|q

) 1
q

= N− d
2 |S|

q−1
q

(∑
m∈S

|f̂(m)|q
) 1

q

= N− d
2 |S|

(
1

|S|
∑
m∈S

|f̂(m)|q
) 1

q

≤ Cp,qN
−d|S|

(∑
x∈E

|f(x)|p
) 1

p

.

Hence

|f(x)|p ≤ Cp
p,qN

−pd|S|p
∑
x∈E

|f(x)|p

so by summing all over, we have

1 ≤ Cp
p,qN

−pd|E| · |S|p =⇒ |S| · |E|
1
p ≥ Nd

Cp,q
.

Theorem 2.9. Suppose f : Zd
N → C is supported in E ⊆ Zd

N , and f̂ : Zd
N → C is supported

in S. Suppose that the restriction estimation holds for a pair (p, q), 1 ≤ p ≤ 2 ≤ q < ∞.
Then

|E|
2−p
p |S| ≥ Nd

C2
p,q

.

Proof. First of all, we see that as 2 ≤ q, ∥f∥L2(µA) ≤ ∥f∥Lq(µA) by the generalized
Holder’s inequality. Hence(

1

|S|
∑
m∈S

|f̂(m)|2
) 1

2

≤

(
1

|S|
∑
m∈S

|f̂(m)|q
) 1

q

≤ Cp,qN
− d

2

(∑
x∈E

|f(x)|p
) 1

p

.

By Holder’s inequality, we have

Cp,qN
− d

2

(∑
x∈E

|f(x)|p
) 1

p

≤ Cp,q|E|
1
p
− 1

2N− d
2

(∑
x∈E

|f(x)|2
) 1

2
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By Plancherel’s equality, we have(
1

|S|
∑
m∈S

|f̂(m)|2
) 1

2

= |S|−
1
2

(∑
m∈S

|f̂(m)|2
) 1

2

= |S|−
1
2

(∑
x∈E

|f(x)|2
) 1

2

.

so

|S|−
1
2

(∑
x∈E

|f(x)|2
) 1

2

≤ Cp,qN
− d

2 |E|
1
p
− 1

2

(∑
x∈E

|f(x)|2
) 1

2

⇐⇒ |S|−
1
2 ≤ Cp,qN

− d
2 |E|

1
p
− 1

2

⇐⇒ |E|
2−p
p |S| ≥ Nd

C2
p,q

Corollary 2.10. If the constant Cp,q is small, then the second bound is strictly stronger
than the first one.

Now, we will consider how we can actually recover the signal. We consider Logan’s
algorithm or L1-minimization method [3].

Definition 2.11 (Logan’s algorithm). We let g = argminu ∥u∥1 with û(m) = f̂(m) for
any m ̸∈ S.

To see how this algorithm works, let f = g+ h where h : Zd
N → C and f is supported in

E. Then

∥g∥1 = ∥f − h∥1 = ∥f − h∥L1(E) + ∥h∥L1(Ec) ≥ ∥f∥L1(E) − ∥h∥L1(E) + ∥h∥L1(Ec).

We have for any x

h(x) =
∑
m∈S

N−d/2χ(x ·m)ĥ(m) = N−d
∑
m∈S

∑
θ

χ(x ·m)χ(−θ ·m)h(θ) =⇒ |h(x)| ≤ N−d|S|∥h∥L1(Zd
N ).

Summing over x ∈ E, we get

∥h∥L1(E) ≤
|E||S|
Nd

∥h∥1 =
|E||S|
Nd

(∥h∥L1(E) + ∥h∥L1(Ec))

and we get
(
1− |E||S|

Nd

)
∥h∥L1(E) ≤

|E||S|
Nd ∥h∥L1(Ec). Note that if we assume that |S||E| < Nd

2

so that the result signal is unique, then |E||S|
Nd < 1

2 or we get ∥h∥L1(Ec) > ∥h∥L1(E). Hence
∥g∥1 > ∥f∥1, contradicting the fact ∥g∥1 is minimized.

Therefore, we get h ≡ 0 or the algorithm returns the exact signal.
Moreover, we also consider the L2-minimization method, or Donoho-Stark’s algorithm [3].

Definition 2.12 (Donoho-Stark’s algorithn). We let g = argminu ∥u∥2 with ĝ(m) = f̂(m)
for any m ̸∈ S and |spt(u)| = |spt(f)|.

Suppose that f = g + h for some h : Zd
N → C. Then h is supported in T such that

|T | ≤ 2|E|. Then ∥h∥2 = ∥h∥L2(T ). Moreoer

h(x) = N− d
2

∑
m∈S

χ(x ·m)ĥ(m) =⇒ |h(x)| ≤ N− d
2

∑
m∈S

|ĥ(m)| ≤ N− d
2 |S|

1
2 ∥h∥L2(T ).
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Hence, summing over all elements in T , we have

∥h∥2L2(T ) ≤ |T |N−d|S|∥h∥2L2(T ) =⇒
√

|S||T |
Nd

≥ 1.

Since |T | ≤ 2|E|, we get |E||S| ≥ Nd

2 , a contradiction to the Uncertainty principle.
Therefore, we get h ≡ 0 or the algorithm returns the exact signal. However, this algo-

rithm takes exponential time.

3. Multilinear restriction and its applications.

One natural question to be asked is that by sending more information, do we have a
higher chance of recovering the original signal? In this section, we will show that it can
loosen the recovery condition.

First of all, we introduce a bilinear restriction result.

Theorem 3.1 (Bilinear restriction). Let f, g : Zd
N → C such that f̂ is supported in X and

ĝ is supported in Y . Then

∥fg∥L2(µ) ≤ ∥1X ∗ 1Y ∥
1
2∞∥f∥L2(µ)∥g∥L2(µ).

Proof. We have the following lemma.

Lemma 3.2 (Riesz-Thorin interpolation theorem [5]). Let (X,A, µ) and (Y,B, ν) be mea-
sure spaces. Let p0, p1 ∈ [1,∞] and for 0 < t < 1, define pt by

1

pt
=

1− t

p0
+

t

p1
.

Then if T : (Lp0 + Lp1) → (Lp0 + Lp1) is a linear map such that for f0 ∈ Lp0(X,A, µ) and
f1 ∈ Lp1(X,A, µ), then

∥Tf0∥p0 ≤M0∥f0∥p0 , ∥Tf1∥p1 ≤M1∥f1∥p1
where M0,M1 ∈ (0,∞). Then

∥Tf∥pt ≤M1−t
0 M t

1∥f∥pt .

We also have if f, g : Zd
N → C and h be given by h(x) = (f ∗ g)(x) =

∑
y f(y)g(x− y),

then

ĥ(m) = N− d
2

∑
x

χ(−x ·m)h(x) = N− d
2

∑
x

χ(−x ·m)
∑
y

f(y)g(x− y)

= N− d
2

∑
a

∑
b

χ(−(a+ b) ·m)f(a)g(b) = N− d
2

∑
a

∑
b

χ(−a ·m)f(a)χ(−b ·m)g(b)

= N
d
2 f̂(m)ĝ(m)
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so we get f̂g = N− d
2 (f̂ ∗ ĝ). Back to the problem, we have

∥fg∥L2(µ) =

(
1

Nd

∑
x

|f(x)g(x)|2
) 1

2

=

(
1

Nd

∑
m

|f̂g(m)|2
) 1

2

=

(
1

Nd

∑
m

|N− d
2 (f̂ ∗ ĝ)|2

) 1
2

=

(
N−2d

∑
m

|f̂ ∗ ĝ|2
) 1

2

= N−d

(∑
m

|f̂1X ∗ ĝ1Y |2
) 1

2

= N−d∥f̂1X ∗ ĝ1Y ∥2.

Now, we have

∥f̂1X ∗ ĝ1Y ∥1 =
∑
m1

|f̂1X ∗ ĝ1Y | =
∑
m1

∣∣∣∣∣∑
m2

f̂1X(m1 −m2)ĝ1Y (m2)

∣∣∣∣∣
≤
∑
m1

∑
m2

|f̂1X(m1 −m2)||ĝ1Y (m2)|

≤
∑
m1

|f̂1X(m1)|
∑
m2

|ĝ1Y (m2)| ≤ ∥f̂∥1∥ĝ∥1.

On the other hand

∥f̂1X ∗ ĝ1Y ∥∞ ≤ ∥f̂∥∞∥ĝ∥∞∥1X ∗ 1Y ∥∞.
Hence, by the Riesz-Thorin interpolation theorem,

∥fg∥L2(µ) = N−d∥f̂1X ∗ ĝ1Y ∥2 ≤ N−d∥1X ∗ 1Y ∥
1
2∞∥f̂∥2∥ĝ∥2 = N−d∥1X ∗ 1Y ∥

1
2∞∥f∥2∥g∥2

= ∥1X ∗ 1Y ∥
1
2∞∥f∥L2(µ)∥g∥L2(µ).

Therefore, the proof is completed.
We also want to generalize the Riesz-Thorin interpolation to n functions.

Definition 3.3 (n-linear map). A function f : V1 × V2 × . . .× Vn → W is a n-linear map
such that if we fixed any entry of the function, then we get a n− 1 linear map.

For example, a bilinear map f : V1 × V2 → W is a map such that for any v1, the map
fv1 : v2 7→ f(v1, v2) is a linear map and for any v2, the map fv2 : v1 7→ f(v1, v2) is a linear
map.

We have the following generalization.

Lemma 3.4 (Generalization of Riesz-Thorin interpolation theorem). Let (X,A, µ) and
(Y,B, ν) be measure spaces. Let p0, p1 ∈ [1,∞] and for 0 < t < 1, define pt by

1

pt
=

1− t

p0
+

t

p1
.

Then if T : (Lp0 + Lp1)n → (Lp0 + Lp1) is a n-linear map such that for f1, f2, . . . , fn ∈
Lp0(X,A, µ) and g1, g2, . . . , gn ∈ Lp1(X,A, µ), then

∥T (f1, . . . , fn)∥p0 ≤M0

n∏
i=1

∥fi∥p0 , ∥T (g1, . . . , gn)∥p1 ≤M1

n∏
i=1

∥gi∥p1
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where M0,M1 ∈ (0,∞). Then

∥T (f1, . . . , fn)∥pt ≤M1−t
0 M t

1

n∏
i=1

∥fi∥pt .

Proof. We will work on the case of bilinear. Let B : (Lp0 +Lp1)n → (Lp0 +LP1) be a
bilinear map that satisfy the upper condition. Fix f∗1 , f

∗
2 ∈ Lp0 + Lp1 and define

Tf∗
1
f2(x) = B(f∗1 , f2)(x), Tf2∗f1(x) = B(f1, f

∗
2 )(x).

Then we have for any i ∈ {0, 1}

∥Tf∗
1
∥pi = inf{c ≥ 0 : ∥Tf∗

1
f2∥pi ≤ c∥f2∥pi∀f2 ∈ Lp0 + Lp1} = inf{c ≥ 0 : ∥B(f∗1 , f2)∥pi ≤ c∥f2∥pi}.

Similarly
∥Tf∗

2
∥pi = inf{c ≥ 0 : ∥B(f1, f

∗
2 )∥pi ≤ c∥f1∥pi}.

We have

∥B(f1, f
∗
2 )∥pi ≤Mi∥f1∥p0∥f∗2 ∥p0 =⇒ ∥B(f1, f

∗
2 )∥pi

∥f1∥pi
≤M0∥f∗2 ∥pi .

Consider ∥f∗2 ∥pi as a constant, we get ∥Tf∗
2
∥pi ≤ M0∥f∗2 ∥pi . By Riesz-Thorin interpola-

tion theorem, we get

∥Tf∗
2
∥pt ≤M1−t

0 M t
1∥f∗2 ∥pt =⇒ inf{c ≥ 0 : ∥B(f1, f

∗
2 )∥pt ≤ c∥f1∥pt} ≤M1−t

0 M t
1∥f∗2 ∥pt .

Therefore, for any f1 ∈ Lp0 + Lp1 , ∥B(f1, f
∗
2 )∥pt ≤M1−t

0 M t
1∥f∗2 ∥pt∥f1∥pt .

Similarly for Tf∗
1
, we get

∥Tf∗
1
∥pt ≤M1−t

0 M t
1∥f∗1 ∥pt =⇒ ∥B(f∗1 , f2)∥pt ≤M1−t

0 M t
1∥f∗1 ∥pt∥f2∥pt .

Hence, we get the result.

For the case of n-linear, we do a similar method. Let T : (Lp0 + Lp1)n → (Lp0 + Lp1)
be a n-linear map that satisfy the condition and we assume that the theorem is true for
n− 1-linear functions. Fix f∗1 , f

∗
2 , . . . , f

∗
n ∈ Lp0 + Lp1 and for each 1 ≤ i ≤ n,

Ti(fi)(x) = T (f∗1 , f
∗
2 , . . . , f

∗
i−1, fi, f

∗
i+1, . . . , f

∗
n)(x).

Then for such j ∈ {0, 1},
∥Ti∥pj = inf{c ≥ 0 : ∥T (f∗1 , . . . , f∗i−1, fi, f

∗
i+1, . . . , f

∗
n)∥pj ≤ c∥fi∥pj∀fi ∈ Lp0 + Lp1}.

We have

∥T (f∗1 , . . . , f∗i−1, fi, f
∗
i+1, . . . , f

∗
n)∥pj ≤Mj∥f∗1 ∥pj . . . ∥f∗i−1∥pj∥fi∥pj∥fi+1∥pj . . . ∥f∗n∥pj

so we get
∥T (f∗

1 ,...,f
∗
i−1,fi,f

∗
i+1,...,f

∗
n)∥pj

∥fi∥pj
≤Mj∥f∗1 ∥pj . . . ∥f∗i−1∥pj∥f∗i+1∥pj . . . ∥f∗n∥pj and ∥Ti∥pj ≤

Mj∥f∗1 ∥pj . . . ∥f∗i−1∥pj∥f∗i+1∥pj . . . ∥f∗n∥pj . By inductive hypothesis, we get

∥Ti∥pt ≤M1−t
0 M t

1∥f∗1 ∥pt . . . ∥f∗i−1∥pt∥f∗i+1∥pt .
Therefore, for any fi ∈ Lp0 + Lp1 ,

∥T (f∗1 , . . . , f∗i−1, fi, f
∗
i+1, . . . , f

∗
n)∥pt ≤M1−t

0 M t
1∥f∗1 ∥pt . . . ∥f∗i−1∥pt∥fi∥pt∥f∗i+1∥pt . . . ∥f∗n∥pt .



SIGNAL RECOVERY, BOURGAIN’S Λq PROBLEM, AND MULTILINEAR RESTRICTIONS 10

Hence, we are done.
Now, we will prove a general result of Theorem 3.1

Theorem 3.5 (Multilinear Restriction). Let f1, f2, . . . , fk : Zd
N → C such that f̂i is sup-

ported in Xi for any 1 ≤ i ≤ k. Then

∥f1 . . . fk∥L2(µ) ≤ ∥1X1 ∗ . . . ∗ 1Xn∥
1
2∞

k∏
i=1

∥fi∥L2(µ).

Proof. Before proving the main theorem, we will generalize the formula for the Fourier
transform of a product of functions.

Lemma 3.6. Given k signals f1, f2, . . . , fk : Zd
N → C, we have

̂f1f2 . . . fk = N
(k−1)d

2 (f̂1 ∗ f̂2 ∗ . . . ∗ f̂k).

Proof. We will prove the formula by induction. For k = 1, 2, we have covered in the

upper theorem. Suppose that ̂f1f2 . . . ft = N
(t−1)d

2 (f̂1 ∗ f̂2 ∗ . . . ∗ f̂t) for some t ≥ 2. Then
we have

̂f1f2 . . . ft+1 = N
d
2 ( ̂f1f2 . . . ft ∗ f̂t+1) = N

d
2 (N

(t−1)d
2 (f̂1 ∗ f̂2 ∗ . . . ∗ f̂t) ∗ f̂t+1)

= N
td
2 (f̂1 ∗ f̂2 ∗ . . . ∗ f̂t+1).

Therefore, the claim is true for k = t + 1. Hence, by the Principle of Mathematical
Induction, we have the result.

We have

∥f1f2 . . . fk∥L2(µ) =

(
1

Nd

∑
x

|f1(x)f2(x) . . . fk(x)|2
) 1

2

=

(
1

Nd

∑
m

| ̂f1f2 . . . fk(m)|2
) 1

2

=

(
1

Nd

∑
m

|N− (k−1)d
2 (f̂1 ∗ f̂2 ∗ . . . ∗ f̂k)|2

) 1
2

=

(
N−kd

∑
m

|f̂1 ∗ f̂2 ∗ . . . ∗ f̂k|2
) 1

2

= N− k
2
d

(∑
m

|f̂11X1 ∗ f̂21X2 ∗ . . . ∗ f̂k1Y |2
) 1

2

= N− k
2
d∥f̂11X1 ∗ f̂21X2 ∗ . . . ∗ f̂k1Xk

∥2.
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Now, we have

∥f̂11X1 ∗ f̂21X2 ∗ . . . ∗ f̂k1Xk
∥1 ≤ ∥f̂11X1∥1∥f̂21X2 ∗ . . . ∗ f̂k1Xk

∥1
≤ ∥f̂11X1∥1∥f̂21X2∥1∥f̂31X3 ∗ . . . ∗ f̂k1Xk

∥1
≤ . . .

≤
k∏

i=1

∥f̂i1Xi∥1.

On the other hand

∥f̂11X1 ∗ . . . ∗ f̂k1Xk
∥∞ ≤ ∥f̂1∥∞∥f̂2∥∞ . . . ∥f̂k∥∞∥1X1 ∗ 1X2 ∗ . . . ∗ 1Xk

∥∞.

Hence, by the generalization of Riesz-Thorin interpolation theorem, we have

∥f1f2 . . . fk∥L2(µ) = N− k
2
d∥f̂11X1 ∗ f̂21X2 ∗ . . . ∗ f̂k1Xk

∥2

≤ N− k
2
d∥1X1 ∗ 1X2 ∗ . . . ∗ 1Xk

∥
1
2∞∥f̂1∥2∥f̂2∥2 . . . ∥f̂k∥2

= ∥1X1 ∗ 1X2 ∗ . . . ∗ 1Xk
∥

1
2∞(N−d/2∥f1∥2)(N−d/2∥f2∥2) . . . (N−d/2∥fk∥2)

= ∥1X1 ∗ 1X2 ∗ . . . ∗ 1Xk
∥

1
2∞∥f1∥L2(µ)∥f2∥L2(µ) . . . ∥fk∥L2(µ).

Now, we want to see the applications of multilinear restrictions to signal recovery. We
first introduce the idea of a channel.

Definition 3.7 (Channel). Let n ∈ N. An n-channel is a collection of n repeated signals,
denoted as

Chann(f) = {f̂ , f̂ , . . . , f̂}.

Then, instead of sending a single signal, we send an n-channel of its Fourier transform.

Suppose for each 1 ≤ i ≤ n, the values of f̂i(x) are lost on the set Xi. We will see if there
are any conditions such that we can recover uniquely the signal f .

Theorem 3.8. Suppose all the values of fi agrees on a single output, i.e for any t ∈ Zd
N

|{fi(t) : 1 ≤ i ≤ n}| ≤ 1.

To recover the original signal, we consider the signal F̂ , which is not defined on X1∩. . .∩Xn,

with the values taken from f1, . . . , fn. If |X1∩. . .∩Xn|·|spt(f)| < Nd

2 , then we can construct
f uniquely.

Proof. This follows from Theorem 2.1.
For any 1 ≤ i ≤ n, suppose we randomly take Xi uniformly random of size si from Zd

N ,

then we want to calculate the Expectation of the size of X1 ∩ . . . ∩Xn. For each t ∈ Zd
N

and 1 ≤ i ≤ n, denote pXi(t) to be the probability that t ∈ Xi.

Lemma 3.9. For any t ∈ Zd
n and 1 ≤ i ≤ n, pXi(t) =

si
Nd .
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Proof. We have

pX1(t) =
|{X ⊆ Zd

N : |X| = si, t ∈ X}|
|{X ⊆ Zd

N : |X| = si}|
=

(
Nd−1
si−1

)(
Nd

si

) =
si
Nd

.

Theorem 3.10. E[|X1 ∩ . . . ∩Xn|] = s1...sn
N(n−1)d .

Proof. For each 1 ≤ i ≤ n, denote 1Xi(t) be the indicator function for the set Xi.
Then we have

E[|X1 ∩ . . . ∩Xn|] = E

∑
t∈Zd

N

1X1(t) . . . 1Xn(t)

 =
∑
t∈Zd

N

E[1X1(t) . . . 1Xn(t)] =
∑
t∈Zd

N

n∏
i=1

E[1Xi(t)].

=
∑
t∈Zd

N

n∏
i=1

pXi(t) =
∑
t∈Zd

N

s1 . . . sn
Nnd

=
s1 . . . sn

N (n−1)d
.

By Markov’s inequality, we have

P
(
|X1 ∩X2 ∩ . . . ∩Xn| <

Nd

2spt(f)

)
≥ 1− E[|X1 ∩ . . . ∩Xn|]

Nd

2|spt(f)|

= 1−
s1...sn
N(n−1)d

Nd

2|spt(f)|
= 1− 2s1s2 . . . sn|spt(f)|

Nnd
.

Note that si ≤ Nd so the more signals we send, the higher probability that the size of

the intersection does not exceed Nd

2|spt(f)| . However, a drawback is that the verification time

will be long, namely O(min(s1, . . . , sn) log n) via divide and conquer.
Now, we want to use the bilinear restriction theorem for finding the bounds on the size

of the supports.

Definition 3.11. Let X1, . . . , Xn be sets and t be a number. We define

αt,n(X1, . . . , Xn) =

∣∣∣∣∣
{
(x1, x2, . . . , xn) ∈ X1 ×X2 × . . .×Xn :

n∑
i=1

xi = t

}∣∣∣∣∣ .
We have the following result.

Theorem 3.12 (Uncertainty principle for bilinear binary signals). Let f1, f2 : Zd
N → {0, 1}

be two binary signals, where fi is supported on Ei, f̂i is supported on Si for i = 1, 2. Then
if α2 = maxt,2(αt,2(S1, S2)),

α2|E1||E2||E1 ∩ E2|−1 ≥ Nd.
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Proof. By the Bilinear Restriction theorem,

∥f1f2∥L2(µ) ≤ ∥1S1 ∗ 1S2∥
1
2∞∥f1∥L2(µ)∥f2∥L2(µ)

⇐⇒
(

1

Nd
|E1 ∩ E2|

) 1
2

≤ max
t
αt,2(S1, S2)

1
2

(
1

Nd
|E1|

) 1
2
(

1

Nd
|E2|

) 1
2

⇐⇒ Nd|E1 ∩ E2| ≤ α2|E1||E2|

⇐⇒ α2|E1||E2||E1 ∩ E2|−1 ≥ Nd.

One can ask whether this result is strict or not. Let f1 = 1A1 , f2 = 1A2 where A1, A2

are lines in Z2
N . Let A1 = {(x, a1x + b1) : x ∈ Zp}, A2 = {(x, a2x + b2) : x ∈ ZN}, where

a1 ̸= a2 ∈ ZN , gcd(a1, N) = gcd(a2, N) = 1 and b1, b2 ∈ ZN . Then fi is supported in Ai

which has size p so Ei = Ai for i = 1, 2 and we get |E1 ∩ E2| = 1. Now

f̂1(m) =
∑
x∈Z2

N

χ(−x ·m)f(x) =
∑
α∈ZN

χ(−(α, a1α+ b1) ·m) =
∑
α∈ZN

χ(−αm1 − (a1α+ b1)m2)

=
∑
α∈ZN

χ((−m1 − a1m2)α− b1m2) = χ(−b1m2)
∑
α∈ZN

χ((−m1 − a1m2)α).

Note that f̂1(m) ̸= 0 ⇐⇒ −m1 − a1m2 = 0 so S1 = {(m1,m2) ∈ Z2
N : m1 + a1m2 = 0},

which is the line through the origin with slope 1
a1
. Similarly, S2 is the line through the

origin with slope 1
a2
. Hence

α2 = max
t

|S1 ∩ (t− S2)| = 1

so α2|E1||E2||E1 ∩ E2|−1 = 1 ·N ·N · 1
1 = N2. Hence, this inequality is strict in Z2

N .

A similar result can be generated in Zd
N . Let l1, l2 be lines in Zd

N given by{
L1 = {(a1, . . . , ad) + α(b1, . . . , bd) : α ∈ ZN}
L2 = {(a′1, . . . , a′d) + α(b′1, . . . , b

′
d) : α ∈ ZN}

where we choose the constants such that L1 intersects L2. Then similar as above

f̂1(m) =
∑
α∈ZN

χ

(
−

d∑
i=1

miai − α
d∑

i=1

mibi

)
= χ

(
−

d∑
i=1

miai

) ∑
α∈Zn

χ

(
−α

d∑
i=1

mibi

)
.

In order to have f̂1(m) ̸= 0, we need
∑d−1

i=1 mibi = 0 or m is on a d− 1 hyperplane passing

through the origin so the support of f̂1 is S1, where

S1 = {m ∈ ZN
d : m · b = 0}, b = (b1, . . . , bd).

Similarly, the support of f̂2 is S2, where

S2 = {m ∈ ZN
d : m · b′ = 0}, b′ = (b′1, . . . , b

′
d).
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By choosing b and b′ carefully, we can make α2 = Nd−2, which is the maximum elements
in the intersection of two planes. Hence

α2|E1||E2||E1 ∩ E2|−1 = Nd−2 ·N ·N · 1 = Nd.

Hence, the inequality in Theorem 3.11 is strict.
Now, we want to deduce a version of Theorem 3.11 for a larger family of signals.

Definition 3.13 (Sa,b). Let a < b be any positive real numbers. The class Sa,b is defined
by

Sa,b = {f : Zd
N → C : a ≤ |f(x)| ≤ b ∀x ∈ Zd

N , f(x) ̸= 0}.

Theorem 3.14 (Uncertainty principle for Sa,b signals). Let f1 ∈ Sa,b, f2 ∈ Sc,d, where fi
is supported on Ei, f̂i is supported on Si for i = 1, 2. Then if α2 = maxt(αt,2(S1, S2)),

α2b
2d2|E1||E2|

a2c2|E1 ∩ E2|
≥ Nd.

Proof. Again, by the Bilinear Restriction Theorem

‘∥f1f2∥L2(µ) ≤ ∥1S1 ∗ 1S2∥
1
2∞∥f1∥L2(µ)∥f2∥L2(µ)

⇐⇒

 1

Nd

∑
x∈E1∩E2

|f1(x)f2(x)|2
 1

2

≤ max
t
αt,2(S1, S2)

1
2

 1

Nd

∑
x∈E1

|f1(x)|2
 1

2
 1

Nd

∑
x∈E2

|f2(x)|2
 1

2

⇐⇒
∑

x∈E1∩E2

|f1(x)f2(x)|2 ≤
maxt αt,2(S1, S2)

Nd

∑
x∈E1

|f1(x)|2
∑

x∈E2

|f2(x)|2


⇐⇒
∑

x∈E1∩E2
|f1(x)f2(x)|2(∑

x∈E1
|f1(x)|2

) (∑
x∈E2

|f2(x)|2
) ≤ maxt αt,2(S1, S2)

Nd

⇐⇒
∑

x∈E1∩E2
|f1(x)f2(x)|2∑

x∈E1,x2∈E2
|f1(x1)|2|f2(x2)|2

≤ maxt αt,2(S1, S2)

Nd
.

Now, as a2 ≤ |f1(x)|2 ≤ b2 and c2 ≤ |f2(x)|2 ≤ d2, we have∑
x∈E1∩E2

|f1(x)f2(x)|2 =
∑

x∈E1∩E2

|f1(x)|2|f2(x)|2 ≥ |E1 ∩ E2|c2a2

and ∑
x∈E1,x2∈E2

|f1(x1)|2|f2(x2)|2 ≤ |E1||E2|b2d2.

Hence

|E1 ∩ E2|a2c2

|E1||E2|b2d2
≤

∑
x∈E1∩E2

|f1(x)f2(x)|2∑
x∈E1,x2∈E2

|f1(x1)|2|f2(x2)|2
≤ maxt αt,2(S1, S2)

Nd
⇐⇒ α2b

2d2|E1||E2|
a2c2|E1 ∩ E2|

≥ Nd

One can question that if a similar result can hold for the class of all signals. In other
words, is there a constant C > 0 such that for any signals f1, f2, if fi is supported on Ei,

f̂i is supported on Si, for i = 1, 2, we get

Cα|E1||E2||E1 ∩ E2|−1 ≥ Nd.
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However, this is not the case. With the same proof as above, let a, c→ ∞, then∑
x∈E1∩E2

|f1(x)f2(x)|2∑
x∈E1,x2∈E2

|f1(x1)|2|f2(x2)|2 can get arbitrary small so we cannot bound it by any constant

C.

Theorem 3.15 (Uncertainty principle for multilinear binary signals). Let f1, . . . , fn :

Zd
N → {0, 1} be two binary signals, where fi is supported on Ei, f̂i is supported on Si for

i = 1, . . . , n. Then if αn = maxt(αt,n(S1, . . . , Sn)),

αn|E1| . . . |En||E1 ∩ . . . ∩ En|−1 ≥ N (n−1)d.

Proof. By the Multilinear Restriction theorem,

∥f1f2 . . . fn∥L2(µ) ≤ ∥1S1 ∗ . . . ∗ 1Sn∥
1
2∞∥f1∥L2(µ) . . . ∥fn∥L2(µ)

⇐⇒
(

1

Nd
|E1 ∩ . . . ∩ En|

) 1
2

≤ max
t
αt,n(S1, . . . , Sn)

1
2

n∏
i=1

(
1

Nd
|Ei|

) 1
2

⇐⇒ N (n−1)d|E1 ∩ . . . ∩ En| ≤ αn

n∏
i=1

|Ei|

⇐⇒ αn|E1 ∩ . . . ∩ En|−1
n∏

i=1

|Ei| ≥ N (n−1)d.

Theorem 3.16 (Uncertainty principle for multiple Sa,b signals). Let fi ∈ Sai,bi, where fi is

supported on Ei, f̂i is supported on Si for i = 1, . . . , n. Then if α = maxt(αt(S1, . . . , Sn)),

α
∏n

i=1 b
2
i |Ei|∏n

i=1 a
2
i |E1 ∩ . . . ∩ En|

≥ N (n−1)d.

Proof. A similar proof follows from Theorem 3.14.
We will also provide Talagrand’s bound that will be useful in the next discussion.

Theorem 3.17 (Talagrand, Bourgain [6]). Suppose h : Zd
N → C. Then there exists a δ > 0

such that for a generic set S, |S| ≤ δNd, we have

∥h∥L2(µ) ≤ K
√
log(N) log(log(N))∥h∥L1(µ)

where ĥ is supported in S.

We will omit the proof. To see how this applied into signal recovery, notice that if we

send Chann(f) and let f̂i = f̂ |Zd
N\Si

where f̂i are lost on Si for any 1 ≤ i ≤ n. We see that

if Ei is the support of fi, then E1 = E2 = . . . = En = E. We have

αn|E|n−1 ≥ N (n−1)d ⇐⇒ |E| ≥ Nd

α
1

n−1
n

up to a constant.
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We will analyze αn. Note that for any t,

αt,n(S1, . . . , Sn) =
∣∣∣(t1, . . . , tn) ∈ S1 × . . .× Sn :

∑
ti = t

∣∣∣ .
Fixing a t ∈ Zd

N , by determining t1, . . . , tn−1, we can get the value of tn uniquely. Hence

there are Nd(n−1) solutions to the equation t1 + . . .+ tn = t where ti ∈ Zd
N . Hence

E[αt,n(S1, . . . , Sn)] = E

 ∑
ti∈Zd

N :
∑

ti
=t

1S1(t1) . . . 1Sn(tn)

 =
∑

ti∈Zd
N ,

∑
ti=t

E[1S1(t1)] . . .E[1Sn(tn)]

=
∑

ti∈Zd
N ,

∑
ti=t

|S1| . . . |Sn|
Ndn

= N−d
n∏

i=1

|Si|.

Then we have

E[αn] = E[max
t
αt,n(S1, . . . , Sn)] ≥ max

t
E[αt,n(S1, . . . , Sn)] = N−d

n∏
i=1

|Si|.

If we assume that each Si satisfies the Talagrand bound, then

∥f1 . . . fn∥L2(µ) ≤ α
1
2
n

n∏
i=1

∥fi∥2 ≤ α
1
2
n (K

√
log(log(N)) log(N))n∥fi∥L1(µ).

From above, we want f1, . . . , fn to be equal so as E1 = . . . = En = E, we get

N− d
2

(∑
x∈E

|f1(x) . . . fn(x)|2
) 1

2

≤ α
1
2
n (K

√
log(log(N)) log(N))nN−dn

n∏
i=1

(∑
x∈E

|fi(x)|

)
.

Suppose f ∈ Sa,b for some a < b ∈ R. Then from above, we get

N− d
2 |E|

1
2 ≲a,b α

1
2
n (K

√
log(log(N)) log(N))nN−dn|E|n.

This is equivalent to N−d|E| ≲a,b αn(K
2 log(log(N)) log(N))nN−2dn|E|2n or we get

|E| ≳a,b
Nd

α
1

2n−1
n (K2 log(log(N)) log(N))

n
2n−1

.

With the approximation of αn ≈ N−d
∏n

i=1 |Si| ≈ δnN (n−1)d, then the denominator is

approximately δ
n

2n−1N
d(n−1)
2n−1 (K2 log(log(N)) log(N))

n
2n−1 , which decreases as n increases.

Now, suppose we execute Logan’s method on the problem g = argminu ∥u∥1 where

û(x) = f̂i(x) away from Si and f, g ∈ Sa,b for some a, b. Let g = f + h. Then we see that

∥g∥1 ≥ ∥f∥1 + (∥h∥L1(Ec) − ∥h∥L1(E)).

Moreover, note that

|h| = |f − g| ≤ |f |+ |g| = 2b
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so we have h ∈ S0,2b. From the multilinear restricition, we have

∥hn∥L2(µ) ≤ α
1
2
n

n∏
i=1

∥h∥L2(µ)

or we get ∥h∥L2n(µ) ≤ α
1
2n
n ∥h∥L2(µ) By Talagrand’s bound and Holder’s Inequality, we have

∥h∥L1(E) =
∑
x∈E

|h(x)| ≤

(∑
x∈E

|h(x)|2n
) 1

2n

|E|
2n−1
2n = N

d
2n ∥h∥L2n(µ)|E|

2n−1
2n

≤ α
1
2n
n N

d
2n |E|

2n−1
2n ∥h∥L2(µ) ≤ α

1
2n
n N

d(1−2n)
2n |E|

2n−1
2n (K log(log(N)) log(N))∥h∥L1 .

Then we have

α
1
2n
n N

d(1−2n)
2n |E|

2n−1
2n (K log(log(N)) log(N)) <

1

2
⇐⇒ |E| < Nd

α
1

2n−1
n (4K2 log(log(N)) log(N))

n
2n−1

.

Hence, if |E| < Nd

α
1

2n−1
n (4K2 log(log(N)) log(N))

n
2n−1

, then we have ∥h∥L1(Ec) − ∥h∥L1(E) > 0,

contradicting the condition of minimum of g. As n increases, the bound
Nd

α
1

2n−1
n (4K2 log(log(N)) log(N))

n
2n−1

become larger so we can recover f more easily when we send

a higher channel with Logan’s method and Talagrand’s bound.
We see that indeed sending multiple signals can improve the Uncertainty Principle, so

we want to develop an algorithm for that. The first idea is to use the merge function.

Definition 3.18 (Merge(f1, . . . , fn)). For signals f1, . . . , fn : Zd
N → C, where the values

of fi are lost on Si, we define the signal

Merge(f1, . . . , fn)(x) =

{
fi(x) if x ̸∈ Si for some 1 ≤ i ≤ n

undefined otherwise
.

Then consider the following algorithm.

Definition 3.19 (Generalization of L2-minimization). Let g = argmin ∥u∥2, where û(m) =

Merge(f̂1, . . . , f̂n)(m) for any m ̸∈ S1 ∩ . . . ∩ Sn.

As described above, if |S1∩ . . .∩Sn||E| ≤ Nd

2 , then we can recover g uniquely. However,
the time complexity for Merge can take exponential time.
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4. Bourgain’s Λq problem

We state the original Bourgain Λq problem.

Theorem 4.1 (Bourgain [1]). Let Ψ = (ψ1, . . . , ψn) denote a sequence of n mutually

orthogonal functions, with ∥ψi∥L∞(G) ≤ 1. There exists a subset S of {1, . . . , n}, |S| > n
2
q

such that ∥∥∥∥∥∑
i∈S

aiψi

∥∥∥∥∥
Lq(G)

≤ C(q)

(∑
i∈S

|ai|2
) 1

2

.

for all finite sequence {ai}. The estimate holds for a generic set of size ⌈N
2
q ⌉ with proba-

bility 1− oN (1).

Let G = Zd
N and consider Γ = {γ(x ·m) : m ∈ Zd

N}. Applying Bourgain’s result, if we

consider n = Nd, |S| = ⌈N
2d
q ⌉, and {ai} = {N− d

2 f̂(x)}x∈S , where f̂ is supported in S,
then almost surely∥∥∥∥∥∑

m∈S
N− d

2 f̂(m)χ(m · x)

∥∥∥∥∥
Lq(G)

≤ C(q)

(
1

Nd

∑
m∈S

|f̂(m)|2
) 1

2

= C(q)

(
1

Nd

∑
x

|f(x)|2
) 1

2

⇐⇒ ∥f(x)∥Lq(G) ≤ C(q)

(
1

Nd

∑
x

|f(x)|2
) 1

2

.

Hence, we get the variation of Bourgain for discrete analouge.

Theorem 4.2 (Variation of Bourgain in Discrete settings). If f̂ is supported in S and

|S| = ⌈N
2d
q ⌉, then

∥f∥Lq(µ) ≤ C(q)∥f∥L2(µ)

where C(q) is a constant independent of N .

Lemma 4.3. Proof the theorem is correct for q = 4. That is, if |S| = ⌈N
d
2 ⌉, then(

1

Nd

∑
x

|f(x)|4
) 1

4

≤ C(q)

(
1

Nd

∑
x

|f(x)|2
) 1

2

.

Proof. We have

LHS =

(
1

Nd

∑
x

(|f(x)|2)2
) 1

4

=

(
1

Nd

∑
x

(f(x)f(x))2

) 1
4

=

 1

Nd

∑
x

((
N− d

2

∑
m∈S

χ(x ·m)f̂(m)

)(
N− d

2

∑
m∈S

χ(−x ·m)f̂(m)

))2
 1

4

=

 1

N3d

∑
x

 ∑
m1,m2∈S

χ(x · (m1 −m2)f̂(m1)f̂(m2)

2
1
4

.
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By expanding out again, we have

LHS =

 1

N3d

∑
x

 ∑
m1,m2∈S

χ(x · (m1 −m2)f̂(m1)f̂(m2)

 ∑
m′

1,m
′
2∈S

χ(x · (m′
1 −m′

2)f̂(m
′
1)f̂(m

′
2)

 1
4

=

 1

N3d

∑
x

∑
m1,m2,m′

1,m
′
2∈S

χ(x · (m1 −m2 +m′
1 −m′

2))f̂(m1)f̂(m
′
1)f̂(m2)f̂(m′

2)

 1
4

.

=

 1

N3d

∑
m1,m2,m′

1m
′
2∈S

f̂(m1)f̂(m
′
1)f̂(m2)f̂(m′

2)
∑
x

χ(x · (m1 −m2 +m′
1 −m′

2))

 1
4

.

Again, by Gauss sum,

LHS = N− d
2

 ∑
m1,m2,m′

1,m
′
2∈S

m1+m′
1=m2+m′

2

f̂(m1)f̂(m
′
1)f̂(m2)f̂(m′

2)


1
4

.

For the right hand side, by Plancherel formula

RHS =

(
1

Nd

∑
m∈S

|f̂(m)|2
) 1

2

= N− d
2

(∑
m∈S

f̂(m)f̂(m)

) 1
2

.

Hence, the inequality is equivalent to∑
m1,m2,m′

1,m
′
2∈S

m1+m′
1=m2+m′

2

f̂(m1)f̂(m
′
1)f̂(m2)f̂(m′

2) ≤ C(q)2

(∑
m∈S

f̂(m)f̂(m)

)2

= C(q)2
∑

m1,m2∈S
f̂(m1)f̂(m2)f̂(m1)f̂(m2).

If we consider f̂ = 1, then the inequality is equivalent to

|{(m1,m2,m3,m4) ∈ S4 : m1 +m2 = m3 +m4}| ≤ C(q)2|S|2.

Since |S| > N
d
2 , we see that the left hand side is bounded by (5 + o(1))|S|2 so taking

C(q) =
√

5 + o(1) will satisfy.

In other cases, we take C(q) =
√

5 + o(1)max f̂

min f̂
and we get the results.

To see how Bourgain’s result can be applied in signal recovery, we consider the following
theorem proved by Iosevich and Mayeli [3].

Theorem 4.4 (Iosevich, Mayeli [3]). Suppose f : Zd
N → C is a signal supported in E.

Suppose that {f̂(m)}m∈S are unobserved where S satisfies the Λq inequality with constant
C(q), then f can be recovered exactly if

|E| < Nd

2(C(q))
1

1
2− 1

q

.
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We want to generalize the idea for multiple signals. Let f1, . . . , fn : Zd
N → C be functions.

Note that
̂f1 . . . fn = N

(n−1)d
2 (f̂1 ∗ . . . ∗ f̂n)

so ̂f1 . . . fn(t) =
∑∑

xi=t f̂1(x1) . . . f̂n(xn). If t ̸∈ S1 + . . . + Sn, then ̂f1 . . . fn(t) = 0 so if

̂f1 . . . fn(t) ̸= 0, we must have t ∈ S1 + . . .+ Sn and we get

spt( ̂f1 . . . fn) ⊆ S1 + . . .+ Sn.

If we have |spt( ̂f1 . . . fn)| = ⌈N
2d
q ⌉, then by Bourgain’s result and Multilinear restriction

∥f1 . . . fn∥Lq(µ) ≤ C(q)∥f1 . . . fn∥L2(µ) ≤ C(q)∥1S1 ∗ . . . ∗ 1Sn∥
1
2∞

k∏
i=1

∥fi∥L2(µ).

We have |S1 + . . .+ Sn| ≥ ⌈N
2d
q ⌉ and with high probability, by Pigeonhole Principle

∥1S1 ∗ . . . ∗ 1Sn∥
1
2∞ = max

t
αt,n(S1, . . . , Sn)

1
2 ≈

( ∏n
i=1 |Si|

|S1 + . . .+ Sn|

) 1
2

≤

(∏n
i=1 |Si|

⌈N
2d
q ⌉

) 1
2

so if we choose Si with size N
2d
qn for any i, then

(∏n
i=1 |Si|

⌈N
2d
q ⌉

) 1
2

= O(1). Note that with

n = 1, it is the original Bourgain’s theorem.
Now, we want to find the expected value of |S1 + . . . + Sn|. Note that for any x ∈

Zd
N ,P(x ∈ Si) =

|Si|
Nd . Hence

E[|S1 + . . .+ Sn|] =
∑
x∈Zd

N

P(x ∈ S1 + . . .+ Sn).

For each 1 ≤ i ≤ n, let ui = (ui1, . . . , uin) ∈ Zd
N such that u1+. . .+un = x. Consider the

whole space Zd
N , this equation has Nd(n−1) solutions, called it Sol(x). So if x ̸∈ S1+. . .+Sn,

then for any of the Nd(n−1) tuples (u1, . . . , un) ∈ Sol(x), there exists some i such that
ui ̸∈ Si. Hence

P(x ̸∈ S1 + . . .+ Sn) = P(∀(u1, . . . , un) ∈ Sol(x), ∃i : ui ̸∈ Si).

Numbering all elements in Sol(x). Let Ej be the event that there is some 1 ≤ i ≤ n
such that uji ̸∈ Si where (uj1, . . . , ujn) is the jth element in Sol(x). Then the events

{Ej}N
d(n−1)

j=1 are pairwise independence so P(x ̸∈ S1 + . . . + Sn) = P(E1)
Nd(n−1)

since any
Ej occurs with the same probability. We also have

P(E1) = 1− P(ui1 ∈ Si ∀1 ≤ i ≤ n) = 1− |S1| . . . |Sn|
Nnd

so we must have

E[|S1 + . . .+ Sn|] = Nd

(
1−

(
1− |S1| . . . |Sn|

Nnd

)Nd(n−1)
)
.
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From above, if we take each Si has size approximately N
2d
nq , then |S1|...|Sn|

Nnd = N
2d
q
−nd

so

E[|S1 + . . .+ Sn|] = Nd

(
1−

(
1−N

d( 2
q
−n)
)Nd(n−1)

)
and as N

d( 2
q
−n)

Nd(n−1) = N
d( 2

q
−1) ≪ 1 if we take q ≥ 3, we see that since (1−x)n ≈ 1−nx

when n|x| ≪ 1,(
1−N

d( 2
q
−n)
)Nd(n−1)

≈ 1−Nd(n−1)N
d( 2

q
−n)

= 1−N
d( 2

q
−1)

and we get

E[|S1 + . . .+ Sn|] ≈ Nd(1− (1−N
d( 2

q
−1)

)) = NdN
d( 2

q
−1)

= N
2d
q .

Hence, as |S1+. . .+Sn| ≤ |S1| . . . |Sn| = N
2d
q , then with high probability, |S1+. . .+Sn| =

N
2d
q = |S1| . . . |Sn| so ∥1S1 ∗ . . . ∗ 1Sn∥

1
2∞ = 1. We get the following result.

Theorem 4.5 (Generalization of Bourgain’s Theorem). If for any 1 ≤ i ≤ n, f̂i is sup-

ported in Si with |Si| = ⌈N
2d
nq ⌉ and also ̂f1 . . . fn is supported in S with |S| = ⌈N

2d
q ⌉, then

with high probability

∥f1 . . . fn∥Lq(µ) ≤ C(q)
n∏

i=1

∥fi∥L2(µ)

where C(q) is a constant independent of N .
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