SIGNAL RECOVERY, BOURGAIN’S A, PROBLEM, AND
MULTILINEAR RESTRICTIONS
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ABSTRACT. In this paper, we work on multilinear restriction and its applications on signal
recovery. Specifically, we will show that sending more signals will have a higher chance of
recovering the original information. We also prove a generalization of Bourgain’s result
on A, problem for multiple functions and apply it to multiple transmissions.
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1. INTRODUCTION

Information transportation has been an important aspect of real life, where we send the
signals between people. In some cases, there will be noises so there will be a chance that
we lost some of the information that was sent out. Donoho and Stark [2] have proved that
although some of the frequencies may be lost, we can still recover the signal uniquely by
Discrete Fourier Transform.

There are also questions regarding how restriction theory affects signal recovery by giving
estimates on the restriction of Uncertainty principles. Moreover, we want to work on
sending multiple copies of a signal to recover uniquely the original one. One can ask whether
we can improve the recovering algorithms are loosening the Uncertainty Principles, i.e the
size of the lost data is larger. We also discuss some drawbacks regarding the computational
aspects of the algorithm.

In this paper, Section 2 will provide basic preliminaries and notations that will be used
throughout the paper. Section 3 will be the core of the paper, where we discuss multilin-
ear restrictions and its applications to signal recovery. We conclude with section 4 for a
generalization of Bourgain’s A, problem and its applications.
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2. NOTATION AND PRELIMINARIES

Firstly, we define what a signal is.
Definition 2.1 (Signal). A signal f is a function that takes value in Z¢, and maps to C.

For any f : Zﬁl\, — C, we define the Fourier transform to be
-~ —d
fm)=N7 Y x(~z-m)f(x)
x

2mit

where x(t) = e~ .
From this definition, one can see that the Inverse Fourier Transform is given by

) =3 x(@ - m)f(m).

To see why this is true, we will apply the Inverse Fourier Transform to the Fourier
Transform. We have

NE Y x@-m)fm)= N7 x(@-m)NF Y x(~2' m)f(a)
= NI Y (@ - o) m) () = f@),

We also define what a support of a signal is.

Definition 2.2 (spt(f)). The support of a signal f, denoted as spt(f), is

spt(f) = {x € Z : f(x) #0}.

One of the key property of Fourier transform is that it preserves the Ls-norm of the
function. This is called the Plancherel’s formula.

Theorem 2.3 (Plancherel’s theorem). For any signal f : Zﬁlv - C,

ST rm)PE = [f@)*

mezs, weZd;
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Proof. We have

Yo fm)lP =Y

N2 x(—x - m)f(x)

mezZ4, mezs,

= 2 NI (e m)f@) (Y x (- m) f(@))
mezs, z z

~ Y N (Z x(—a- m>f<m>> (Z ez m)f(fc))
mEZ‘i T T

= 3 VY Ml — 1) - m)f () @)
mGZd T1,T2

= NN fl)flaa) Y x((ws —a1)-m).

1,22 mGZﬁl\,

By Gauss sum, we have for any z € Z4,,

d If 4 —
> x(fﬂ'm)Z{éV o

Otherwise -
mEZ‘fV

M7 Fm)P = deZf Z|f

d
meLyy

Hence

Given a set S and suppose {f(m)}meg are lost. Note that we can construct multiple
signals so that its Fourier Transform aligns with the data that isn’t lost, i.e the points
m & S. However, one can ask whether the recovered signal is unique or not. We have the
following principle.

Theorem 2.4 (Uncertainty Principle [4]). If f is supported in E, f is supported in S,
then |E|-|S| > N<.

Proof. From the inverse formula

f@)=N"23" x(z-m) N x(@om) Y x(@! - m) f(a).

mesS mesS ek

@) =N~ x(@-m) Y x(@-m)f(a)

meS z'eE

SNTEY TN If@) = NTYS| Y fa)

meS z’'eFE r’'eFR

<NY

meS

> x(@-m)f()

el
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Hence
STIf@I <Y NS f@)y=NYE[-|S| Y If(z)| = |E|-|S| > N
zel el z'eE r'eR

We have the definition for a set to be (p, ¢)-restricted.

Definition 2.5 ((p, ¢)-Restriction [4]). Let S C Z4,. We say S satisfies a (p, q)-restriction
if there exists a uniform constant C), 4 such that for any f : Z?V —-C

1

(@me)w)qgo@w‘? S lf@r |

d
meS TELY,

For simplicity in calculations, we will define what an L, norm on a set. In this case, we
want to take account with the counting measure.

Definition 2.6 (|- |z»(4)). Given f : 74 — C and a set A C Z%;, define

1

17 loa) = (Z |f<x>|p) " W llren = @ > \f(x)!p> ;

€A €A
Similarly

P

11127y = (;dz If(rv)l”>

Now, we start with the first condition for a signal to be uniquely recovered.

Theorem 2.7. Let f : Z% — C and suppose {F(m)}mes are lost. If |S| - |spt(f)| < NTd,
then we can reconstruct f uniquely.

Proof. Suppose f cannot be recovered uniquely, then there exists g : Zﬁl\, — C such
that |spt(f)| = |spt(g)| and f =g away from S. Let h = f — g, then
[spt(h)] < 2[spt(f)], [spt(h)| < [S].
By Uncertainty Principle, we get
~ Nd
28| - |spt(f)] = [spt(R)| - spt(h)| > N* = |S|-[spt(f)| > -
a contradiction. Hence the reconstruction is unique.
Now, we will develop analogous variations to the Uncertainty principle if we assume

(p, q)-restriction condition.

Theorem 2.8. Suppose f : Zﬁl\, — C is supported in E C 7%, and f: Z‘Ji\, — C is supported
in S. Suppose that the restriction estimation holds for a pair (p,q), 1 <p < g < oo. Then
1 Nd

E[3]S] > ——.

Chq
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Proof. Suppose f is supported in F and fis supported in S. Then

f(z)=N"2 3" x(@-m)f(m).

meS
By Holder’s inequality,

|f(z)] = N3

meS

> x(@ m)f(m)‘

q—

e (Z |x<x-m>|q31> q (Z |f<m>\q>q
mesS

meS
1

= N9 (Z |fA<m>|Q)q

mesS
1 1
4 1 N q 4 P
= N7z2|5| 5] MM < CpaNTUSI D If @) )
mesS zeE
Hence
[f(@)[? < Cp NS | ()P
z€eE
so by summing all over, we have
p N—Pd P y N
1<y N |E|-|S|P = |S]|-|E|r ZC—.

P,q

Theorem 2.9. Suppose f : Zﬁl\, — C is supported in E C Z‘fv, and f: Z‘Ji\, — C is supported
in S. Suppose that the restriction estimation holds for a pair (p,q), 1 <p <2 < q < 0.
Then

2-p Nd
B[P |S] > 5
P,

Proof.

First of all, we see that as 2 < q, || fllz2(u.) < [[fllLa(ua) by the generalized
Holder’s inequality. Hence

(;, 2 |f(m>\2> < (,;, ) ﬂm)rq)q < CpgN~% (Z If(w)\p> .
mesS

meS zeE
By Holder’s inequality, we have

CpgN ™% (Z If(w)l”> < Cpol E[rEN"E (Z \f(fr)2>
=y

zelR
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By Plancherel’s equality, we have

(|S|Z|f ) =|S|—1(Z|f<m>|2> = |S|"2 (Zlf(:v)l2> .
mesS mesS el

1 1
1 2 411 2 1 411
S| 5<Z|f<:c>l2> < CpyN72|E» 2(2 rf(:c)|2> = |S|72 < Cp N 2|E|p 2

zelR

N

d

Corollary 2.10. If the constant C), 4 ts small, then the second bound is strictly stronger
than the first one.

Now, we will consider how we can actually recover the signal. We consider Logan’s
algorithm or Lj-minimization method [3].

~

Definition 2.11 (Logan’s algorithm). We let g = argmin,, ||u|; with u(m) = f(m) for
any m ¢ S.

To see how this algorithm works, let f = g+ h where h : Zﬁl\, — C and f is supported in
E. Then

gl = If = bl = 1f = Al + [BllLr ey = 1F ey = 1Rl ey + 1Rl L ge)-

We have for any z

=Y Nx(z-m)h NS x(@-m)x(=0-m)h(0) = |h(x)] < NSl 1 (g -
meS meS 6
Summing over x € F, we get
IEIIS\ IEHS!
17l L2 (py < 1]y = (Al Lr sy + 1l L2 (i)

and we get (1 - %) ||h||L1(E) < |E”S| ||h||Ll(Ec Note that if we assume that |S||E| < Nd

so that the result signal is unique, then LB $ or we get Ihllzt(gey > [|hllL1 (k). Hence

llglls > || f]l1, contradicting the fact ||g||; is m1n1m1zed
Therefore, we get h = 0 or the algorithm returns the exact signal.
Moreover, we also consider the Lo-minimization method, or Donoho-Stark’s algorithm [3].

~

Definition 2.12 (Donoho-Stark’s algorithn). We let g = arg miny, ||ul|2 with g(m) = f(m)
for any m ¢ S and |spt(u)| = |spt(f)|.

Suppose that f = g + h for some h : Z?V — C. Then h is supported in T such that
|T| < 2|E|. Then ||All2 = ||k 12(r). Moreoer

_d -~ _d _d 1
h(z)=N"2 > x(z-m)h(m) = |h(z)| <N Z [h(m)| < N=2[S|2||h| a(ry-
meS mesS
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Hence, summing over all elements in T', we have

> 1.

] S|
sy < TN S Ry = /50

Since |T'| < 2|E|, we get |E||S| > NTd, a contradiction to the Uncertainty principle.
Therefore, we get h = 0 or the algorithm returns the exact signal. However, this algo-
rithm takes exponential time.

3. MULTILINEAR RESTRICTION AND ITS APPLICATIONS.

One natural question to be asked is that by sending more information, do we have a
higher chance of recovering the original signal? In this section, we will show that it can
loosen the recovery condition.

First of all, we introduce a bilinear restriction result.

Theorem 3.1 (Bilinear restriction). Let f, g : Zﬁl\, — C such that f is supported in X and
g is supported in'Y . Then

1
1fgllzequy < I1x * Iy l5 [ Fll 22w lgll 22 )-

Proof. We have the following lemma.

Lemma 3.2 (Riesz-Thorin interpolation theorem [5]). Let (X, A, u) and (Y,B,v) be mea-
sure spaces. Let po,p1 € [1,00] and for 0 <t < 1, define p; by

1 1-1 t

i + -,

b Po b1
Then if T : (LP0 + LP1) — (LP0 4 LP') is a linear map such that for fo € LP°(X, A, u) and
fl €L (X7 Aa M)ﬂ then

1T follpo < Mollfollpo: 1T f1llpy < Ml fillp:
where My, My € (0,00). Then

1T fllp < Mo~ M| £lp.-

We also have if f,g: Z% — C and h be given by h(z) = (f * g)(z) = >, fWalz —y),
then

h(m) = N5 3 x(= - m)h(z) = N72 3 x(=a-m) 3 [(w)g(x ~ )
T x Y
=N N x(—(a+b) - m)f(a)g(b) = N2 Y3 x(—a-m)f(a)x(~b-m)g(b)
a b a b

d -~
2

= Nz f(m)g(m)
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so we get E = N*g(f* g). Back to the problem, we have

HngLz(m:(@Z\ﬂx)g(mn?) :(]j.erngm)P) (NerN (F+3) )

1 1
2 2
= (N”@if*@?) =N (Z\flx*ﬁlyl2> = NI fix gy
m m
Now, we have

1F1x *glyllh = Iflx *gly| =)

mi mi

<Y > 1 lx(ma = ma)|[gly (m2)]

mi1 m2

<> IfLxm)l Y |Gty (ma)] < | Fl gl

N

> flx(mi —ma)gly (mo)

m2

On the other hand
[f1x % gly lloo < [[flloollgllool1x * 1y [|oo-

Hence, by the Riesz-Thorin interpolation theorem,
~ 1 1
1£9ll 2 = NI fLx * glylla < N7Lx Iy I3 fll2lgll2 = N79YILx * 1y &I £ll2llg]l2

1
=[x * Iy ol fll 2 91l 20 -

Therefore, the proof is completed.
We also want to generalize the Riesz-Thorin interpolation to n functions.

Definition 3.3 (n-linear map). A function f: V) x Vo x ... x V,, = W is a n-linear map
such that if we fixed any entry of the function, then we get a n — 1 linear map.

For example, a bilinear map f : Vi x Vo — W is a map such that for any v;, the map
fo, tv2 > f(v1,v2) is a linear map and for any vg, the map fy, : v1 — f(v1,v2) is a linear
map.

We have the following generalization.

Lemma 3.4 (Generalization of Riesz-Thorin interpolation theorem). Let (X, A, ) and
(Y, B,v) be measure spaces. Let pg,p1 € [1,00] and for 0 <t < 1, define p; by

1 1—1 t

R + —.

bi bo b1
Then if T : (L0 4 LPY)" — (LP° 4 LP') is a n-linear map such that for fi, fo,..., fn €
LPo(X, A, p) and g1, 92,-..,9n € LPY (X, A, 1), then

IT (1o Fodllpo < Mo TT I illoos I7Can -, gn) Iy < Mu T llgillps

i=1 i=1
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where My, My € (0,00). Then
IT(froe s falllpe < Mo~ MET T 1 illpe-
i=1

Proof. We will work on the case of bilinear. Let B : (LP° + LP1)" — (LPo 4+ L) be a
bilinear map that satisfy the upper condition. Fix f}, f5 € LP° 4+ LP' and define
Ty f2(x) = B(f1, f2)(@), Tpou fr(z) = B(f1, f5)(2).
Then we have for any i € {0,1}

|1 Ts; llps = nffe >0 Ty fallp; < el fallpVfz2 € LP° + L2} = inf{e > 0+ |B(fT, f2)llp: < cll fallp: }-
Similarly

1Tss llp; = inf{e > 0 | B(f1, 5)llp: < cllfillp;}-
We have
I B(f1, f3)lp:
1 £11lp,

Consider [ f5]|,, as a constant, we get || Tf; ||, < Mol|f5|lp;- By Riesz-Thorin interpola-
tion theorem, we get

155 llp < Mo~ Millf5llp, = inf{c > 0: IB(f1, f3)llp, < el fillp,} < Mo~ Millf5 |-

IB(f1s f2)llps < Mill fillpo /2 lpo = < Moll £3 [lp:-

Therefore, for any fi € L7 + L', | B(f1, £3)llp. < Mo~ MNf5 ol fillpr-
Similarly for Ty, we get
ITs: e < Mo~ Milfillpe = BT, f2)llpe < Mo~ DRI llpe | follpe-

Hence, we get the result.

For the case of n-linear, we do a similar method. Let T : (LP0 + LP1)" — (LP" + LP1)
be a n-linear map that satisfy the condition and we assume that the theorem is true for
n — 1-linear functions. Fix f{, f5,..., fi € LP° + LP' and for each 1 <i <n,

Tz(fz)(x) = T(ff?f%? R fi*—lafbf;;l? e 7f:7j)(x>
Then for such j € {0,1},
| Tillp, = inf{c >0 [ T(f, .., file, fis fivas - fo)llpy < cllfillp, Y fi € L7 + L'}
We have

WIS fimns fis a0 Fa)lloy < ML Ny - - - 1l W fillp | fiallpy - - (12 s

HT(f*v"'zfi*7 7fi7f7;* ’7f:1(,)|| 1
sowe got LUL S Tiensdidles < L Ay 2l -2, snd T, <

Ml f1llp; - i allp; 1 ficillps - - - [ fallp;- By inductive hypothesis, we get
I Tillpe < Mg~ M| g - Lt e | 5 e
Therefore, for any f; € LPO + LP1,
IT(Frs s Fins fis oo Bl < Mo ™ MEN FE e - - 7 e 1 Fillpe 155 e - - 1 e
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Hence, we are done.
Now, we will prove a general result of Theorem 3.1

Theorem 3.5 (Multilinear Restriction). Let fi, fo,..., fx : Z‘f\, — C such that ﬁ is sup-
ported in X; for any 1 <i < k. Then

Lk
Ifr - Frllrege < oo 1 13 T 1l 2

=1

Proof. Before proving the main theorem, we will generalize the formula for the Fourier
transform of a product of functions.

Lemma 3.6. Given k signals f1, fo, ..., fr: Zﬁl\, — C, we have

fife fi=N Q)d(fl*]?z*~--*ﬁc)-

Proof. We will prove the formula by induction. For k£ = 1,2, we have covered in the
d -~ ~ ~
2) (f1 % fox...* f;) for some ¢ > 2. Then

upper theorem. Suppose that f; fg fr =
we have

fifs o fi1 = N2(fifa. fix fip1) = N
:NT(fl*fQ*...*ﬁ:l).

Therefore, the claim is true for k = ¢t + 1. Hence, by the Principle of Mathematical
Induction, we have the result.
We have

d (t-1d -~
2

(N2 (fusfosooos fi)  fon)

N|=

I fifa- - frllzzqw

NdZm z) fo >..fk<x>|2>
NdZ|f1f2 fr(m )\2>
N

dZw S (Fx fax *fk>|)

1
2

-

N

—5d (ZU?lle *]?21)(2*...*};13/2)

,E -~
= N2 filx, * folx, % ... % filx, |2

N =

(5
(>
(>
S

l\D
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Now, we have

”f11X1 * f21X2 ¥k flekHl < ||f11X1”1||f21X2 *... *flekul

Ifilx, 1l folxollall f3lxs * - * felx, [l

IN A

k
<[ Iftx
=1

On the other hand

1Al # o frlxlloo < I fillool[ falloo - - Ik llool Ty * 1x, - % 1x [loo

Hence, by the generalization of Riesz-Thorin interpolation theorem, we have
_kgy ~ ~
Ififa- o frllrzgy = N72 filx, = falx, *oox filx,
_k IR >
< N7y, x L ¢ L lI& a2l follz - Ll

1
= [1x, % Lx, # - oox L [ (N2 frll2) (N2 fall2) - - (N2 fiell2)

1
= [, % 1xy % L &L f1ll 2y [ 2l p2quy - - - Ikl 2

Now, we want to see the applications of multilinear restrictions to signal recovery. We
first introduce the idea of a channel.

Definition 3.7 (Channel). Let n € N. An n-channel is a collection of n repeated signals,
denoted as

Chann(f):{f,]?,---af}-

Then, instead of sending a single signal, we send an n-channel of its Fourier transform.
Suppose for each 1 < ¢ < n, the values of f;(z) are lost on the set X;. We will see if there
are any conditions such that we can recover uniquely the signal f.

Theorem 3.8. Suppose all the values of f; agrees on a single output, i.e for any t € Z%
{fi(t) ;1 <i<n}[ <1

To recover the original signal, we consider the signal ﬁ, which is not defined on X1N...NX,,

with the values taken from f1,..., fn. If | X010, . .NX5|-[spt(f)| < NTd, then we can construct
f uniquely.

Proof. This follows from Theorem 2.1.

For any 1 < i < n, suppose we randomly take X; uniformly random of size s; from Zj{,,
then we want to calculate the Expectation of the size of X; N...N X,,. For each t € Zﬁl\,
and 1 < i < n, denote py, (t) to be the probability that t € Xj.

Lemma 3.9. For anyt € Z¢ and 1 <i <n, px,(t) = NI
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Proof. We have

Nd—1
px (t>:|{XgZ(]i\/|X|:Sl7t€X}|:(sl—l): Sq
1 (X C 2z 1X] = sih () TN

Theorem 3.10. E[|X1N...N X,|] = 3=

Proof. For each 1 < i < n, denote 1x,(t) be the indicator function for the set Xj;.
Then we have

BN N1 Xl =E | Y 10,0 1x,0)] = 3 Bl () 1, (0] = 3 T[ElLx, ()]

d d d =
teZs, teZs, tezg, i=1
n
—ZHP (t)— Sl...Sn_Sl...Sn
. 11 X . Nnd Nn-1)d’
tez, 1= teZg;

By Markov’s inequality, we have

N E[XiN...NnX
IED<|X10X2r1...ﬁXn|< >21_ IRS! nl]

Nd
2spt(f) Tept (]
1 NG . 25159 ... sp|spt(f)|
T T Nd T Nnd :
2spt(f)]

Note that s; < N? so the more signals we send, the higher probability that the size of

the intersection does not exceed %gf‘(if)'. However, a drawback is that the verification time

will be long, namely O(min(sy,...,s,)logn) via divide and conquer.
Now, we want to use the bilinear restriction theorem for finding the bounds on the size
of the supports.

Definition 3.11. Let Xi,..., X, be sets and ¢t be a number. We define

n
at’n(Xl,...,Xn): '{(.%'1,.%’2,...,33n) €X1 XX2 X ... XXn:in: }‘

We have the following result.

Theorem 3.12 (Uncertainty principle for bilinear binary signals). Let f1, fo : Zﬁl\, —{0,1}
be two binary signals, where f; is supported on F;, f; is supported on S; fori=1,2. Then
if o = maxy (ar,2(51, 92)),

az|E1||Bs||Ey N Byt > N
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Proof. By the Bilinear Restriction theorem,

1
11 f2llz20) < 118y * Ls, [0l f1ll 2y [ 2l L2
1

1 2 1 2 /1 2
— <Nd\E1ﬁE2|> Smtaxatg(SbSQ) <Nd|E1|> <Nd|E2|>
— NYE| N Ey| < ag|Ey||Es|
= |E1||Ea||Ey N Byt > N4

[N

One can ask whether this result is strict or not. Let f; = 14,, fo = 14, where A;, As
are lines in Z3,. Let Ay = {(z,a17 + b)) : € Zp}, As = {(z,a22 + b2) : * € Zn}, where
ay # az € Zn,ged(ar, N) = ged(ag, N) = 1 and by, by € Zy. Then f; is supported in A;
which has size p so E; = A; for i = 1,2 and we get |E; N E3] = 1. Now

fi(m) = Z xX(—z-m)f(z) = Z X(—(a, a1+ b1) -m) = Z x(—amy — (a1 + by)ma)

el a€ZN a€EZN
= Z X((=m1 — aryma)a — byma) = x(—bima) Z xX((=m1 — aima)a).
a€ELN a€ZN

Note that ﬁ(m) #0 <= —my —aymg =0s0 51 = {(my1,ms) € Z?V :my + aymg = 0},
1

which is the line through the origin with slope ar Similarly, Sy is the line through the
origin with slope é Hence
g = Hl?,X‘Sl N (t — Sg)’ =1
s0 as|E1||Eo||Ey N Eo|™' =1-N-N-1= N2 Hence, this inequality is strict in Z%.
A similar result can be generated in Z?V. Let [1, 12 be lines in Z?V given by

Ly = {(a1,...,aq) + a(by,...,bg) 1 € Zy}
Ly = {(a},...,a)) +ady,..., b)) :a € Zy}

where we choose the constants such that L; intersects Lo. Then similar as above
d d d d
film) = Z X (— Zmiai — aZmin) =X (— Zmim) Z X (—oc mibi> .
Q€N i=1 i=1 i=1 €7 i=1

In order to have J?l(m) = 0, we need Z?;ll m;b; = 0 or m is on a d — 1 hyperplane passing
through the origin so the support of f is S1, where

Si={meZ :m-b=0},b=(bs,...,bq).
Similarly, the support of fg is Sy, where
Sy ={meZ :m- v =0}b =(b],....0).
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By choosing b and V' carefully, we can make g = N%2, which is the maximum elements
in the intersection of two planes. Hence

| Er||Eo||Fy N Byt = N2 . N.N-1=N¢
Hence, the inequality in Theorem 3.11 is strict.

Now, we want to deduce a version of Theorem 3.11 for a larger family of signals.

Definition 3.13 (S,3). Let a < b be any positive real numbers. The class S, is defined
by
Sep =11 Tk = C:a < |f(x)] < bVa e T4, f(z) £0}.
Theorem 3.14 (Uncertainty principle for S, signals). Let fi € Sy, f2 € Sc.q, where f;
is supported on E;, f; is supported on S; for i =1,2. Then if as = maxy(oy2(S1,52)),
a2b2d2|E1 | ’EQ‘
a202|E1 N E2|
Proof. Again, by the Bilinear Restriction Theorem

> N¢,

Nfrfellzgn < llLs, * 1SQH§on1||L2 wllf2llz2
= (]\}d > A@) fa@)] ) < max a,2(51, 52) )2 (Nd PRIAE: ) (;d > |f2(;c)2)

z€E1NEy TEFR] rEFy

2 HlaXtOltz (S1,52)
= > |h@) @) < ——— (Z | f1(x ) (Z | fo(x )
zeE1NE> reF) € Fy

ZzeEmEg |f1(17)f2(33)|2 < max; a 2(S1, S2)

T e A@PR) (Coep, R@R) T N
> ecrng, 1) f2(z)? max; a 2(S1, S2)

T Sem e @@ S N

Now, as a? < |f1(2)]? < b? and % < |fo(2)|? < d?, we have

o a@b@PP= Y h@Plf@)? > BN Bl

re€E1NE> x€E1NE>
and
> @) Plfa(x2)? < |Ey|Eylb?d”.
rEFE,x20€FE>
Hence
|Ey N Eola®c? S vemnm, [1(x) f2(2)? max ot 2(S1, S2) agb®d’| B, || B, NN
|EV|[E2|b?d® = 3 g, amen, [f1(@1)Pf2(22)]? Nd a?c?|Ey N EBa| —

One can question that if a similar result can hold for the class of all signals. In other
words, is there a constant C' > 0 such that for any signals fi, fo, if f; is supported on E;,
fi is supported on S;, for ¢ = 1,2, we get

Cal|Ey||Es||Ey N Ey|~t > N4
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However, this is not the case. With the same proof as above, let a,c — oo, then
ZIGElﬁEQ Ifl(x)fQ(m)‘2

Ywe By age iy [F1(21)?[f2(22)

7 can get arbitrary small so we cannot bound it by any constant

Theorem 3.15 (Uncertainty principle for multilinear binary 81gnals) Let f1,..., [0 :

Zd — {0 1} be two binary signals, where f; is supported on Ej, fz is supported on S; for
i=1,...,n. Then if a,, = maxy(ayn(S1,...,5n)),

O‘”‘El‘ e |EnHE1 n...N En‘_l > N—=1d

Proof. By the Multilinear Restriction theorem,

1
[f1fa oo fallpzgey < lsy oo o* s, 1Sl fill 2y - - - 1 fnll 2
l n 1
1 1 1 2
1=

n

= NOVIE N NEy <oy []IE]
=1

n
= an|Er 0. 0B 1B = N
i=1
Theorem 3.16 (Uncertainty principle for multiple S, signals). Let f; € S,, 4., where f; is
supported on E;, f; is supported on S; fori=1,...,n. Then if « = max¢(o4(S1,...,5)),

aHz 1 z‘E’ > N(nfl)d.
Hn |E1 n. ﬂEn| -

i=1 4

Proof. A similar proof follows from Theorem 3.14.
We will also provide Talagrand’s bound that will be useful in the next discussion.

Theorem 3.17 (Talagrand, Bourgain [6]). Suppose h : Z& — C. Then there exists a § > 0
such that for a generic set S,|S| < SNY, we have

7]l 2y < K/log(N) log(log(N))[Ih| 1 ()

where h is supported in S.

We will omit the proof. To see how this applied into signal recovery, notice that if we
send Chan,(f) and let f; = f]Z(}V \Ss where f; are lost on S; for any 1 < i < n. We see that

if F; is the support of f;, then Fy = Fy = ... = E,, = E. We have
Nd
ap|E" > NV — || >
aﬁfl

up to a constant.
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We will analyze a,,. Note that for any t,
am(Sl,...,Sn) = ‘(tl,...,tn) €S x...xS,: Zti:t’.

Fixing a t € Z%, by determining t1,...,t,_1, we can get the value of t,, uniquely. Hence
there are N4"=1) solutions to the equation t1 + ...+ t, =t where t; € Zﬁl\,. Hence

E[sn(S1,...,8,)] =E Y ds(t) s, ()| = > Ellg(t1)]...E[lg, (t)]
tiezfv:zt_:t tLEZL,S ti=t
[S1] .. —d
P e L
€L S ti=t

Then we have

Eloy] = Efmax ayn(S1,. - -, Sp)] > maxElan (51, )] = N 1sil.

If we assume that each S; satisfies the Talagrand bound, then

1f1- - fallrage < o H 1 fille < a2 (K v/Tog{log(N)) log(V))" I fll 1)

From above, we want fi,..., f, to beequal soas by =... = E, = E, we get
1
_d ? 1
5 (S0 < ooy sty - T (2 o)
zel i=1 \z€FE

Suppose f € Sy for some a < b € R. Then from above, we get

1
N~% ]E\% Sap af (K+/log(log(N)) log(N))" N~ | E|".
This is equivalent to N™¢|E| <, an(K?log(log(N))log(N))*N 24" E|>" or we get
Nd

‘E| ~a,b 1 n
an" " (K2 log(log(N)) log(N)) 21

With the approximation of a, ~ N™4¢[[, |S;| ~ "N~ D4 then the denominator is

n d(n—1) n
approximately §2n—1 N 2n—1 (K2 log(log(N))log(N))2»—T, which decreases as n increases.
Now, suppose we execute Logan’s method on the problem g = argmin, ||u||; where
u(x) = fi(x) away from S; and f, g € S, for some a,b. Let g = f + h. Then we see that

lglle = £ 1l + (IRl gey = Rl (e))-

Moreover, note that
bl =1f =gl < |f]+ ]9l =2b
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so we have h € Sp9p. From the multilinear restricition, we have
1"
1B 22y < 0B T IR 22
i=1

1
or we get ||hl|g2n(,) < an™[|h||f2(,) By Talagrand’s bound and Holder’s Inequality, we have

1
2n
n 2n—1 d 2n—1
IPllacey = D Ih(@)] < <§ ()] ) [ B2 = Naa[|hl[pan g | ]2

zelE z€EFE

2n—1 d(1 2n—1

1 d 1 —2n)
< ap” Non|E|7on || 2 < ai” N- o [E]7on (K log(log () log (N) [[2| 1

Then we have

1 g(1-2n) 2n—1 1 Nd
o8 N5 | B 5 (K log(log(N)) log(N) < & = |B] < —

’ o (4K log(log(N) log (V)77
Hence, if |E| < — N —, then we have ||A[|1(ge) — [|hllL1(m) > 0,
ay" " (4K log(log(N)) log(N)) 20 =1

contradicting the condition of minimum of g. As n increases, the bound

T N? — become larger so we can recover f more easily when we send
" T (4K? log(log(NV)) log(IV)) Zn—T
a higher channel with Logan’s method and Talagrand’s bound.

We see that indeed sending multiple signals can improve the Uncertainty Principle, so

we want to develop an algorithm for that. The first idea is to use the merge function.

Definition 3.18 (Merge(fi,..., fn)). For signals fi,..., f, : Z% — C, where the values
of f; are lost on S;, we define the signal

fi(zx) ifx €S forsomel<i<n
M . - .
erge(fi Ja)(@) {undeﬁned otherwise
Then consider the following algorithm.
Definition 3.19 (Generalization of Ly-minimization). Let g = arg min ||u|2, where u(m) =
Merge(fi,..., fn)(m) for any m & S1N...NS,.

As described above, if [S1N...NS,||E| < NTd, then we can recover g uniquely. However,
the time complexity for Merge can take exponential time.
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4. BOURGAIN’S A; PROBLEM
We state the original Bourgain A, problem.

Theorem 4.1 (Bourgain [1]). Let ¥ = (¢1,...,1,) denote a sequence of n mutually

orthogonal functions, with ||{il|pe () < 1. There exists a subset S of {1,...,n},[S| > na
such that )
3
Sav| <o (Siar)
€S €S

L9(G)

2
for all finite sequence {a;}. The estimate holds for a generic set of size [N | with proba-
bility 1 — on(1).

Let G = Z4; and consider I' = {y(z - m) : m € Z%}. Applying Bourgain’s result, if we

consider n = N?, |S| = [N%L and {a;} = {Nfgf(x)}xeg, where f is supported in S,
then almost surely

2

3" N7 fm)x(m - z)

meS

< C(g) (;d 3 |f<m>|2> — C(g) (féd 3 If(fc)\2>

meS

La(G)

= [f @)l Ly < Cla) (A;dZ\f(x)Q) .

Hence, we get the variation of Bourgain for discrete analouge.

Theorem 4.2 (Variation of Bourgain in Discrete settings). If J? is supported in S and
S| = [N'9 7, then

[ fllzau) < C@IfllL2(
where C(q) is a constant independent of N.

Lemma 4.3. Proof the theorem is correct for ¢ = 4. That is, if |S| = (N%L then

<N1d > If(x)l4> < (g (ljd > \f(:c)\2> .
Proof. We have

LHS = (;d Z(|f<z>|2)2> -

2\ 1
= (1\1[(]2 ((Ng Z x(z - m)f(m)) <N x(—z- m)f(m))) )
z meS meS

ﬁ Z ( Z x(x - (my — mg)f(ml)f(mg)) ) .

[T

ol
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By expanding out again, we have

LHS = (dez< ST x(@- (my —my)f(ma) f(me ) ( ST x(@ - (mf —mb)f(m )J?(’”Q)))
mi,ma€ES mj,mheS

r

- (lvldz S X ma = ma 4w — ) flma) Flmh) Fma) Flmb)

T my,ma,mj,mHES

)
)
)
=

(Nﬂd S Fon) fmh) Fma) Fmp) 3 x(w - (my — ma +mh — mb)

m1,ma,mim5HeS

Again, by Gauss sum,

N

. R S
LHS = N> Yo Flma)f(mh) f(ma) f(mb)
mi,ma,m},mHeS

mi+m)=ma+ml

For the right hand side, by Plancherel formula

1

RHS = (;d > rﬂm)r?) ="

meS

e,
~
=)
2
)
g
N——
|

Hence, the inequality is equivalent to

2
Yo Fm)f(m)f(me) f(mh) < C(q)” (me>f )

m1,ma,mj,mheS mes

mi+m)=ma+ml

=C(g)* > Flma)f(ma)f(ma)f(ma).

m1,ma2€ES
If we consider f: 1, then the inequality is equivalent to
[{(m1, ma, m3,my) € S*: my +ma = mg +my}| < C(q)?|S*.
Since |S| > N2, we see that the left hand side is bounded by (5 + 0(1))|S|? so taking
C(q) = /5 + o(1) will satisfy.
In other cases, we take C'(¢) = /5 + o(1 )%XJJ: and we get the results.
To see how Bourgain’s result can be applied in signal recovery, we consider the following

theorem proved by Iosevich and Mayeli [3].

Theorem 4.4 (Iosevich, Mayeli [3]). Suppose f : Zﬁl\, — C is a signal supported in E.
Suppose that {f(m)}mes are unobserved where S satisfies the Ay inequality with constant
C(q), then f can be recovered exactly if

‘E|<j
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We want to generalize the idea for multiple signals. Let fi,..., fn : Zﬁl\, — C be functions.
Note that

— (n=1)d  ~ —~

Jioo fa=N "2 (fl**fn)
s0 f1-. Jnlt) =Yy at fi@1) . fu(@n). & S1+...+ Sy, then fi... folt) = 050 if
fl...fn()%O,Wemusthaveteﬁ—i- .+ S, and we get

Spt(f fn) - Sl +...+ Sn

If we have [spt(fi fn | = (N 1 then by Bourgain’s result and Multilinear restriction
k
1
£ Fallagy < C@If1--- fallzzgy < C@llLs, * - 1, 112 [T I1£ill 2

i=1
We have |S1+ ...+ Sp| > [N %ﬁ and with high probability, by Pigeonhole Principle
~ ( [Tizy 5] > ? < Iy 1Si] ) *

\Sl+...+Sn] - [N%“

1
d n X 2
so if we choose S; with size Nan for any 7, then <HZ12dS’I) = O(1). Note that with
[N @]

N

1
g, *...x1g ||& = m?xatn(sl,...,Sn)

n = 1, it is the original Bourgain’s theorem.
Now, we want to find the expected value of [S1 + ... + S,|. Note that for any = €

7%, P(x € S;) = | Sil  Hence

E[|S1+...4+ Sl = > PlxeSi+...45).

zeZd

Foreach 1 <i < n,let u; = (wj1,...,up) € Zj{, such that u1+...4+u, = z. Consider the
whole space Z4,, this equation has NU"=1 solutions, called it Sol(x). Soifx & S1+...4+Sy,
then for any of the N4~ tuples (u1,...,u,) € Sol(x), there exists some i such that
u; € S;. Hence

Plx g Si+...4+8n) =P (ui,...,up) € Sol(z),Ji: u; € S;).

Numbering all elements in Sol(x). Let E; be the event that there is some 1 < i < n

such that uﬂ ¢ S; where (uji,...,uj,) is the jth element in Sol(x). Then the events
{E; }Nd(n are pairwise independence so P(x € S1 + ...+ S,) = IF’(El)Nd(nil) since any
E; occurs with the same probability. We also have
. Sil...|S.
P(El)zl—IP(uﬂeSiv1<z<n):1—W

so we must have

Sl S NV
R e (= ]
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2d
nd
‘Sljl\/'n‘z;snl =Na SO

Nd(n—1)
E[|S1 + ...+ Sp|] = N (1— (1—Nd(§*")> )

2d
From above, if we take each S; has size approximately N ne, then

2 2
and as N4~ Ndn—1) = NG « 1 if we take q > 3, we see that since (1—z)" ~ 1 —nx
when n|z| < 1,

(1- Nd(g‘n))Ndm_l) ~ 1 — Nen-DNAG) — g G

and we get

2_
q

E[[S) + ...+ Sal] = N1 — (1 — N%GD)) = NINTGD = N7
Hence, as [S1+4. ..+, < [S1]... || = N%d, then with high probability, |Si1+...+5,| =
1
N = |S1]...1Sn| so ||1g; *...x1g ||& = 1. We get the following result.

Theorem 4.5 (Generalization of Bourgain’s Theorem). If for any 1 < i < n, fl 18 Sup-

o —

ported in S; with |S;| = (N%ﬁ and also fi... fn is supported in S with |S| = [N%L then
with high probability

I1f1- - Fallzaqey < Cla) [T I1£ill 22
=1

where C(q) is a constant independent of N.
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