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1 Abstract

This paper will be a sort of survey of various topics related to higher ramification; first I will cover some of the
basic theory of the subject (much of which is elaboration on a treatise of Serre), and ultimately the end goal
will be a partial exposition of a theorem of Deligne, which states that the category of at-most-s-upper-ramified
extensions of a local fieldK is determined (up to equivalence) byK×/(1 +msK). In other words, even if you
only have knowledge of the field’s multiplicative structure up to (modulo) a power of the maximal ideal, you
can still recover knowledge about its extensions that are not too ‘wildly’ ramified (very roughly speaking). I
will also discuss some results from a paper of Lubin, who uses something called the Newton copolygon to
study the so-called ‘Hasse-Herbrand’ functions which help us understand higher ramification, contrasting
with the Newton polygon that Deligne uses. (Ideally, it would be good to discuss more the relationship
between the two in the final draft.)
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2 Preliminaries

2.1 Valued fields

Definition 1. A valuation on a fieldK is a map vK : K → R ∪ {∞} such that

• vK(0) = ∞

• vK |K× is a group homomorphismK× → (R,+)

• vK(x+ y) ≥ min(vK(x), vK(y)) for all x, y ∈ K (where we say min(∞, a) = a for all a ∈ R ∪ {∞})

A fieldK equipped with a valuation vK is called a valued field, and we sometimes instead say this as that (K, vK) is a
valued field.

One can define these in greater generality by having vK instead map into a totally ordered abelian group Γ,
but I will not need this. Really what I have defined above is called by some as a rank one valuation. Typically I
will drop the subscriptK when there is no ambiguity.

Here are a few easy lemmas about valuations; the last will be fundamental in our discussion later about
Newton copolygons / valuation functions:

Theorem 1. Let (K, v) be a valued field.

• v(1) = v(−1) = 0 (in particular, v(−x) = v(x)).

• If x ∈ K×, then v(x−1) = −v(x).

• If x1, . . . , xn ∈ K with v(xj) < v(xi) for all i ̸= j, then v
(

n∑
i=1

xi

)
= v(xj) (i.e. even though v

(
n∑
i=1

xi

)
≥

min
1≤i≤n

{v(xi)} in general, equality holds when the minimum is unique).

Proof: The first is because v(12) = v(1)+ v(1) and 0 = v(1) = v((−1)2) = v(−1)+ v(−1); the second is because
v(1) = v(xx−1) = v(x) + v(x−1). For the third, let’s assume j = 1 by relabelling. Write r ≜ v(x1), so that
v(xi) > r and so v(−xi) > r for all i > 1. Then if v

(
n∑
i=1

xi

)
> r as well, we have

v(x1) = v

(
n∑
i=1

xi +

n∑
i=2

(−xi)

)
≥ min

(
v

(
n∑
i=1

xi

)
, min
2≤i≤n

{v(−xi)}

)
> r

which is a contradiction.
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Definition 2. A discrete valuation is simply a valuation whose image is rZ ∪ {∞}, for some r ∈ R>0 (which, by
post-composing with a scaling, we will always assume is 1 unless otherwise stated); a fieldK equipped with a discrete
valuation v is called a discretely valued field (sometimes written as a pair (K, v)).

A concept closely related to valuations is absolute values:

Definition 3. An absolute value on a fieldK is a map |·|K : K → R≥0 such that

• |0|K = 0

• |·|K |K× is a homomorphismK× → (R>0, ·)

• |x+ y|K ≤ |x|K + |y|K (triangle inequality)

If |·|K satisfies the ultrametric inequality |x+ y|K ≤ max(|x|K , |y|K) and not just the weaker triangle inequality, we
call it non-archimedean.

There is a bijection between non-archimedean absolute values and valuations on a fieldK; simply fix some
c ∈ (0, 1) and map a valuation v to c−v. For this reason we can essentially think of them as the same thing -
topologically, it makes little difference which cwe choose, since c−v is equivalent to d−v for any c, d ∈ (0, 1)

(in the sense that they giveK the same topology) 1

Definition 4. A discrete valuation ring (abbreviated DVR) is a local PID that is not a field.

Equivalently, one can show this is equivalent to being a local Dedekind domain; then in an arbitrary DVR
R, nonzero proper ideals factor uniquely into a product of maximal ideals (this is actually one way to define
Dedekind domains), so since there is only one maximal ideal m, often written mR (which is nonzero since
DVRs are not fields) then the set of ideals equals {⟨0⟩ ,m,m2,m3, . . . } (where all are distinct by uniqueness
of the factorization). R being a PID tells us we can even write this as {⟨0⟩ , ⟨π⟩ , 〈π2

〉
,
〈
π3
〉
, . . . } for some π

generating m - this suggests the following definition:

Definition 5. A uniformizer for a DVR R is a generator π for its maximal ideal.

So we often write mR as πR, where π is implicitly a uniformizer. Note the uniformizers are exactly the
elements of m−m2, and that relative to a fixed uniformizer π any x ∈ R× can be written as uπn where u is a
unit, n ≥ 0, and both are unique relative to x.

Another few natural definitions:

Definition 6. The residue field for a DVR R with maximal ideal m is the field R/m; the residue field for the pair
(frac(R), R) is defined as the same.

If R is considered fixed andK = frac(R); we often write the residue field as k; similarly if L = frac(R), we
write the residue field as l.

1Though when K has finite residue field k, it’s preferred to take c = 1/|k|.
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There is a natural bijective correspondence between discrete valuation subrings of a fieldK whose fraction
field isK and discrete valuations onK. This is because, for a discrete valuation v onK, {x ∈ K : v(x) ≥ 0}
is a DVR subring with fraction field K (and maximal ideal {x ∈ K : v(x) ≥ 1}), and inversely such a DVR
subring with maximal ideal m gives rise to a valuation

vm(x) ≜

sup{i ≥ 0 : x ∈ mi}, x ∈ R

sup{i ≥ 0 : x−1 ∈ mi}, x /∈ R
.

Note this is well-defined since any element ofR can be written as uπn for a uniformizer π, and x ∈ K = frac(R)

has x ∈ R or x−1 ∈ R. Also note that these two processes of going from DVR to discrete valuation and vice
versa are inverses.

This correspondence gives a natural translation of definition 5: the uniformizers for a DVR associated with
a discrete valuation v are exactly the elements x with v(x) = 1, and in general the generators of mi are the
elements with valuation i (for i ≥ 0, and even for i < 0 if you define negative powers of m appropriately - but
then you need to talk about ‘fractional ideals’ and it’s not worth to make this detour now). Another comment
about uniformizers: we often say that a uniformizer for a DVR R is also one for its fraction field, and instead
of saying π is a uniformizer for R or frac(R)we sometimes instead say that π uniformizes R or frac(R).

Definition 7. Given a discretely valued field (K, v), the DVR subring associated with v is called the ring of integers of
K and denoted OK (or perhaps OK,v when the valuation needs to be made clear). The maximal ideal of OK is often
written mK .

A discrete valuation v on a fieldK gives it a natural topology under which the field operations (addition,
negation, multiplication and inversion) become continuous; such a field is called a topological field. The topology
induced by the valuation can be described by simply giving a neighborhood basis of 0 and declaring that its
additive translates are also open, as is doable for any topological group. So we declare that {x ∈ K : v(x) > n}
is open for all n ∈ Z.

There is a certain condition on the topology of a discretely valued field that proves to be very useful:

Theorem 2. A discretely valued fieldK is locally compact (w.r.t. its valuation topology) iff it is complete and its residue
field is finite.

Proof: IfK is locally compact, then it has a compact subset C containing some open neighborhood of 0; since
the mi form a neighborhood basis for 0, this means it contains some mk. But the mk are clopen inK, so mk is
also closed in C and so compact. Then π−kmk = OK (with π a uniformizer ofK) is compact. In particular,
since the cosets of m cover OK , and all are homeomorphic (and so open since m is), then they must admit a
finite cover, so that there are only finitely many cosets of m in OK (meaning k = OK/m is finite). Additionally,
given a cauchy sequence (xi)∞1 inK, (vK(xi))

∞
1 must stabilize since vK is continuous with discrete codomain,

so there is N, r ∈ Z with vK(xi) = r when i ≥ N . But then (π−rxi)
∞
1 is cauchy and eventually in OK , so it

converges to some α, meaning xi converges to πrα. SoK is complete.
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Conversely, ifK is complete andOK/m is finite, thenOK/m
i is finite too for any i ≥ 1 (since multiplication

by πi gives a isomorphism of OK/m with mi/mi+1 for all i ≥ 1, and we can multiply indexes). Then since
OK̂

∼= lim
←−

OK/m
i, it is profinite and so compact (should I explain this bahaha it’s not hard but it’s a detour I

guess - this whole theorem is already sort of a detour but i’m just writing it cuz i like the proof); butOK̂
∼= OK

by completeness, so OK is compact. And since OK contains the open neighborhood OK of 0, K is locally
compact at 0, and so at every point (since we can additively translate OK as needed).

Definition 8. Any discretely valued field satisfying the hypotheses of theorem 2 (or equivalently the conclusion) is
called a local field.

Nowadays it seems like people like to use a slightly more general definition, that a local field should instead
be a complete discretely valued field with perfect residue field; in fact, this is the definition we will use in the
Deligne section.

Complete discretely valued fields are quite nice in general, and they also allow their valuation to be
‘extended’ in a nice way to finite extensions, so it would be profitable to have a way to ‘complete’ a discretely
valued field - but in order to explore this, we need to first define some basic concepts related to ramification.

2.2 Ramification basics

If A is a Dedekind domain (remember that this means nonzero A-ideals factor uniquely as a product of prime
ideals) and L is a finite extension ofK ≜ frac(A), then the integral closureB ≜ A

L ofA in L is also a Dedekind
domain - let’s keep this setup throughout this section. Given a nonzero prime A-ideal p, we can uniquely
factorize pB as a product of nonzero prime B-ideals. If pB =

∏r
1 P

ei
i , where ei ≥ 1 for all i, then the Pi are

exactly the prime B-ideals lying above p (i.e. whose intersection with A is p). Then we can make the following
definitions:

Definition 9. Let pB =
∏r

1 P
ei
i .

• The ramification index ei is defined as the ei in the above equation.

• The residue degree fi is defined as [B/Pi : A/p]
2

If P = Pi, we also write ei as eP/p and fi as fP/p.

• If ei > 1 for some i, we say p ramifies in L.

• If ei = 1 and fi = 1, we say p splits completely in L.

• If ei = 1 and r = 1, we say p remains prime in L.
2Note this embedding makes sense since Pi = p ∩A (so that p is actually the kernel of the map A ↪→ B ↠ B/Pi)
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Theorem 3. If L/K is also galois, then ei, fi are independent of i (in this case, we usually omit the subscript and just
write e, f instead).

Proof: This is essentially because the action gal(L/K) ↷ {P1, . . . ,Pr} via element-wise images (which is a
well-defined action since any σ ∈ gal(L/K) fixes B (it preserves polynomials over A) and fixes A pointwise
and actually maps a prime ideal lying above p to a prime ideal lying above p) is transitive, since given j ̸= k

and x ∈ Pj , we have
NL

frac(A)(x) = x ·
∏

1L ̸=σ∈gal(L/K)

σ(x) ∈ A ∩ Pj = p ⊆ Pk

so that σ(x) ∈ Pk for some σ by primality of Pk.

Theorem 4.
∑r
i=1 ePi/pfPi/p = [L : K]; in particular, if L/K is galois then efr = [L : K].

Proof: I will omit the details, but the idea is to show [B/pB : A/p] = [L : K] and then use that B/pB ∼=∏r
1 (B/Pi)

ei (via the Chinese Remainder Theorem).

In the case that K, L are discretely valued, OK and OL have only one nonzero prime ideal, so mKOL

factors as me
L
K

L for some eLK , which we call the ramification index of the extension L/K. Analogously, we call
[OL/mL : OK/mK ] = [l : k] the residue degree fLK of the extension L/K. I’ll alternatively write these as eL/K ,
fL/K respectively, depending on which one looks better in a given context (lol).

Now we can get back to completing and extending discretely valued fields!

2.3 Completion

With the familiar construction using Cauchy sequences, one can topologically complete a discretely valued
fieldK (with respect to its valuation topology); further, one can check that the result K̂ has the structure of
a topological field.given by applying the operations ofK element-wise to sequences. Additionally, one can
check that this completion topology is induced by an extension of v: define v((xi)∞1 ) ≜ lim

n→∞
v(xn) (which is

well-defined because v is continuous, if we give Z ∪ {∞} the order topology); then this is a discrete valuation,
which extends v if we consider K embedded in K̂ (via x 7→ (x)∞1 ) since v̂((x)∞1 ) = lim

n→∞
v(x) = v(x) for all

constant sequences (x)∞1 .
We have a few useful facts, summarized in the following theorem:

Theorem 5.

(1) OK̂ = OK = lim
←−

OK̂/π
nOK̂ (i.e. the DVR associated with v̂ is the closure of the one associated with v)
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(2) any uniformizer forOK is also one forOK̂ (i.e. if v(x) = 1, then v̂(x) = 1) - this also means that ifmOK
= πOK ,

then mO
K̂
= πOK̂ , and that πOK̂ ∩K = πOK .

(3) ÔK/πÔK
∼= OK/πOK

Proof: (1) is because a uniformizer π for OK is also uniformizes K̂, so that the πiOK̂ form a neighborhood
basis for OK̂ at 0, as we’ve seen in general; (3) is because the composition OK ↪→ ÔK ↠ ÔK/πÔK has kernel
πOK (since for x ∈ OK we have x ∈ πÔK ⇔ v̂(x) = 1 ⇔ v(x) = 1 ⇔ x ∈ OK) and is surjective. (maybe add
more details but idk if it’s worth)

2.4 Extension

Given L/K, we say that vL extends vK iff vL|K differs from vK multiplicatively by a constant (which - assuming
as usual that our valuations have image Z ∪ {∞} - must necessarily be eLK , since if π uniformizes K then
πOL = m

eLK
L and so vL(π) = eLK).

Theorem 6. IfK is a complete discretely valued field, and L is a finite extension ofK, then:

• OL ≜ OK
L (denoting the integral closure of OK in L) is a DVR and a free OK-module of rank [L : K]

• the valuation vL that OL induces on L makes L complete

• the valuation vL is the unique one on L extending vK (talk about what this means; I may have to define the
ramification index earlier for it to be satisfying?)

Proof: I will omit it, but the main idea is to use ‘dévissage’ to break into the separable / purely inseparable
cases and combine appropriately.

We again get eL/KfL/K = [L : K] in this case (we can’t directly apply the discussion in 2.2 to get this, since
there we assumed our extension to be separable, but it turns out thatOL being a finitely generatedOK -module
is suffices anyway). We can additionally get an explicit form of the valuation on L:

Theorem 7. IfK is a complete discretely valued field, and L is a finite extension ofK, then vL(x) = vK(NL
K(x))/fL/K .

Proof: Let N ≜ spl(L/K) be the normal closure of L/K; it is a finite extension of both L andK, so vN extends
both vK and vL uniquely. Since vN ◦σ is also a valuation onN extending vK for any σ ∈ gal(N/K), it must equal
vN , and so since any conjugate of x ∈ L can be written σ(x) for some gal(N/K)we have vN (x) = vN (σ(x)).
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Then

vK

 ∏
σ∈gal(N/K)

σ(x)

 = e−1N/KvN

 ∏
σ∈gal(N/K)

σ(x)


= e−1N/K

∑
σ∈gal(N/K)

vN (σ(x))

= e−1N/K

∑
σ∈gal(N/K)

vN (x)

=
| gal(N/K)|

eN/K
vN (x)

=
| gal(N/K)|

eN/K
eN/LvL(x)

= fN/KvN (x)

= fN/KeN/LvL(x)

(actually i’m kind of confusedwhere fL/K comes from skull emoji cuz it should equal fN/KeN/L iff eN/LfN/L =

1 but this shouldn’t be able to hold if L ̸= N?)

Here is an important comment about normalization of valuations in extensions: given L/K finite withK
complete and discretely valued, the valuations vK and vL are related via vK(x) = eLKvL(x) for all x ∈ K; the
result is that vL may not actually equal vK onK, though they differ multiplicatively by a constant. Sometimes
we wish to circumvent this by considering the valuation v ≜ vL/e

L
K ; this is a singular valuation on all of L such

that v(π) = 1 when π uniformizesK. In this case we say v is the valuation of L normalized forK. In contrast,
if we take our valuation instead as just v ≜ vL, this is a singular valuation on all of L such that v(π) = 1 when
π uniformizes L; in this case we say v is the valuation of L normalized for L.

We can really just do the same thing for arbitrary subextensions E between K and L; we say v is the
valuation on L normalized for E iff v = vL/e

L
E (i.e. iff v differs from vL multiplicatively by a constant, and

v(π) = 1when π normalizes E).
One consequence of all this is that we can consider a valuation on the algebraic closure K, gotten by

essentially taking the union over all valuations of finite extensions ofK normalized forK (so in particular
this valuation onK is normalized forK).

(ngl this yappy as hell pls cut this down in the final draft lolllll)

2.5 Completion and extension: all together now!

(mainly just wanna copy paste that one theorem from Serre)
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2.6 Generators for extensions

Here I’ll go on a brief detour to showcase two very useful facts relating to how a lower ring of integers
‘downstairs’ can generate a higher one ‘upstairs’ (which will be used a lot later):

Theorem 8. If L/K is a finite extension of discretely valued fields, with separable residue field extension, then OL =

OK [α] for some α ∈ OL.

Proof: (it’s an instructive proof so I should write out the details later, also cuz i wanna try and fill in the
nakayama part lol)

It is sometimes useful to be able to guarantee α is a uniformizer (this will provide a nice alternative
characterization of the higher ramification groups in 3.2); we can get this with slightly different hypotheses
(remember that an Eisenstein polynomial overK is one where all coefficients but the leading one lie in mK and
the constant coefficient does not lie in m2

K):

Theorem 9. If L/K is a finite totally ramified extension of discretely valued fields, then OL = OK [π] for some
uniformizer π ∈ OL (which also has an Eisenstein irreducible polynomial overK).

Proof: (it’s a bit long but i guess i should at least sketch it later though)

This theorem can actually sort of be phrased as an if and only if, though I don’t think we will need it (but
it’s still fun so I’ll write it):

Theorem 10. LetK be a discretely valued field, with v the valuation onK normalized forK; if no roots of f(T ) ∈ OK [T ]

have valuation 0, then f(T ) is an Eisenstein polynomial iff it is irreducible and the extension generated by any one of its
roots is totally ramified, having said root as a uniformizer.

Proof: (⇐) was done in theorem 9, so I’ll do (⇒): Let f(T ) be Eisenstein with roots α1, . . . , αn and consider
the valuation v on the splitting field of f(T ) over K, normalized for K. We have that

n∏
i=1

αi is the constant
coefficient of f(T ) up to sign, and so

1 = v

(
n∏
i=1

αi

)
=

n∑
i=1

v(αi).

Since v(αi) > 0 for all i (they have valuation at least 0 since they are integral over OK , and they don’t have
valuation 0 by hypothesis), then

v(αi) ≥
1

e
K(αi)
K

≥ 1

n
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for all i. For both the previous lines to hold, we must have v(αi) = 1/n for all i, so that n = e
K(αi)
K , implying

(1) that n = e
K(αi)
K ≤ [K(αi) : K] ≤ n i.e. [K(αi) : K] = deg(f) and so f = irr(αi,K) and (2) that K(αi)/K

is totally ramified, with αi uniformizing (since it has valuation 1/e
K(αi)
K ).

3 Higher Ramification Groups

Throughout this section, I will assume we have a finite galois extension L/K of discretely valued fields with
separable residue field extension l/k, where L has valuation vL extending the valuation vK ofK. Remember
that for x ∈ K, we have vL(x) = vK(x)/eLK . Additionally, using the previous section, write OL = OK [α].
Assume from here that this generator α is fixed.

Definition 10.

• The inertia group G0(L/K) of L/K (written G0 if the extension is clear) is the subgroup

{σ ∈ gal(L/K) : (∀x ∈ OL)[σ(x) ≡ x mod mL]}

of gal(L/K); it is sometimes denoted IL/K .

• The inertia field of L/K is LG0 , the fixed field ofG0 under the Galois correspondence; it is sometimes denoted LI .

LI is the maximal unramified subextension L ofK, meaning ifK ≤ E ≤ L then mK does not ramify in E iff
E ⊆ LG0 .

Definition 11. The i-th ramification group of L/K (for i ≥ 0) is defined as

Gi(L/K) ≜ {σ ∈ gal(L/K) : (∀x ∈ OL)[σ(x) ≡ x mod mi+1
L ]}.

We also define G−1(L/K) ≜ gal(L/K), and as before we simply write Gi if the extension is clear.

Note that the 0-th ramification group of L/K is the same as its inertia group. The ramification groups can
also be thought about in a slightly different way:

Definition 12. Given σ ∈ gal(L/K), let iKL (σ) ≜ vL(σ(α)− α).

The upshot is that it’s enough to consider just σ(x)− x for x = α, instead of for all x ∈ OL. The fact that
iKL determines our ramification groups and does not depend on our choice of generator α for OL over OK is
shown by the following theorem:
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Theorem 11. Gi(L/K) = {σ ∈ gal(L/K) : iKL (σ) ≥ i+ 1}; in other words,

iLK(σ) ≥ i+ 1 ⇔ (∀x ∈ OL)[vL(σ(x)− x) ≥ i+ 1].

Proof: For any r ∈ N and a0, . . . , ar ∈ OK we have

vL

(
σ

(
r∑
0

aiα
i

)
−

r∑
0

aiα
i

)
= vL

(
r∑
1

ai(σ(α)
i − αi)

)

= vL

 r∑
i=1

ai(σ(α)− α)

i−1∑
j=0

σ(α)jαr−1−j


= vL(σ(α)− α) + vL

 r∑
i=1

ai

i−1∑
j=0

σ(α)jαr−1−j


≥ vL(σ(α)− α).

The last step is because∑r
i=1 ai

(∑i−1
j=0 σ(α)

jαr−1−j
)
∈ OL.

Here is another essential property of the ramification groups:

Theorem 12. Gi ⊴ gal(L/K) for all i, and there is some N such that Gi is trivial for all i ≥ N ; in summary; the Gi
form a normal series for gal(L/K).

Proof: Normality is because if σ ∈ gal(L/K) and τ ∈ Gi, then we have vL(τ(σ−1(α)) − σ−1(α)) ≥ i + 1, i.e.
τ(σ−1(α)) − σ−1(α) ∈ mi+1

L ; but since σ(mL) = mL (since it must map maximal ideals to maximal ideals),
then σ(mi+1

L ) = mi+1
L , so that

τ(σ−1(α))− σ−1(α) ∈ mi+1
L =⇒ σ(τ(σ−1(α)))− α ∈ mi+1

L

and so σ ◦ τ ◦ σ−1 ∈ Gi.
The Gi stabilize because gal(L/K) is finite by hypothesis, so we can take N with N ≥ iLK(σ) for all

σ ∈ gal(L/K)− {1L} (since for all nontrivial σ, iLK(σ) is finite); then for each such σ we have σ /∈ GN since
iLK(σ) ≤ N < N + 1.

Let’s now turn our attention towards studying how the ramification groups behave in towers; i.e. let’s
introduce an intermediate field E withK ≤ E ≤ L and try to describe how the ramification groups of L/E
and possiblyE/K (ifE is galois overK) interact with the ones for L/K. For L/E, the situation is quite simple:
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Theorem 13. Gi(L/E) = Gi(L/K) ∩ gal(L/E) for all i ≥ −1.

Proof: Since our generator α for OL as an OK-algebra is also a generator for it as a OE-algebra, then we have
that, for any σ ∈ gal(L/E), iLE(σ) = vL(σ(α)− α) = iLK(σ). In other words, iLE = iLK |gal(L/E), and so

σ ∈ Gi(L/E) ⇔ σ ∈ gal(L/E) ∧ iLE(σ) ≥ i+ 1

⇔ σ ∈ gal(L/E) ∧ iLK(σ) ≥ i+ 1

⇔ σ ∈ gal(L/E) ∩Gi(L/K).

In particular, if E = LG0
(the inertia field of L/K from definition 10), then gal(L/E) = gal(L/LG0

) =

G0(L/K) by definition, so that the above theorem tells us Gi(L/LG0
) = Gi(L/K) ∩ G0(L/K) = Gi(L/K)

when i ≥ 0. In words, the ramification groups for L/K and L/LG0
are the exact same (excluding the −1-th

ramification group, which is just the whole galois group anyway).
For E/K, the situation is not so nice; we know that G−1(E/K) = gal(E/K) ∼= gal(L/K)/ gal(L/E) from

basic Galois theory, but the other ramification groups (i.e. Gi(E/K)with i ≥ 0) don’t have so nice a description
- the best we can do is the following:

Theorem 14. Identify gal(E/K) with gal(L/K)/ gal(L/E) implicitly in the natural way; then

iEK(σ gal(E/K)) =
∑

τ∈gal(L/K):τσ−1∈gal(E/K)

iLK(τ)

Proof: (it’s not very fun :( but maybe i should sketch it)

There is a better way to express the relationship between the ramification groups of L/K and E/K, but it
requires us to ‘raise’ our perspective, so to speak.

3.1 Hasse-Herbrand transition function

Let’s keep the same notation and conventions we’ve been using, and make a couple ‘out-of-pocket’ definitions:
Definition 13. For t ≥ −1, let Gt(L/K) ≜ G⌈t⌉(L/K) (so that σ ∈ Gt(L/K) ⇔ vL(σ(α)− α) ≥ t+ 1 holds in
this case too).

Definition 14. The Hasse-Herbrand transition function of L/K is φLK : R≥−1 → R≥−1 given by

φLK(t) ≜
∫ t

0

|Gt(L/K)|
| gal(L/K)|

dt.

12



The integral may seem a bit strange - I only write it because everyone else insists on doing so in the literature
- but it’s really just an overly cutesy way to define a piecewise linear function whose pieces are the integer
intervals [i, i+ 1] for i ≥ −1, and whose slope on [i, i+ 1] is simply the size of Gi+1(L/K) normalized by the
size of the whole galois group. It’s literally nothing deeper than that. If we want, we can write out a very
explicit formula:

φ(t) = |G0|−1
 ⌊t⌋∑
i=1

|Gi|+ (t− ⌊t⌋)|G⌈t⌉|

 .

In particular, this formula makes it clear that if φ(t) ∈ Z, then t ∈ Z (because every |Gj | divides every |Gi| for
i ≤ j).

Note that (φLK)′ = 1 on (−1, 0), and if Gi(L/K) is trivial for i ≥ N then (φLK)′ = |gal(L/K)|−1 on (N,∞).
Also note that φ is a homeomorphism [−1,∞) → [−1,∞), so that it has a well-defined inverse ψ, which we
will use to ‘shift’ our indexing for the ramification groups.

Definition 15. Given s ∈ [−1,∞), let Gs ≜ Gψ(s). The Gs are said to be the ramification groups of L/K in the upper
numbering.

Equivalently, we have Gt = Gφ(t) for t ∈ [−1,∞). Symmetrically, the Gt are said to be in the lower
numbering.

Theorem 15. IfK ≤ E ≤ L with E/K galois, then Gs(E/K) = Gs(L/K) gal(L/E)/ gal(L/E).

Proof: (i have notes but it’s a bit long so maybe i’ll summarize it?)

Serre sets up his notation so that he can write this statement very cutely as (G/H)s = GsH/H , but I write
it as I did above for transparency’s sake.

3.2 Factors of the ramification series

Keep the same conventions as before, but let m denote mL throughout this section (because I write it way too
many times in the proofs to justify putting the subscripts everywhere lol).

Since we’ve seen that the Gi(L/K) form a normal series for the whole galois group, one natural question
is what the factor groups of this series look like, since this should give us information about the Gi.

The first step is to reframe some things we’ve done previously in terms of multiplication. Namely, we said
σ ∈ Gi(L/K) ⇔ σ(α) ≡ α mod mi+1 for a generator α of OL over OK ; if we instead look at L/LG0

, which we
know is totally ramified, then we can take a uniformizing generator π of OL over OLG0

by theorem 9. In this
case we still have σ ∈ Gi(L/K) ⇔ σ(π) ≡ π mod mi+1, and - using the fact that π has valuation 1(!) - this
latter condition is equivalent to

σ(π)

π
≡ 1 mod mi.

13



In other words, fixing the valuation of our generator has allowed us to control how much valuation we ‘lose’
when multiplying / dividing by it, which is what permits us to reframe things multiplicatively here.

We saw previously in theorem 13 that Gi(L/K) = Gi(L/LG0
) for i ≥ 0, so restricting to the extension

L/LG0
makes no difference (G−1(L/K) was always just the whole galois group anyway, so we are not losing

generality here).
So we should be all set to introduce the unit groups now!

Definition 16. Let U (0)
L ≜ O×L and U (i)

L ≜ 1 +miL for i ≥ 1.

These U (i)
L form a descending neighborhood basis for 1 (i.e. U (0)

L ≥ U
(1)
L ≥ U

(2)
L ≥ . . . ), and are all

complete, so O×L ∼= lim
←−

O×L /U
(i)
L (?? lol i need to remember what source has this thm), and they have quite a

nice structure, as the following two theorems show: (note: i should actually proofread the proofs cuz i just
kinda typed them out stream of consciousness style but i don’t have time rn)

Theorem 16. O×L /U
(1)
L

∼= ℓ×.

Proof: We can just define a map explicitly, via x(1 +m) 7→ x+m; this is well-defined because x ∈ O×L implies
x /∈ m, so that x+m ̸= 0+m (and so actually lies in ℓ×), and it’s clear this is a surjective homomorphism. For
injectivity, note that x+m = y +m ⇔ xy−1 ∈ 1 +m ⇔ x(1 +m) = y(1 +m).

Theorem 17. U (i)
L /U

(i+1)
L

∼= (ℓ,+) for i ≥ 1.

Proof: First we define a map U
(i)
L /U

(i+1)
L → mi/mi+1, via x(1 + mi+1) 7→ (x − 1) + mi+1 - note that this

is a homomorphism because for x, y ∈ 1 + mi we have (xy − 1) + mi+1 = (x − 1 + y − 1) + mi+1) (as
xy − x− y + 1 = (x− 1)(y − 1) ∈ mi+1, since x− 1, y − 1 ∈ mi), and is injective since y ∈ 1 +mi implies y is a
unit in OL, so that

(x− 1) +mi+1 = (y − 1) +mi+1 =⇒ x− y ∈ mi+1

=⇒ x

y
− 1 ∈ mi+1

=⇒ xy−1 ∈ 1 +mi+1

=⇒ x(1 +mi+1) = y(1 +mi+1).

And surjectivity is clear.
Now let’s show that mi/mi+1 is an ℓ-vector space, since the homomorphism Θ : OL → aut(mi/mi+1) given

byΘ(a)(x+mi+1) ≜ ax+mi+1 is constant on every coset ofm (as a ∈ m =⇒ ax ∈ mi+1 =⇒ ax+mi+1 = 0),
so it induces an action OL/m → aut(mi/mi+1).

14



Additionally, since 1 + mi+1 generates mi/mi+1 (as x + mi+1 = (x + m)(1 + mi+1)), then mi/mi+1 is
a 1-dimensional vector space over ℓ, and so is isomorphic to (ℓ,+) as a group. So in summary we have
U

(i)
L /U

(i+1)
L

∼= mi/mi+1 ∼= (ℓ,+).

The upshot of understanding the structure of the U (i)
L /U

(i+1)
L is that we can embed the factors Gi/Gi+1

in them (via the map σ 7→ σ(π)/π : Gi(L/K) → 1 + mi - note this is well-defined since σ ∈ Gi(L/K) =⇒
σ(π) ≡ π mod mi+1 =⇒ σ(π)/π ≡ 1 mod mi+1), and so we get information about them from the above two
theorems.

For example, if char(ℓ) = 0, then finite subgroups of (ℓ,+) are trivial, and so Gi/Gi+1 is trivial for i ≥ 1 -
but since GN is also trivial for large N , by multiplying orders / indexes we get that Gi is trivial for i ≥ 1. Note
this implies that G0 is cyclic, since G1 being trivial means G0

∼= G0/G1 embeds into O×L /U
(1)
L

∼= ℓ×.
And if char(ℓ) = p, then subgroups of (ℓ,+) are vector spaces over Fp, and so Gi/Gi+1 ≤ (Fpk ,+) ∼= Zkp

meaning it is elementary abelian. Since GN is trivial for large N , again by multiplying orders / indexes we get
that the Gi themselves are all p-groups (for i ≥ 1).

4 Deligne stuff

First we need a few preliminary things, which may seem a bit random but will come into play later. The
very first is that throughout this section, a local field will mean a complete discretely valued field with perfect
residue field (not necessarily finite). The second is the following:

Definition 17. Given an R-moduleM , letM⊗n for n > 0 denote the tensor product
n⊗
i=1

M ; letM⊗0 denote R; let

M⊗n for n < 0 denote hom(M⊗n, R).

The direct sum ⊕
n∈Z

M⊗n has a natural R-algebra structure given by tensoring / function application. To
convey the basic idea, for elements that have only one pure tensor in one component, we have, for r, s > 0:

(x1 ⊗ · · · ⊗ xr)(xr+1 ⊗ · · · ⊗ xr+s) ≜ x1 ⊗ · · · ⊗ xr+s

and if φ ∈ hom(M⊗r, R), and s < r, then

φ · (x1 ⊗ · · · ⊗ xs) ≜ φ(x1, . . . , xs,−, . . . ,−)

and if r < s then
φ · (x1 ⊗ · · · ⊗ xs) ≜ φ(x1, . . . , xr)(xr+1 ⊗ · · · ⊗ xr+s)

and so on. I’ve only sketched the actual algebraic structure, but a better (more complete) picture can be gotten
by the fact that, ifM is free of rank 1 overR (which it always will be throughout this section), then ⊗

n∈Z
M⊗n is
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isomorphic to R[T, T−1] via fixing a generator ofM over R and mapping it to T (in fact, I suppose you could
define it this way).

Definition 18. A truncated valuation ring is a local principal ideal ring R whose maximal ideal m is nilpotent. The
smallest s such that ms = 0 is the length of R and denoted lg(R).

Note that because the generator of the maximal ideal is nilpotent, any truncated valuation ring is necessarily
not an integral domain and so not a PID, even though all ideals are generated by one element.

It can be shown that an equivalent definition of a truncated valuation ring is a quotient of a complete DVR
R by a power ms of its maximal ideal (where lg(R/ms) will equal s necessarily). Then truncated valuation
rings inherit a ‘truncated valuation’ from the ring of which they are a quotient; the truncated valuation of
R/ms takes values in [0, s− 1], and is truncated in the sense that if for x ∈ R we have vm(x) ∈ [0, s− 1], then
the truncated valuation at x equals vm(x), and if vm(x) ≥ s then the truncated valuation at x is∞.

Definition 19. We will reserve the term “triple” for a tuple (R,M, ε) where R is a truncated valuation ring,M is a
free R-module of rank 1, and ε : R→ mR is a surjective homomorphism.

If K is a local field, for every s ∈ Z+ we can associate with it the triple trs(K) ≜ (OK/m
s
K ,mK/m

s+1
K , ε :

mK/m
s+1
K → mK/m

s
K) (where ε is the natural map x+ms+1

K 7→ x+msK)

Using the fact that any truncated valuation ring is a quotient of a complete DVR R by a power ms of its
maximal ideal, it can be shown that every triple can be realized as trs(K) for some s ∈ Z+ and some local
fieldK.

Definition 20. Given a triple (R,M, ε), if r < s then εr,s is the map M⊗s → M⊗r determined by εr,s(α⊗s) ≜

ε(α)s−rα⊗r, where α is a generator ofM over R (so that α⊗s is one ofM⊗s over R).

Note this map is independent of the generator we choose, since if β = uα (so that β⊗s = usα⊗s) then
ε(β)s−rβ⊗r = usε(α)s−rα⊗r.

Definition 21. Let T be the category of triples, with morphisms (R,M, ε) → (R′,M ′, ε′) as tuples (φ : R→ R′, η :

M →M ′
⊗k
, k) (where k ≥ 1, φ and η are ring /R-module homomorphisms (withM ′ and soM ′⊗e given theR-module

structure induced by φ via ‘restriction of scalars’), and η maps a generator ofM to one ofM ′⊗e) so that the following
diagram commutes:

M M ′
⊗e

R R′

η

ε ε0,e

φ

Composition of morphisms is given (φ′, η′, e′) ◦ (φ, η, e) ≜ (φ′ ◦ φ, η′⊗e ◦ η, e′e).

η induces an isomorphism η : M ⊗R R′ ↪↠ M ′
⊗e because ummm reasons (I think it’s supposed to map

m⊗R r′ 7→ r′η(m), but I’m not sure why this is injective).
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Given a finite extension L/K of local fields, with ramification index e, then for any s ∈ Z+ the inclusion
ι : K ↪→ L induces a morphism ι̃ ≜ (e, φ, η) between the triples trs(K) and tres(L), where φ is the expected
map OK/m

s
K → OL/m

es
L (note the inclusion OK → OL maps exactly msK to exactly mesL , since vL = evK), and

η is induced by the natural map mK/m
s+1
K → mL/m

e(s+1)
L and the isomorphism mL/m

e(s+1)
L

∼= (mL/m
es+1
L )⊗e

(maybe explain this more?)

Definition 22. We say a morphism (e, φ, η) between two triples (R,M, ε) and (R′,M ′, ε′) is:

• flat iff lg(R′) = e lg(R)

• finite iff R′ is a finitely generated R-module

• unramified iff it is flat + finite and e = 1

• totally ramified iff R/mR ∼= R′/mR′

We might also say that (R′,M ′, ε′) over (R,M, ε) is the same, if the morphism is understood.

At this point you really might snap and be like erm what the sigma is all this about; the upshot is that
these triples will encode certain information about the extensions of a local field, that will be useful towards
proving the main theorem. Specifically, Deligne defines the following categories:

Definition 23.

• If K is a local field, E(K) is the category whose objects are finite separable extensions L of K, with morphisms
L→ L′ asK-homomorphisms L→ L′.

• If S ≜ (R,M, ε) is a triple, E(S) is the category whose objects are pairs (S1, f), where S′ is another triple and
f : S → S′ is a morphism, and whose morphisms (S1, f) → (S2, f

′) are morphisms g : S1 → S2 with f ′ = g ◦ f .

He then constructs, given a local fieldK, a functor T0 from E(K) to E(trs(K)), for each s ∈ Z+, mapping L
to treLKs(L) and mapping ι : L ↪→ L′ to the morphism treLKs(L) → treL′

K s(L
′) described in the remarks after

definition 21. Note that this morphism is both finite (since OL is a finitely generated OK -module) and flat (by
definition, since lg(OK/m

s
K) = s and lg(OL/m

es
L ) = es).

Theorem 18. T0 is full and essentially surjective on objects.

Proof: Here is a sketch: given a object ((R′,M ′, ε′), (e, φ, η)) ∈ E(trs(K)), it must be finite and flat over trs(K);
we can also assume it is totally ramified (?). We have the following diagram:

mK/m
s+1
K M ′

⊗e

OK/m
s
K R′

η

ε ε′0,e

φ
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If β is a generator ofM ′, then R′ is a free OK/m
s
K -module with basis 1, ε′(β), . . . , ε′(β)r−1; then using our

induced isomorphism η : OK/m
s
K ⊗R R′ ↪↠ M ′

⊗e, we have a unique system of elements −a0, . . . ,−ar−1 ∈

OK/m
s
K so that x⊗ = η

(
r−1∑
0

−ai ⊗R ε′(β)i
)
i.e. so that

x⊗ + η

(
r−1∑
0

ai ⊗R ε′(β)i
)

= 0

Then R′ can be reconstructed from the ai, since R′ ∼= (OK/m
s
K)[T ]/

〈
T r +

∑r−1
0 ε(ai)T

i
〉
,M ′ and ε′ can be

reconstructed similarly by taking any free R′-module of rank 1 and mapping its generator to T , φ can be recon-
structed as the canonical map OK/m

s
K → (OK/m

s
K)[T ]/

〈
T r +

∑r−1
0 ε(ai)T

i
〉
, and η can be reconstructed

as well. Then ((R′,M ′, ε′), (e, φ, η)) is isomorphic to (tres(L), ι̃), where L is gotten by adjoining a root of the
Eisenstein polynomial T r +∑r−1

0 ãiT
i toK, where the ãi reduce to the ai modulo ms+1

K .

It is a general fact that a functor is an equivalence between two categories iff it is full, faithful, and essentially
surjective on objects (I remember doing this exercise in Leinster . . . ); so in order for Ts to be an equivalence
of categories, we would also need it to be faithful. It is not, however, so we want to mod out the morphisms
appropriately to make it so. Hence the following:

Definition 24. Let’s say two morphisms (e1, φ1, η1), (e2, φ2, η2) : (R,M, ε) → (R′,M ′, ε) are equivalent modulo
R(f) iff e1 = e2 (call it e), φ1 andφ2 induce the same map on the residue fields ofR,R′, and vR′(ε′0,e(η1(x)−η2(x))) ≥
e(f + 1).

Then we have the following:

Theorem 19. Given Ts andL,L′ ∈ E(K), with spl(L/K) being at-most-s-upper-ramified, then Ts induces a bijection be-
tween E(K)(L,L′) and R(ψL/K(s))-equivalence classes of morphisms Ts(L) → Ts(L

′) (i.e. treLKs(L) → treL′
K s(L

′)).

Proof: —

And a corollary:

Theorem 20. If E(K)s is the category of at-most-s-upper-ramified extensions ofK, and E(trs(K))s is the category of
triples over trs(K) satisfying a certain condition (which I’ll fill in later) and morphisms as defined by R(ψ∗∗(s)), then
Ts induces an equivalence between these two.

Proof: —
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(sorry, i need to fill in some details in the statement, cuz i need to make more definitions first skull emoji)
The above theorem is essentially the main result from Deligne, which - roughly speaking - says that the

category of at-most-s-upper-ramified extensions of a fieldK is determined (up to equivalence) byK×/(1+me).
If we define trs(K)× as the invertible elements of ⊕

n∈Z
M⊗n (whereM = mK/m

s+1
K ), then a generator α forM

over OK/m
s
K gives an isomorphism trs(K)× ↪↠ Z × (OK/m

s
K)× (as an element of ⊕

n∈Z
M⊗n is a unit iff it is of

the form rα⊗n for some n and some r ∈ (OK/m
s
K)×). At the same time, Z× (OK/m

s
K)× ↪↠ K×/(1 +msK) via

the map (n, r) 7→ rπn(1 +msK). And trs(K) should be recoverable from trs(K)×? (need to think about this
more)

5 Newton copolygons

(Ideally I want to tie this section back to the Deligne section, but for now here’s just the reference stuff I’ve
typed up about the Lubin paper in the bibliography).

LetK be a local field with valuation v.
Now, since the Hasse-Herbrand transition function allows us to translate between the lower and upper

numberings on our ramification groups, it would be useful to have a nice way to calculate it. The Newton
copolygon (or the valuation function, which is essentially the same thing) gives us a nice way to do this in
certain cases:

Definition 25. For f(T ) ∈ OK [T ] (with f(T ) =
∑n
i=0 ciT

i), the valuation function or Newton copolygon of f
is Ψv,f : R≥0 → R≥0 given by Ψv,f (t) ≜ min

0≤i≤n
{it+ v(ci)}.

The basic intuition behind this definition (which is where the name ‘valuation function’ probably stems
from) is that v(f(x)) ≥ min

0≤i≤n
{v(cixi)} = min

0≤i≤n
{iv(x) + v(ci)}, with - by theorem 1 - equality when the

iv(x) + v(ci) have a unique minimum, which happens for all but finitely many values of v(x) (one way to
see this is that the iv(x) + v(ci) are linear functions in v(x), each with different slopes). When there is such a
unique minimum, this means that v(f(x)) depends entirely on v(x), andΨv,f (v(x)) = v(f(x)) at all but finitely
many points t1, . . . , tk. Then Ψv,f is linear on each interval [ti, ti+1] for 1 ≤ i ≤ k − 1, as well as on [0, t1] and
[tk,∞).

It turns out that, for certain extensions, the Hasse-Herbrand function is the Newton copolygon of a
particular polynomial:

Theorem 21. IfK0 ≤ K ≤ L are local fields, with L/K galois and L/K0 finite, v the valuation on L normalized for
K0, π a uniformizer for L and f(T ) ≜ irr(π, LG0(L/K))(T + π), then

φLK(t− 1) + 1 = eKK0
Ψv,f

(
t

eLK0

)

19



for t ≥ 0.

Proof: I’ll prove it assumingK0 = K. In this case, we have

v(f(T + π)) = v

 ∏
σ∈gal(L/K)

(T − (σ(π)− π))


=

∑
σ∈gal(L/K)

v(T − (σ(π)− π))

≥
∑

σ∈gal(L/K)

min(v(T ), v(σ(π)− π))

=
∑

σ∈gal(L/K)

min

(
v(T ),

iLK(σ)

eLK

)
with equality whenever v(T ) does not equal v(σ(π)− π) for any σ ∈ gal(L/K). Since this only happens

for finitely many values of v(T ), it suffices to prove the theorem when we have equality (at which point the
full theorem will follow by continuity). Then the above calculation implies that, as a function of v(T ), Ψv,f
has derivative equal to the number of σ with iLK(σ)/eLK greater than v(T ), which equals |GeKL v(T )(L/K)|. So
Ψ′v,f (t) = |GeLKt(L/K)| at all but finitely many points. At the same time, (φLK)′(t) = |Gt+1(L/K)|/|G0(L/K)|
at all but finitely many points, as we’ve seen previously. Then(

Ψv,f

(
t

eLK

))′
=

1

eLK
Ψ′v,f

(
t

eLK

)
=

|Gt(L/K)|
|G0(L/K)||

= (φLK)′(t− 1)

at all but finitely many points, and since the functions are continuous they must differ by a constant. Since
Ψv,f (0) = 0 (because f is monic) and φLK(0− 1) = −1, then the result follows.

The existence ofK0 in the above theorem is literally just to scale things if we feel like it (maybe, for example,
if it might be easier to calculate the ramification indexes ofK and L overK0 than of L overK?).

Definition 26. The altitude of a finite separable totally ramified extension L/K is the vale of φLK at its rightmost
‘vertex’ (discontinuity) - in other words, if t is the infimum over the ones so thatGt(L/K) is trivial, then altLK ≜ φLK(t).

The altitude of a finite separable extension L/K is the altitude of L/LG0
, and Ls (s > 0) is the compositum of all

subfields of L/K with altitude < s (which also has altitude < s by the theorem below).

Note that the altitude is essentially the infimum over the s such that L/K is at-most-s-upper-ramified.
Lubin proves a couple useful facts about altitude:

Theorem 22. Let L, E be finite separable overK.

• altLEK ≤ max(altLK , alt
E
K).
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• altLK = alt
spl(L/K)
K .

• Es = Ls ∩ E for all s > 0.
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