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1 Introduction

The Bourgain constant comes from a result from Bourgain’s celebrated 1989 paper [1]
stated as follows

Theorem 1.1. Let G be a locally compact abelian group. Let Ψ = (ψ1, . . . ,ψn)

denote a sequence of n mutually orthogonal functions, with ∥ψi∥L∞(G) ≤ 1. There

exists a subset S of {1,2, . . . ,n}, |S|> n
2
q such that∥∥∥∥∥∑i∈S

aiψi

∥∥∥∥∥
Lq(G)

≤C(q)

(
∑
i∈S

|ai|2
) 1

2

where the constant C(q) depends only on q and the estimate above holds for a
generic set of size ⌈n

2
q ⌉, where ⌈x⌉ denotes the smallest integer greater than x

This constant is very important to the signal recovery problem, and has wide-
ranging applications throughout computer science, data science, mathematics, and
engineering. However, the value of this constant is currently unknown. In this paper,
we perform numerical experiments to determine a rough estimate of the Bourgain
constant. We will also implement various signal recovery methods and compare their
efficacy to their theoretical connections to the Bourgain constant.

2 Preliminaries

Let f : Zd
N → C be a given signal (function) where ZN := Z/NZ. The Fourier

transform of f is given as a function f̂ : Zd
N → C such that

f̂ (m) = N− d
2 ∑

x∈Zd
N

χ(−x ·m) f (x)
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where χ(t) = e
2πit

N , t ∈ ZN and m ∈ Zd
N . The inverse Fourier transform is given as

f (x) = N− d
2 ∑

m∈Zd
N

χ(x ·m) f̂ (m)

With this normalization of the Fourier transform, the Plancherel identity is given
by

∑
x∈Zd

N

| f (x)|2 = ∑
m∈Zd

N

| f̂ (m)|2

The classical Fourier uncertainty principle relates the support of an arbitrary
function with the support of its Fourier transform. It states that for a given nonzero
f : Zd

N → C,
|supp( f )| · |supp( f̂ )| ≥ Nd

where |supp( f )| is defined to be the number of nonzero entries in f .
Suppose some of the Fourier coefficients of f are not known. We wish to find

conditions under which the original signal can be exactly recovered. More precisely,
for an arbitrary subset S ⊂ Zd

N , we want to reconstruct f when only the values
{ f̂ (m)}m/∈S are known. This problem was extensively studied in a seminal paper by
Donoho and Stark [2], where they proved the following result.

Theorem 2.1. Let f : ZN → C be a finite signal in ZN with length N and Nt nonzero
entries. Suppose that the set of unobserved frequencies { f̂ (m)}m∈ZN is of size Nw.
Then the signal f can be recovered uniquely from the observed frequencies if

Nt ·Nw <
N
2

(2.1)

For a signal to be successfully recovered, it must have some degree of sparsity,
and a limited number of frequencies can be absent. Under these conditions, the
signal that is recovered is also guaranteed to be unique. To show this, let f : ZN →C
with f ̸= 0, let E = supp( f ), and let S ⊂ ZN be the set of frequencies on which
{ f (m)}m∈S is unknown. Suppose that the recovery is not unique. Then, there exists
a signal g such that ĝ(m) = f̂ (m) for m /∈ S, |supp(g)| = |supp( f )|, and f ̸= g.
Let h = f −g ̸= 0. By the triangle inequality, |supp(h)| ≤ |supp( f )|+ |supp(g)|=
2|supp( f )|. At the same time, ĥ(m) = 0 for m /∈ S, so supp(ĥ)⊂ S. By the uncertainty
principle, |supp(h)| · |supp(ĥ)|= 2|supp( f )| · |S| ≥N. This forms a contradiction with
assumption (2.1). Thus, the recovered signal is unique.

There have been a number of results that improve on the recovery condition (2.1).
The ones that we will discuss in this paper build upon a celebrated result by Jean
Bourgain [1] as follows.
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Theorem 2.2. Let G be a locally compact abelian group. Let Ψ = (ψ1, . . . ,ψn)

denote a sequence of n mutually orthogonal functions, with ∥ψi∥L∞(G) ≤ 1. There

exists a subset S of {1,2, . . . ,n}, |S|> n
2
q such that∥∥∥∥∥∑i∈S

aiψi

∥∥∥∥∥
Lq(G)

≤C(q)

(
∑
i∈S

|ai|2
) 1

2

where the constant C(q) depends only on q and the estimate above holds for a
generic set of size ⌈n

2
q ⌉, where ⌈x⌉ denotes the smallest integer greater than x

We will refer to this constant C(q) as the Bourgain constant, and it is the main
focus of our studies in this paper.

Taking ax = f̂ (x) and Ψ = {χ(x ·m) : m ∈ Zd
N}, multiplying both sides by N− d

2 ,
and applying Plancharel’s identity to the right hand side leads to the following
notable consequence.

Corollary 2.3. Given f : Zd
N → C, let

f̂ (m) = N− d
2 ∑

x∈Zd
N

χ(−x ·m) f (x), x ·m = x1m1 + · · ·+ xdmd

where χ(t) = e
2πit

N . Then for a generic subset Σ of Zd
N of size ⌈N

2d
q ⌉, q > 2, if f̂ is

supported in Σ, we have

∥ f∥Lq(µ) ≤C(q)∥ f∥L2(µ) (2.2)

where C(q) depends only on q, and here, and throughout,

∥ f∥Lp(µ) =

 1
Nd ∑

x∈Zd
N

| f (x)|p
 1

p

Iosevich and Mayeli [3] used this result and the Donoho-Stark argument to prove
the following result.

Theorem 2.4. Let f :Zd
N →C supported in E ⊂Zd

N . Let r be a frequency bandlimited
signal given by

r̂(m) =

 f̂ (m), for m /∈ S

0, otherwise

where S is a subset of Zd
N of size ⌈N

2d
q ⌉, for some q > 2, randomly chosen with

uniform probability. Then there exists a constant C(q) that depends only on q such
that with probability 1−o(1), if

|E|< Nd

2(C(q))
1

1
2−

1
q

(2.3)
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then f can be reconstructed from r uniquely.

Proof. Let f be a signal supported in E and f̂ supported in Σ of size ⌈N
2d
q ⌉. We see

that the left hand side of (2.2) can be rewritten as

N− d
q |E|

1
q

 1
|E| ∑

x∈Zd
N

| f (x)|q
 1

q

while the right hand side can be rewritten as

C(q)N− d
2 |E|

1
2

 1
|E| ∑

x∈Zd
N

| f (x)|2
 1

2

By Hölder’s Inequality, it can be shown that 1
|E| ∑

x∈Zd
N

| f (x)|2
 1

2

≤

 1
|E| ∑

x∈Zd
N

| f (x)|q
 1

q

Using this fact and rearranging terms gives that

|E| ≥ Nd

(C(q))
1

1
2−

1
q

Now, let f be supported in E and S with size ⌈N
d
q ⌉ be the set of frequencies on which

{ f (m)}m∈S is unknown. Suppose there exists g such that ĝ(m) = f̂ (m) for m /∈ S,
|supp(g)|= |supp( f )|, and f ̸= g. Let h = f −g. Then |supp(ĥ)|= |S|, and

2|E| ≥ |supp(h)| ≥ Nd

(C(q))
1

1
2−

1
q

This contradicts assumption (2.3), so the recovery is unique.

This result gives a much better recovery condition for signals that fit the assump-
tions, provided that we know what C(q) is. However, it is currently not known how
to compute the Bourgain constant. In this paper, we aim to experimentally find a
numerical estimation of the Bourgain constant.

We will analyze three algorithms for signal recovery in relation to the Bourgain
constant. The first of which the Direct Rounding Algorithm, which is applied specifi-
cally to binary signals. Let E(x) be the indicator function of a set E ⊂ Zd

N . Suppose
that the values of Ê(m) are not known for m ∈ S. Let r : Zd

N → C be such that

r(x) = N− d
2 ∑

m∈Zd
N\S

Ê(m)χ(m · x)
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thus

r̂(m) =

Ê(m) m /∈ S

0 m ∈ S

We define G(x) such that

G(x) =

1 |r(x)| ≥ 0.5

0 otherwise

If E(x) = G(x) for all x ∈ Zd
N , then we say that E can be recovered by the DRA.

Theorem 2.5. Let E ⊂ Zd
N and S ⊂ Zd

N . Suppose that the values of Ê(m) are not
known for m ∈ S. Then E can be recovered by the Direct Rounding Algorithm if

|E||S|< N
2

In other words, if the Donoho-Stark condition (2.1) holds for a binary signal,
then the DRA can be used to recover it.

Proof. Let E ⊂ Zd
N , S ⊂ Zd

N . We can write

E(x) = N− d
2 ∑

m∈Zd
N

χ(x ·m)Ê(m)

= N− d
2 ∑

m/∈S
χ(x ·m)Ê(m)+N− d

2 ∑
m∈S

χ(x ·m)Ê(m)

= I(x)+ II(x)

Using the triangle inequality and definition of the Fourier transform,

|II(x)| ≤ N− d
2 ∑

m∈S
|Ê(m)| ≤ N− d

2 ∑
m∈S

N− d
2 ∑

x∈S
|E(x)|= N−d|E||S|

If the above quantity is less than 1
2 , then rounding is able to reconstruct E(x) from

I(x).

Another recovery method that we will discuss is the L1 minimization algorithm
[4]. For a signal f : Zd

N → C with support E ⊂ Zd
N and f̂ (m) unknown for S ⊂ Zd

N ,
we choose g = argmin

u
∥u∥1 such that û(m) = f̂ (m) for m /∈ S. We say that f can be

recovered by L1 minimization if g = f .

Theorem 2.6. If S is a generic set of size ⌈N
2d
q ⌉ with q ≥ 3, then f can be recovered

by L1 minimization if

|E|< N
4(C(q))6 (2.4)

where C(q) is the Bourgain constant for q.
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Proof. Note that f is in the set of u, so ∥g∥1 ≤ ∥ f∥1. Let h = f −g, and assume that
h ̸= 0. We can write

∥g∥1 = ∥ f −h∥1 = ∥ f −h∥L1(E)+∥ f −h∥L1(Ec)

≥ ∥ f∥1 +(∥h∥L1(Ec)−∥h∥L1(E))

If ∥h∥L1(E) < ∥h∥L1(Ec), then the term in parentheses above would be greater than
0 and we get a contradiction with the fact that g is a minimizer, thus showing that
h = 0 and that f was successfully recovered.

Using the Cauchy-Schwarz inequality and representing h2 = h
1
2 h

3
2 , we write

∥h∥L2(µ) ≤ ∥h∥
1
4
L1(µ)

∥h∥
3
4
L3(µ)

By the assumption that q ≥ 3 and that S is generic with size ⌈N
2d
q ⌉, then using

Hölder’s Inequality and Theorem 2.2, we can show that

∥h∥L2(µ) ≤ ∥h∥
1
4
L1(µ)

∥h∥
3
4
Lq(µ)

≤ ∥h∥
1
4
L1(µ)

∥h∥
3
4
Lq(µ)

≤ ∥h∥
1
4
L1(µ)

(C(q))
3
4∥h∥

3
4
L2(µ)

∥h∥L2(µ) ≤ (C(q))3∥h∥L1(µ)

Using the above result and the Cauchy-Schwarz inequality, we get

∥h∥L1(E) ≤ |E|
1
2∥h∥L2(E)

≤ |E|
1
2∥h∥2

= |E|
1
2 N

d
2 ∥h∥L2(µ)

≤ |E|
1
2 N

d
2 (C(q))3∥h∥L1(µ)

= |E|
1
2 N− d

2 (C(q))3∥h∥1

Thus if (2.4) holds, then ∥h∥L1(E) ≤ 1
2∥h∥1 and ∥h∥L1(E) ≤ ∥h∥L1(Ec). Therefore,

there is a contradiction and f = g.

3 Methods

All of the following algorithms were implemented and tested in Python. As we
are performing experiments on random signals, our data will have some variance
and different trials will have varying values. As such, it is difficult to draw exact
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Figure 1: Bourgain ratio with respect to q. q varies from 2 to 8. N is fixed at 100000.
Each value is the maximum of 1000 trials for each value of q

conclusions from the results. We attempted to alleviate this issue by performing
a large number of trials and using large values of N wherever practical. However,
we were limited by high computational costs and run times. This was especially
the case when running experiments involving the L1 minimization algorithm, as
its optimization problem is much more computationally expensive than the DRA.
Because of this, only 100 trials were used in the threshold finding algorithm rather
than 1000 as stated in the above. The values of N used for L1 minimization were
also much smaller than were used for the DRA. These factors make the results for
L1 minimization even more inconsistent, so more care must be taken when drawing
conclusions from the following data.

We used Corollary 2.3 to find an estimate for the Bourgain constant in the follow-
ing method: Let f : ZN → [0,1] be randomly generated with a uniform distribution.
Given some q > 2, let S ⊂ ZN be a randomly chosen subset with size ⌈N

2
q ⌉ and

let 1S be its indicator function. Let h = f̂ 1S. With our normalization of the Fourier
transform, this is equivalent to constructing a signal such that its Fourier transform
is supported in S. We then compute

∥ f∥Lq(µ)
∥ f∥L2(µ)

, which we will call the Bourgain ratio.

We repeat this computation many times with different randomly generated f and S,
and take the maximum of these values to be our estimate of C(q). By Corollary 2.3,
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Figure 2: Bourgain ratio with respect to N. N varies from 20 to 200000. q is fixed at
3.

this ratio is always bounded above by the Bourgain constant. Because of this, our
estimate cannot actually be equal to the Bourgain constant. However, by computing
this many times, we hope to get sufficiently close to the true value of C(q). The result
of this estimate are shown in Figure 1.

As a sanity check, the same experiment was done at varying values of N rather
than q. Since the Bourgain constant should be independent of N, the ratio should be
constant. Indeed, as shown in Figure 2, the resulting value is close to 1.25 for all N
with a q of 3. There are some fluctuations, especially for small N, but the value is
still relatively stable.

We implemented the Direct Rounding Algorithm as described in Section 2 for
the recovery of a single signal. Then, for a given set of conditions N, q, and |E|,
we perform the recovery for a randomly generated f matching the conditions 1000
times. We consider a set of conditions satisfactory for recovery if all 1000 attempts
successfully recovered their respective signal. Recovering 1000 out of 1000 attempts
does not truly guarantee that recovery will always be successful, but it is close
enough for the purposes of our analysis. As we can see from Figure 3, there is a
specific cutoff point where for all |E| less than that point, all signals were successfully
recovered.

8



Figure 3: Number of successful recoveries for a given size of E. N is fixed at 5000. q
is fixed at 3.

Let c = |E|
N . For a given N and q, we wish to find c such that for all |E| < cN,

recovery is guaranteed. To do this, we used a binary search algorithm to find the
largest |E| with which all of the trials we run are able to achieve successful recovery.
Let e1 = ⌈N

2 ⌉ be our starting point. For iteration n, let δn = ⌊ N
2n+1 ⌋ We then run the

recovery on 1000 random signals for |E|= en. If all 1000 attempts were successful,
then en+1 = en + δn. If any attempts were unsuccessful, then en+1 = en − δn. We
continue this loop until δn < 1 and let en

N be our estimate for c. At this point, further
iterations would not be productive, as |E| must be an integer.

This algorithm was performed using the DRA to determine a threshold of recov-
ery for the DRA in terms of N and q. This was compared to the conditions found by
Donoho and Stark in Theorem 2.1 and that found by Iosevich and Mayeli in Theorem
2.4, which guarantee that signal recovery is possible. Taking |S| as a generic set with
size ⌈N

2
q ⌉, equation (2.1) can be rewritten in terms of c as

c ≤ 1

2N
2
q
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Figure 4: Threshold for successful recovery with the DRA with with respect to N. q
is fixed at 3. Donoho-Stark threshold is based on (2.1). Iosevich-Mayeli threshold is
based on (2.3).

Similarly, equation (2.3) can be rewritten as

c ≤ 1

2(C(q))
1

1
2−

1
q

In place of C(q) we will use the estimate of the Bourgain constant obtained in the
first experiment described in this section.

In Figure 4, we see that the experimentally derived threshold for recovery for
the DRA is roughly proportional to logN. For the most part, it is bounded below
by the Donoho-Stark threshold, which confirms Theorem 2.5. The experimental
threshold does not seem to correlate with the Iosevich-Mayeli threshold, with the
Iosevich-Mayeli threshold being greater for N < 1000 and the experimental threshold
being greater for N > 1000. This is reasonable, as Theorem 2.4 does not refer to any
specific recovery method, only that signal recovery is possible under its conditions. It
is plausible that signals can be recovered at the Iosevich-Mayeli threshold for small
N, just not with the DRA.
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Figure 5: Threshold for successful recovery with the DRA with respect to q. N is
fixed at 5000. Donoho-Stark threshold is based on (2.1). Iosevich-Mayeli threshold
is based on (2.3).

In Figure 5, we can see that the experimental threshold is also bounded below by
the Donoho-Stark threshold with respect to q. The experimental threshold was also
mostly greater than the Iosevich-Mayeli threshold, except for q < 2.62.

The same procedure was repeated using the L1 minimization technique, using
the same binary search algorithm to find a suitable c and comparing the results to
Theorem 2.4 and Theorem 2.6. In the same way as the above thresholds, (2.4) can be
rewritten as

c ≤ 1
4(C(q))6

The performance of the L1 minimization algorithm was also tested with both
random signals and random binary signals. In Figure 7, the experimentally derived
threshold is not meaningfully changed by restricting to binary signals. Thus, we can
also compare the efficacy of L1 minimization with that of the DRA.

Figure 6 shows the experimentally derived threshold of recovery for the L1

minimization algorithm. As expected by Theorem 2.6, it is bounded below by the
Logan threshold. The L1 minimization threshold is also much greater than the
DRA threshold derived above, showing that it is a more effective method of signal
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Figure 6: Threshold for successful recovery with L1 minimization with respect to N.
q is fixed at 3. Logan threshold is based on (2.4). Iosevich-Mayeli threshold is based
on (2.3). Also compared to the threshold for the DRA for the same values of N and
q.

recovery overall even when only processing binary signals. While the Iosevich-
Mayeli Threshold is still greater than the experimental threshold for small N, with
L1 minimization the cutoff is at around N = 32, rather than N = 1000 for the DRA.
This shows that L1 minimization is a very effective signal recovery method, though
there are still signals that are recoverable by other means that it is unable to recover.

In Figure 8, we see that the experimental L1 threshold is almost fully bounded
below by the Logan threshold, the Iosevich-Mayeli threshold, and the experimental
DRA threshold. However, there is an exception for q very close to 2. If q = 2, then a
signal can only be reliably recovered if |E|= 0 and thus the signal itself is 0. At the
same time, the Bourgain constant must be 1 as q= 2 implies that ∥ f∥Lq(µ)= ∥ f∥L2(µ).
However, by Theorem 2.6, the L1 minimization algorithm is able to recover signals
if c ≤ 1

4(C(q))6 =
1
4 .

All of the above algorithms were implemented and tested in Python. As we
are performing experiments on random signals, our data will have some variance
and different trials will have varying values. As such, it is difficult to draw exact
conclusions from the results. We attempted to alleviate this issue by performing
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Figure 7: Threshold for successful recovery with L1 minimization with respect to N
applied to random signals and binary signals. q is fixed at 3.

Figure 8: Threshold for successful recovery with L1 minimization with respect to q.
N is fixed at 100. Logan threshold is based on (2.4). Iosevich-Mayeli threshold is
based on (2.3). Also compared to the threshold for the DRA for the same values of
N and q
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a large number of trials and using large values of N wherever practical. However,
we were limited by high computational costs and run times. This was especially
the case when running experiments involving the L1 minimization algorithm, as
its optimization problem is much more computationally expensive than the DRA.
Because of this, only 100 trials were used in the threshold finding algorithm rather
than 1000 as stated in the above. The values of N used for L1 minimization were
also much smaller than were used for the DRA. These factors make the results for
L1 minimization even more inconsistent, so more care must be taken when drawing
conclusions from the following data.
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