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1 Abstract

The particle system labeled the asymmetric simple exclusion process (ASEP) involves two
classes of particles. A generator of ASEP can be produced from both a probabilistic con-
struction and an algebraic construction [KLLPZ20], which result in the same generator for
Type A Lie algebras [Kual9|. However, specifying to Type D ASEP, the methods do not
produce the same generator when considering the Type D U, (s0s) [BEPS24]; in fact, the
algebraic method constructs a generator allowing for more states than are possible in the
typical Type D ASEP. We test whether the same conclusion holds for U, (sos) by decom-
posing and analyzing various U, (sos)-modules in order to construct a fused Type D ASEP
generator from a central element of U, (sos). We conclude that neither the original statement
nor this more flexible statement can hold for such a generator.

2 Introduction

Type D ASEP [KLLPZ20] is an interacting particle system that generalizes Spitzer’s ASEP
[Spi70]. ASEP consists of two classes of particles jumping on a lattice with one restriction:
while two particles of different classes can exist at a site, two particles of the same class
cannot. The specification of Type D refers to the system’s relationship with the Type D Lie
Algebra s09,,.

One main finding of [BEPS24] was that the algebraically-produced generator of Type D
ASEP allowed for all states at a site except for four particles of the same class, while the



probabilistic generator only allowed for two or less particles of the same class at a site.
The generator was constructed from a central element of U, (sos). We question whether a
generator constructed from a central element of U, (sos) preserves this more flexible structure.

For background, |[BEPS24] deduces that the probablistic and algebraic approaches of con-
structing a generator do not agree for Type D ASEP, even though the two approaches
produce the same generator for Type A ASEP as studied in |[CGRS14; CRV14; |(CGRS16;
Kual6; Kual7; Kual8; Kua2l|. The probablistic method utilizes stochastic fusion, as de-
fined in as defined in [Kual9]. On the other hand, the algebraic construction consisted of
applying a ground state transformation to a Casimir element in the second tensor power of
an irreducible representation of U, (s0¢).

This paper proceeds as follows: background information and notation are discussed in Sec-
tions [2.1] and main results are listed in Section [3| proofs are detailed in Section 4, and
figures are included in Section [6]

2.1 The Quantum Group U, (s0s)

A Lie group is a set GG which is both a group and a manifold, with the two structures agreeing
as multiplication is differentiable and inversion is smooth. We focus on SOg.

Definition 1. The special orthogonal Lie group SOy is the multiplicative group with ele-
ments

SOs = {X € Mgys(C) : XX =1, det X =1}

Since SOg is a subset of GL,,(C), we define its corresponding Lie algebra, sog, as a vector
space such that there exists a neighborhood U C SOg of 150, and a neighborhood u C sog
of 0s04 such that

10g : UﬂSOg — uMsog

and
exp :unsog — UNSOg

are inverses of each other. Given z € so0g, we then require that exp(z)exp(z)” = 1. Rear-
ranging, we must have that x + 27 = 0, and thus sog = {x € Mg(C)|z + 27 = 0}. We define
sog using the following equivalent formulation.



Definition 2. The special orthogonal Lie algebra sog is the Lie algebra with elements

508 = {|:_IérT g} : A, B,C € My,u(C),A=—-A" B = —BT}

However, the usual multiplication in sog is not well defined, resulting in the construction of
U(sog), which is an algebra generated by elements in sog which abides by certain relations
such as a commutator relation.

Definition 3. The Universal Enveloping Algebra of sog, denoted U (sog), is generated by
{Eb EQ, Eg, E4, F17 FQ, Fg, F4, H17 HQ, Hg, H4} and the following relations:

and
E'E; + E;E} =2E,E;E;; FPF; + F;F} = 2R F;F,
for (1, 5) such that a;; = —1 in the following Cartan matrix; all other elements commute.
2 -1 0 0
-1 2 -1 -1
0 -1 2 0
0 -1 0 2

A central element of U(sog) can be manipulated to become a generator of a symmetric par-
ticle system. In order to use the procedure of this symmetric case, we keep the algebraic
structure of U(sos) by instead working in U, (sos) |[Dri85|;[Jim85]. Allowing this parameter
0 < g <1 allows the particles to drift, creating an asymmetric particle system; ¢ = 1 is the
equivalent of no drift.

Definition 4. The g-deformed quantum group U, (sos) is generated by
{E\, By, E3, Ey, I\, Fy, F3, Fy, ¢, ¢*2, ¢M2 ¢"4} and the relations:
H; _ ,—H;
E,Fl=1—"2—
q—q
qHZFv] — q*ai'aj F}qHZ



for 1 <i,57 <4 and

E?Ey + ExE} = (¢+ ¢ EEWE; FPFy+ FoFP = (g+ ¢ YR F

for all (I, k) such that a;; = —1 in the following Cartan matrix; all other elements commute.
2 -1 0 0
-1 2 -1 -1
0O -1 2 0
o -1 0 2

For a matrix H in the Cartan subalgebra b of sog, we also define L; € h* as a map from H
to HM

Along with this structure, we also desire that U, (s0s) be a Hopf algebra. Therefore, we equip
the quantum group with a coproduct, a counit, and an antipode as follows.

Definition 5. We define the coproduct A, counit €, and antipode S of U, (sos) to be

AE)=E®1+¢" @ E;, e(E;) =0, S(E) = —Esq™
AF)=1eF+Fog™  dF)=0,  SF)=-¢"F
A(g™) =q" ® ", (g™ =1,  S(™) =g

for 1 <q¢<4.

Next, in order to compute the representation of an element in the second symmetric tensor
power module of U, (sog), we must first define its fundamental representation. Note that all
of the relations listed in Definition [4] will hold in this representation, but so do some extra
relations that are not true in general.

Definition 6. A fundamental representation of U (sos) is defined to be the subset of
Msys(R[g,g71]) generated from the elements of Definition [4} represented in the following
chart. E;; indicates the 8 x 8 matrix with a 1 in the (i, j)™ entry and zeroes elsewhere, and
diag(zy, ...xg) represents the 8 x 8 diagonal matrix with the elements (z1,...,xg) along the
diagonal. We then define ¢~/ to be the multiplicative inverse of ¢'’. Finally, we denote this
fundamental representation by V.



| | E F | q" |
;=1 ELQ —E675 E271 —E675 dlag( q,q 1,1,1,(] ,q,l,l)
i=2| Eo3— Fr¢ | F3o— Fgr | diag(l,q,¢7",1,1,¢7",¢,1)
i=3|| B34 — Es7 | Ey3— E7s | diag(1,1,¢,¢7",1,1,47",q)
i=4| Ess— Ei7 | Erg— Ess | diag(1,1,¢,¢,1,1,¢7",¢7")

Finally, we briefly review the definition of a highest weight module; recall that a highest
weight module is necessarily an irreducible representation.

Definition 7. We define P to be the weight lattice of U,(sog), with A € P called a weight.
Additionally, vy is called a highest weight vector if

Eﬂ))\ = EQ'UA = Eg?])\ = E4U)\ =0.

Given a highest weight vector vy, then, we say that a U, (s0g)-module M is a highest weight
module if M = {Avy|A € U, (s06)} .

2.2 Crystal Bases

The basis vectors of the fundamental representation as defined in Definition [6] were the stan-
dard basis vectors of R®, {ey,...,es}. However, the basis vectors of other U, (s05)-modules,
particularly those worked with in Section [4 will be g-deformed. In general, decomposing
a tensor product of two representations into a direct sum of irreducible representations is
difficult, so we would like to simplify this problem. By letting ¢ — 0, though, the g-deformed
basis vectors match a sum of tensor products of {ey,...,es}. This describes the motivation
and concept of crystal bases; we now must define them rigorously so that manipulating these
crystal basis vectors corresponds to manipulating those of the target U, (sos)-module.

Definition 8. A g¢-integer is an element of C(q) of the form

[m]q = w
q9—4q
If m is an integer, we then let [m],! = [m],[m — 1],...[1],.- Using this notation, we are then
able to define the action
Fm™y = ! F"u
' [m]g! "

where F/" denotes applying F; m times.



As proven in [HK02|, any weight vector u can be written as follows.

U= z”: Fi(m)u
m=0

We now would like the ability to permute tensor products of basis vectors in a natural way.

Definition 9. For each i € {1,2,3,4}, we define the Kashiwara operators E; and F, by

N

ZN: (k=1),, and Z pltD),,

k=1 k=0

For example, direct computation yields the following graph which shows the action of the
Kashiwara operators {FZ} on the fundamental representation V. Denote vy = e, v9 = e,
VU3 = €3, Uy = €4, Vj = €g, U3 = —e7, U3 = €, v1 —e5. An arrow superscripted with ¢ from
v; to vy symbolizes that F, ivj = vp. Finally, | j| represents v;, and | j | represents v;.
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The action of {EZ} would be represented by flipping every arrow.

We are now ready to define the crystal lattice, crystal base, and crystal limit.

Definition 10. Let W be an irreducible highest weight U, (s0s)-module with highest weight
A and highest weight vector vy. We then define the crystal lattice of W, denoted L(}), to
be a free submodule of W spanned by {F;,...F; vy} with each iy € {1,2,3,4} and n > 0.



Definition 11. Let IV, v, be as in Definition [10] Then, we define the crystal base B(W) of
W to be o
{F},..F, e1 ®e1 +qL(N)|ir, € {1,2,3},n >0} \ {0}.

Note that the crystal lattice £(1W) is a submodule over the localization of C[g] at (¢), and
is a principal ideal domain. Thus, modding by its unique maximal ideal gL, we obtain the
equivalence of letting ¢ — 0.

Definition 12. Formally, taking the crystal limit of v € £(W) is the action of projecting v
tov e L/qL.

Finally, we are able to discuss crystal bases, as defined in [HK02].

Definition 13. A pair (£, B) is a crystal base of a U, (s0s)-module M if it satisfies all of the
following conditions:

1. L is a crystal lattice of M

2. Bis a C-basis of L/qL

3. B=||B), where By=BNL/qL, N € P

4. E;Bc BU{0}, ;B c BU{0} for each i =1,2,3

5. Fiby = by if and only if b; = E;by for every by, by € B, i =1,2,3.

3 Results

The symmetries of quantum groups has been used to construct a form of ASEP multiple
times [CGRS14; BS15b; BS15a; CGRS16; BS16; [Kual6; Kual7; Kual8; |KLLPZ20; RLY23}
BEPS24]. As such, the main focus of this paper is to compare this algebraic construction
of a Markov generator to the typical ASEP. The resulting generators have in different cases
been shown to match [Kual9| and differ [BEPS24] from ASEP, with the differing generator
allowing for even more state spaces than those in ASEP. The main result is as follows.



Theorem 1. It is impossible to algebraically produce a Markov generator from (KLLPZ20]’s
central element in the representation W @ W that will be equal to a probabilistic generator
of Type D ASEP up to a constant. Specifically, any algebraically-produced Markov generator
can only have a maximum block size of 12, which would be impossible to achieve in a non-
trivial probabilistic generator of Type D ASEP.

In order to compute this generator, we first need to construct and decompose W ® W.

Proposition 1. Let W be the 35-dimensional subspace of V' such that W = V(2L,). Basis
vectors for this subspace can be found in Section . Then, W is an irreducible Uy(sos)
module.

Proposition 2. WRW decomposes as follows into a direct sum of irreducible, highest weight
representations, and is 1225-dimensional.

W@ W 2 V(AL) @ V(3L + L) & V(2L1 + 2L) & V(2L1) @ V(L1 + Ly) @ V(0).

Proposition 3. myew (C) can be blocked into one 41 x 41 block, twenty-four 18 x 18 blocks,
eight 12 x 12 blocks, sizteen 6 x 6 blocks, ninety-siz 4 X 4 blocks, twenty-four 3 x 3 blocks,
forty-eight 2 x 2 blocks, and eight 1 x 1 blocks.

In particular, note that the two biggest block sizes of mygw (C') are 41 x41 and 18 x 18. Since
the blocks of a Markov generator represent a single communicating class, it is sufficient to
only look at these classes of blocks; after performing a ground state transformation, if these
blocks have dimension larger or smaller than the size of the biggest communicating class
of the probabilistic Type D ASEP, then the generator constructed from mygw (C) cannot
be equal up to a constant to the communicating classes of the nontrivial probabilistic analog.

Proposition 4. The largest block of mwew (C) after a ground state transformation can be
at most 12 x 12.

Proposition 5. The largest communicating class allowed by a probabilistically-constructed
generator of Type D ASEP contains 16 states.

With these last two propositions combined, we will be able to prove Theorem [I]



4 Proofs

4.1 Constructing W

We begin by proving Proposition [ Recall the tensor product theorem, as stated on pages
77-78 of [HKO02]:

Theorem 2. [HK02]. Let V(\), V(i) be U, (s0s)-modules with corresponding crystal bases
(£(7), BO)), (), B()). Then, (£(1)@L (1), B(x) < B(w)) is a crystal basis of V(N&V (),
where the action of F; is defined by:

By @by = 4 P @bz @ilb) > eilbo)
i\VU1 2 b1 ® Ebg sz(bl) < 5i(b2)-

Using this theorem, we are able to draw the crystal graphs of V' ® V' as shown in Appendix
6.2l Figure 2] shows W on this crystal graph, and Figure [3] shows the full decomposition of
V ® V. Since taking the tensor product of two vectors of weights L, and L;, respectively,
results in a vector of weight L; + L;, we are able to see from Figure 3| that

VeV =V(2L)® V(L + L) ®V(0).

We are now able to prove Proposition [T}

Proof. Since U,(sos) admits a Cartan decomposition, V(2L;) can be computed by applying
compositions of the generators Fjs to the highest weight vector e; ® e;. Direct computation
shows that e; ® e; is annihilated by every generator E;, and thus e; ® e; is indeed a highest
weight vector.

Therefore, every basis vector of W must be a composition of the generators Fjs with e; ® e;.
Since the crystal graph in Figure [2| demonstrates the possible actions of each F; on each
vector e; ® e;j, we may proceed by tracing the arrows from e; ® e; to each desired point on



the graph. For example, letting 7y (F;;) denote my (F;F}), we have that

7TVF1(€1 (9 61) = (1 & F1)(€1 ® 61) + (F1 (9 qu)(€1 X 61)
=e1@ete® (¢ er)
=1 Qe+ ¢ les®eg
T (Fi2)(e1 ® €1) =my (Fa)(e1 @ es + ¢ 'ex @ 1)
=(e1®e3+0®ex)+q H(e2®@0+ 3R ey)
=e1®e3+q 'e3@e
v (Flogaonizazar(e1 @ er) = (¢ + 2+ ¢ (@® + 2+ ¢ )es ® es

As seen in Appendix [6.1] this results in 35 distinct basis vectors. From [FHO04], we are also
equipped with a formula to calculate the dimension of any highest weight U, (so0g)-module,

namely

@MVQ»:ZéE S i A= )it A 48— — i)

1<i<j<d

where A = ALy + AaLo + A\3L3 + Ay Ly. Plugging in to find dim(V(2L,)), we see that

dim(V'(211)) = ﬁ Z (i =X+ 7 =D+ A +8—j— 1)
= %[(Al + 1) (A + 5[+ 2)(A =+ D[+ 3) (M + 3)]
_enEYEI2)
4320

Finally, note that a highest weight module is always irreducible, and thus the 35-dimensional
V(2L1), which is thus spanned by the linearly independent bases vectors of W, must be an
irreducible U, (s0s)-module which is equal to W. O

As an example, after some very tedious computation of sparse 64 x 64 matrices, one can
represent [KLLPZ20]’s central element C' of U, (s0s) in W, which results in

(@ + ¢+ +2+q 2+ g+ g )dss.

[KLLPZ20]’s central element C' can be found in Appendix [6.3]
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4.2 Decomposing W @ W

If we were to decompose W ® W using 2] we would need to visualize the direct product
B(2Ly) x B(2L,) and then draw all disjoint cycles. Due to the complexity of B(2L;) as
shown in Figure [3| we introduce a method using Young tableaux instead. Following the
convention of [HK02|, B(2L;) can be described as

B2L)=B([ [ ])=B)
with the two blocks in the first row representing the weight 2L;. We now have the notation

needed to approach Lemma [I}

Lemma 1. W ®@ W admits the following decomposition into irreducible representations:
W@W XV(4L)®V (3L, + L) ® V(2L1 + 2Ly) ® V(2Ly) & V(L1 + L) & V(0).

The sum of the dimensions of these irreducible representations is 1225 = dim(W @ W).

Proof. Note that the vectors included in W as can be read off of Figure 3| exactly satisfy the

following:
{[@] [o=a).

Using the English notation and convention, by the tensor product rule for Young diagrams

[IK02],
B(Y) =~ @B B b))

b1 RbseW

We must compute the right hand side. Removing every degenerate Young diagram, we see
that the only possible options for B(Y[by, bs] with b; ® by € W are:

B,e])=B8(LLTLT1])

BV[om, 0n (_ | |)
BV[on, 15 B( )
B(Y[v1, v1]) B(|:|_:|)
BOV[or, v B(—)
BOlor, vil) = B(2).
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Therefore, computing the right hand side, we must have that

B(y)®6(y)%B(D:|:D)@B(_ | |)@B( )@B(Dj)@B(H)@B(@).

Reading a Young diagram having j blocks in the first row and ¢ blocks in the second row as
being V' (jL; + iLs), we can interpret this decomposition as

W@W X V(4L) & V(3L + Ls) & V(2Ly + 2Ly) & V(2Ly) & V(L + La) & V(0).

Finally, to compute the dimension of each irreducible U, (sos)-module, we again use [FHO4|’s
formula as in the proof of Proposition [1| and determine that

dim(W @ W) =) ~dimV(})

=294 + 567 + 300 + 35 + 28 + 1
= 1225.

The order of the summed dimensions is the same as the order that the irreducible represen-
tations are listed in in the above decomposition.
O

We proceed to investigating the weight spaces of W ® W, as this will help block W @ W.
We approach this proof of Proposition |3| combinatorially.

Proof. Note that, since taking the tensor product of two elements corresponds to adding
their weights, the only possible weights that an element of W ® W could have are

{0,2L;,L; + L;,2L; + L; + Ly,2L; +2L;,3L; + L;,4L;, L; + L; + L}

for distinct 4, j, k € {1,2, 3,4} as elements of W can only have weights of forms 2L;, L; + L,
or 0. We proceed by first finding the number of weight spaces of each form, which dictates
the number of corresponding blocks, then by counting the dimension of a weight space of
each form, which corresponds to the size of each block. To demonstrate the process, we
compute the dimension and number of weight spaces corresponding to L; + L;, which is
objectively the most involved case.

First, the number of weight spaces corresponding to L; + L; can be computed by determin-
ing the number of possible vector weights in W @ W that could be of that form. Note that
we are equivalently counting pairs (L;, L;) such that L;, L; are signed and i, j are distinct.
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Therefore, we have 4 -3 possible pairs of distinct ¢, j, and 4 ways to sign (L;, L;). Since order
does not matter in this case (ie, L; + L; = L; + L;), we must have 4 -4 - 3/2, or 24, weight
spaces of form L; + L;.

Next, to determine the dimension of each such weight space, we fix (7,7) and count the
possible ways to tensor two elements in W that would result in L; + L;. For this weight, we
must consider three cases, since for k # 1, j,

Li+L;=(2L;)+ (L, —L;)=(2L;)+ (L; — L;) = (L; + Lj) + 0 = (L; + Lg) + (L; — Lg).

Since (i, j) is already determined, the first two expressions can only be formed two ways
each, as order matters. In other words, since we are taking the tensor product of W with
itself, (2L;) + (L; + L;) and (L; + L;) + 2L; are the result of two different tensor products of
elements, and thus are distinct in this counting scheme. Moving on to (L;+ L;)+0, note that
there are three ways to achieve 0 in Figure 2} v; ® vy, v5 ® v9, and vz ® vs. Therefore, there
are 3-2 ordered pairs of elements that tensor to be of this weight. Finally, we count tuples of
(1, J, k) all distinct, of which there are two, note that swapping induces 2 - 2, and finally note
that (L; + Li) + (L; — Ly,) is not equivalent to (L; — Lg) + (L; + Li), thus adding one more
factor of two. Summing all of these combinations, we see that there are 2 +2 4+ 6 + 8 = 18
possible ways to tensor two elements of W that would result in a weight of L; + L;, and thus
each weight space will have dimension 18.

Thus, there are 24 weight spaces of dimension 18, and thus twenty-four 18 x 18 blocks in
Twew (C). Similarly, there is one weight space of dimension 41 (A = 0), eight weight spaces
of dimension 12 (A = 2L;), sixteen weight spaces of dimension 6 (A = L; + L; + Ly + Ly),
ninety-six weight spaces of dimension 4 (A = 2L; + L; + Ly), twenty-four weight spaces of
dimension 3 (A = 2L; + 2L;), forty-eight weight spaces of dimension 2 (A = 3L; + L;), and
eight weight spaces of dimension 1 (A = 4L;). These numbers correspond to the number of
blocks and block sizes in the statement of Proposition O

4.3 Significance of the blocks of my g (C)

As discussed in [BEPS24], a ground state transformation maps a Hamiltonian element H
to a matrix whose rows sum to 0, and in our case is of the form G 'HG — ald where
a = Twew(C)11 and G is a diagonal matrix. In order to show that myew (C) results in
a generator of a Markov process that could not possibly be Type D ASEP, it is sufficient
to prove that this generator will not have a block that is the size of the biggest block in
a probabilistically-constructed generator, as each block represents a communicating class.
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Thus, we only consider performing a ground state transformation on the 41 x 41 and 18 x 18
blocks of mew (C') which greatly reduces computation.

The ground state transformation that was uniquely determined for Type A Lie algebras is
no longer uniquely determined for those of Type D due to the more complicated structure,
as was proven in [BEPS24]. Therefore, we must prove that there cannot exist any possible
ground state transformation that would map mwew (C) to a Type D ASEP generator. This
discussion supports Proposition

Proof. Per the above commentary, myew (C) has one block of size 41 and twenty-four of
size 18. Recall that, in order to have a valid Markov generator, we can only have negative
values on the diagonal; if there is a negative value in the (4, 7)™ position, we remove either
the " row and column, the j* row and column, or both. We will work directly with the
signs of the elements in the 41 x 41 and 18 x 18 blocks in order to argue that, no matter
what diagonal matrix mygw (C) is conjugated by, there will still be negative entries in many
rows and columns. We would then have to remove enough rows and columns that the size
of each block after the ground state transformation would be less than 16 x 16.

Consider a diagonal matrix G' conjugating a matrix H. Then,
(GilHG)Z’J - G;’ilHi’jGjJ’.

In particular, if H; ; and H;; have opposite signs, then there is no choice of diagonal matrix G
that would cause both (G"'HG); ; and (G"'HG);; to agree in sign, resulting in the removal
of at least one row and column.

In Python, we compute myew (C) using Sympy, then compare the signs of the (i, ) and
(4,7)" values in the 41 x 41 and each of the 18 x 18 blocks. After adjusting for errors
due to multiplication of small values, we see that at least 27 rows and columns have to
be deleted from the 41 x 41 block and at least 5 have to be deleted from each of the
18 x 18 blocks. The code ran to complete this computation can be found on GitHub at
https://github.com/lgstolberg/SeniorThesis, and the curious reader is invited to reach
out to lgstolberg@gmail.com with any questions about this program.

Therefore, any ground state transformation of the 41 x 41 and 18 x 18 blocks can only result
in a block of maximum size 14 x 14. O
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Finally, we take a closer look at the Type D ASEP that corresponds to U,(sos). U,(s0s)
corresponds to allowing up to three particles of two different classes at each stochastically
fused site, ie the possible states at a stochastically fused site are as follows.

SISl
ClCICIS
SISl
ClCIC®
SISISIC]®)
OO
CISISC]®)
ClCICICIS]e,

@
2

=HCISIS
O]
s 1O

O O
0 1

= e
L OO

212 312 122 2122 3122 132 2132 3132
Figure 1: Possible states at one stochastically fused site

More information on stochastic fusion and this correspondence can be found in [Kual9[;[BEPS24].

Then, since each communicating class is represented by a block of a Markov generator, we
want to find the largest communicating class that can exist on two lattice sites. Drawing all
possible communicating classes shows that the biggest communicating class involves all six
particles at once, ie

(<0,3132>,<2,3122>,<22,312>,(31,32>,(132,21>,<2132,1),<12,2122>,<212,122%

(3132,0>,<3122,2),<312,22>,(32,31>,(21,132>,<1,2132>,<2122,12>,<122,212>>.

However, note that this communicating class has 16 states, and thus the largest block of a
probabilistically-produced Markov generator is 16 x 16. Intuitively, this is a result of the
fact that, if there are more particles involved in a communicating class, then there are more
possible combinations of said particles at each site, and thus more possible states in the
communicating class. This proves Proposition [3]

Finally, we have shown that the biggest block possible in a probabilistically-produced Markov
generator for the Type D ASEP corresponding to U,(sog) is 16 x 16, but algebraically pro-
ducing a Markov generator from a central element of U, (sog) can never result in a block
that is strictly greater than 14 x 14. Therefore, the algebraically-produced generator fails to
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match a Type D ASEP generator in a new way: it is degenerate in comparison. This proves

Theorem [11
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6 Appendix

6.1 Basis vectors of W

The basis vectors of W are as follows.

{e1®e1, g ®eq + q7162 &®e, e es+ q7163 &ey, e1eq+ q7164 ®e, —e Deg— q*168 ® eq,
a@ert+q ler®e, —e1®e—q egRer, e1R®es—q lea®@eg+q e ®e; —q leg ® e,
(g+qg Nea®@es+ (1+q Hes®ea, (q+q es@es+ (1+q ?)es @ es,

G+ Nea®@es+(1+q7%)es@eq, —(g+q Nes@es — (L+q)es Des,

(g+qg Ner®@es+(1+q )es@er, —(g+q Neg®@es — (L4 ¢ 2)es @ e,

(P +2+qHes®es, ((+q Nea®es, (+q ez ®@es+ (1+q ?es ® ey,

(+q Nea@es+(1+q Nea®er, —(g+q Nea®es— (14¢ )es @ e,

(g+qg Nea®er+ (1+q )er @ e,

—(g+qg Nea®es— (g7 +q )es @ea+ (14 ¢%)(e3 @ er + e7 @ e),

(P +2+q ez ®es— (q+207" +q 7 )es @ ey,

— (P H+2+qHNes®es — (q+ 271 + ¢ e ® ey,

(P +2+q es@es+ (q+2¢" +q%)es ® es,

(*+2+4q )e7®66+ (¢+2¢7" +q 7 )es @ e,

(¢ +3q+ 43¢+ ¢ es@es, (F+2+q¢es@es (¢° +3q+3q Vg 3)es ® ey,
(*+2+q )ez®e4+(q+2q*1+q’3)e4®es, (¢ +4¢ +6+4¢ 7 +q~ )e7®e7,
—(P+24+q)es@es —(q+2¢ "+ ¢ )esDes, (¢°+3¢+3¢ + ¢ )es D e,
(P+2+qHNes@er+(1+2¢ 2+ qg Ner®es — (q+2¢7 1 +q7%)(es ® eg + €3 @ ey),
(P +3+3¢ 2 g Ner®es — (@ +3¢+3¢7" + ¢ Pes @ e,

(+3+3¢ 2 +qg Ner®es+ (¢ +3¢+ 3¢+ ¢ ez ®@er}

Note that this is a 35-dimensional invariant subspace of Symi(Rg).
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6.2 Crystal Graph of V @ V
Below are the crystal graphs of V ® V. The first highlights just W.
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Figure 2: Crystal graph of V(2L;) in the representation V @ V/
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Figure 3: Crystal graph of decomposition of the representation V @ V'
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6.3 |KLLPZ20]’s Central Element C
Define r = ¢ + ¢~'. We will use the shorthand Fi» = F} F,. Then, we define C as follows
C = ¢ 0-2H1—2Ha—Ha—Hy | (—4=2H2—Hy—Hy | (=2—Hs—Ha | Ho—Hi

+ qH4—H3 + q2+H3+H4 + q4+2H2+H3+H4 + q6+2H1+2H2+H3+H4

2

r2 o r o
+ EFNI Hh—2Hs=Hs H4E1 + $(CIF12 - Fm)q = Ho=Hs H4(qE21 - Eu)
2
+ %(QQFH?) — qFi30 — qF3 + F321)C]7H17H27H4(q2E321 — qF%3 — qE30 + Eiag)
2
7/. — — —
- q—5( 2F124 — qFao — qFou + F421)Q =it H3(q2E421 — qEo41 — qE 142 + E124)
2 o 2 B A
— — Ay A — — Ay Ay — — Ag Ay
q q q
r’ —Ho—H3—H r’ —Ho—H
+ ¥F2q T by + E(QF% — Fs)q 7" "4 (qE3y — Eag)
r’ Ho—H
— E( Foy — Fio)q 73 (qEy — o)
2
T —_
— $< ?Foza — qFs01 — qFuo3 + Fiza)q " (q* Eazy — qFs24 — qEaa3 + Eo3y)
4
’
— q—Q(( 2+ 1) Fagao — qF3040 — QF2423)((Q2 + 1) Eagas — qE3242 — qE2403)
2 2 2
— ?Aﬂ]HlAG + Equ_H‘lES — EF4Q_H3E4

2
”
— ' FsFy B, B3 — E(q2F432 — qF394 — qFyo3 + F234)QH2(Q2E234 — qE504 — qF423 + Ey30)

2
r :
— EquHlJFHQAz —12qFyq™ By — r2q(qFun — Fo)q™ T (qByy — Eyp)

- TQQ(Q2F421 — qFoy — qF40 + F124)QH1+H2+H3(Q2E124 — qFh42 — qEay + E421)
+ r2qF3q™" B + r2q(qFsy — Fa3)q™ ™4 (qFys — Fsp)
+129(¢* F3o1 — qFo13 — qFi32 + Fiaz)q™" T4 (P Bog — qE130 — qFa13 + Fsa1)

+ P2 g By 1 2 ¢P (qFy — Fro)q™ PRt (g By — Eoy) + 12 Fygth P st g,
given that

A = Q3F1234 - Q2F2314 - q2F3124 - q2F1423 + qFu213 + qF3011 + qFu32 — Fagor,
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Ay = ¢ Eross — ¢ Fosia — ¢ Fs121 — ¢ Braos + qBao1s + ¢Fson + qEBuiss — Euson.
Az = Q3F4321 - Q2F4132 - C_IQF4213 - q2F3241 + qF1a23 + qFas14 + qF3124 — Frosa,
Ay = q3E4321 - q2E4132 - q2E4213 - q2E3241 + qFr423 + qFa314 + qE3124 — Fra34,
As = ¢ Fiosao + Fosuzr + ¢*Fazizz + ¢ Fasros — qFas010 + ¢ Fosiza — (¢ + ¢) Faziaz,
Ag = ¢*Erasas + Easint + ¢* Eanisz + ¢ Baaizs — ¢Basors + ¢ Fasion — (¢° + q) Easiae,
A7 = Figsao + ¢* Fosaor + ¢ Fioise + ¢ Fosras — ¢° Fagora + ¢ Faziza — (¢ + @) Fosiae,
As = Biozir + ¢ Eazaot + > Easizz + ¢ Easios — ¢° Bagora + ¢ Easioa — (¢° + q) Bz,

4 2( .4 2
q (¢ +q¢ +1
Ag = (—q3 — @) Fi21340 — —(q2 T 1)2F223141 + q2F143122 - Q2F122341 - ((q2 1 1)? )F4122317
4 2( .4 2
+¢+1
Ay = (—q3 — q)F1a1349 — —(q2 i_ 1)? Eoozia1 + q2E143122 - 92E122341 1 (%QQ +q1)2 )E412231-

We note that a couple of typos from [KLLPZ20| were corrected in this restating of the
element. As can be computed directly, this element acts as

(*+¢" + @ +2+¢ 2+ ¢ "+ ¢ °)ds
when represented in R®, and as
(@ +g" + P +2+q 7+ g+ ¢ )dgs

when represented in WW.
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