
CONTINUED FRACTIONS AND PELL’S EQUATION

ETHAN MADDOX

Abstract. Though the Euclidean algorithm has been known for at least 2,000
years, it was not until the late 16th century that mathematicians began the
development of the theory of continued fractions, initially for the purpose of
approximating the roots of quadratic equations. In the 17th century, Eng-
lish mathematician John Wallis introduced the term “continued fraction” to
describe these objects, and it has been used ever since. In this paper, we
develop the theory of continued fractions, examine its usage in Diophantine
approximation, and apply these results to find solutions for Pell’s equation.

1. Introduction

An expression of the form

𝑏0 +
𝑎0

𝑏1 +
𝑎1

𝑏2 +
𝑎2

𝑏3 +
𝑎3
⋱

,

which may be either finite or infinite in length, is called a continued fraction [3].
Unless stated otherwise, we will assume that 𝑎𝑖 = 1 for all 𝑖 and that 𝑏𝑖 is an integer
that is positive for 𝑖 ≥ 1. Continued fractions with these properties are called simple
[3].

The story of continued fractions has its origins with the Euclidean algorithm
[2]. The earliest extant description of the Euclidean algorithm appears in Euclid’s
Elements, though it likely predates him [2]. Being that the Euclidean algorithm is
just a few steps away from being the algorithm for generating a simple continued
fraction, it is somewhat surprising that their explicit use—at least of the non-
ascending kind—did not begin until the late 16th century [2].

In 1579, Italian mathematician Rafael Bombelli published the second edition of
his treatise on algebra, in which he described an algorithm for computing

√
13 [2].

With modern notation, Bombelli’s algorithm can be summarized by the equation

√
13 = 3 +

4

6 +
4

6 +
4
⋱

.

Pietro Cataldi, another Italian mathematician, went even further, introducing the
first formal notation for continued fractions, proving some of their basic proper-
ties, and showing an algorithm for generating convergents [2]. It wasn’t until 1655,
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however, that the term “continued fraction” was first used by the English mathe-
matician John Wallis in his Arithmetica infinitorum [2].

In Section 2 of this paper, we will develop the theory of simple continued frac-
tions by defining them and deriving their key properties. In Section 3, we will apply
this theory to Diophantine approximation and obtain some results on periodic con-
tinued fractions. Finally, in Section 4, we will show how continued fractions can
be used to find solutions for Pell’s equation. Most of the results and proofs of the
following sections are based on [4], restated and reorganized so as to reflect my own
understanding. Exceptions to this will be cited explicitly.

2. Continued Fractions

2.1. Finite Simple Continued Fractions. Consider a rational number 𝑡0/𝑡1 in
lowest terms and with 𝑡1 > 0. Using the Euclidean algorithm, we can write

𝑡0 = 𝑡1𝑎0 + 𝑡2, 0 < 𝑡2 < 𝑡1,

𝑡1 = 𝑡2𝑎1 + 𝑡3, 0 < 𝑡3 < 𝑡2,

⋮ ⋮

𝑡𝑘−1 = 𝑡𝑘𝑎𝑘−1 + 𝑡𝑘+1, 0 < 𝑡𝑘+1 < 𝑡𝑘,

𝑡𝑘 = 𝑡𝑘+1𝑎𝑘.

By the inequalities above, the 𝑡𝑖 are non-negative and decreasing for 𝑖 ≥ 1. Thus
the process generating these equations will terminate because eventually we will
get a remainder of zero. For all integers 𝑖 with 0 ≤ 𝑖 ≤ 𝑘, let 𝛾𝑖 = 𝑡𝑖/𝑡𝑖+1. We can
now write the first 𝑘 equations above as

𝛾𝑖 = 𝑎𝑖 + 1
𝛾𝑖+1

and the last as 𝛾𝑘 = 𝑎𝑘. This allows us to express 𝑡0/𝑡1 as a continued fraction. We
have

𝑡0
𝑡1

= 𝛾0 = 𝑎0 +
1
𝛾1

= 𝑎0 +
1

𝑎1 +
1
𝛾2

⋮

= 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

⋱ +
1
𝑎𝑘

.

The above is a continued fraction expansion of 𝛾0. The integers 𝑎𝑖 are the partial
quotients of the simple continued fraction. In order to make our notation more
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compact, we make the convention that

[𝑥0; 𝑥1, … , 𝑥𝑘] = 𝑥0 +
1

𝑥1 +
1

𝑥2 +
1

⋱ +
1
𝑥𝑘

.

Example 1. Consider the irreducible fraction 23/17. We have

23 = 17 ⋅ 1 + 6,
17 = 6 ⋅ 2 + 5,
6 = 5 ⋅ 1 + 1,
5 = 1 ⋅ 5.

We can write the first three equations as
23
17

= 1 + 6
17

,

17
6

= 2 + 5
6

,

6
5

= 1 + 1
5

.

But then
23
17

= 1 + 6
17

= 1 +
1

2 +
5
6

= 1 +
1

2 +
1

1 +
1
5

= [1; 2, 1, 5].

Remark 1. There are several observations we can quickly make about the contin-
ued fractions obtained in this way. One is that, although 𝑡0 may be any integer,
𝑡1, … , 𝑡𝑘 are positive integers by the inequalities 0 < 𝑡𝑖+1 < 𝑡𝑖 implied by the Eu-
clidean algorithm. This then implies that 𝑎𝑖 ≥ 1 for 𝑖 ≥ 1. It is also useful to note
the identities

[𝑥0; 𝑥1, … , 𝑥𝑘] = 𝑥0 + 1
[𝑥1; 𝑥2, … , 𝑥𝑘]

and

[𝑥0; 𝑥1, … , 𝑥𝑘] = [𝑥0; 𝑥1, … , 𝑥𝑘−2, 𝑥𝑘−1 + 1
𝑥𝑘

] .
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A natural question to ask is whether finite simple continued fractions are unique,
i.e., is there a unique finite simple continued fraction for each rational number? As
it turns out, there are at least two such representations for a given rational number,
as we have

[𝑎0; 𝑎1, … , 𝑎𝑘] = [𝑎0; 𝑎1, … , 𝑎𝑘−1, 𝑎𝑘 − 1, 1].
Fortunately, these are the only possibilities.

Theorem 2.1. Let [𝑎0; 𝑎1, … , 𝑎𝑚] and [𝑏0; 𝑏1, … , 𝑏𝑛] be finite simple continued frac-
tions. If 𝑎𝑚, 𝑏𝑛 > 1 and [𝑎0; 𝑎1, … , 𝑎𝑚] = [𝑏0; 𝑏1, … , 𝑏𝑛], then 𝑚 = 𝑛 and 𝑎𝑖 = 𝑏𝑖
for 0 ≤ 𝑖 ≤ 𝑚 = 𝑛.

Proof. Let 𝛾𝑖 = [𝑎𝑖; 𝑎𝑖+1, … , 𝑎𝑚] and 𝛿𝑗 = [𝑏𝑗; 𝑏𝑗+1, … , 𝑏𝑛]. We note that

𝛾𝑖 = [𝑎𝑖; 𝑎𝑖+1, … , 𝑎𝑚] = 𝑎𝑖 + 1
[𝑎𝑖+1; 𝑎𝑖+2, … , 𝑎𝑚]

= 𝑎𝑖 + 1
𝛾𝑖+1

,

as above. Thus 𝛾𝑖 > 𝑎𝑖 ≥ 1 for 𝑖 ∈ {1, … , 𝑚−1} and 𝛾𝑚 = 𝑎𝑚 > 1, so 𝑎𝑖 = ⌊𝛾𝑖⌋ for
all 𝑖 ∈ {0, … , 𝑚}. Similarly, we have 𝑏𝑗 = ⌊𝛿𝑗⌋ for all 𝑗 ∈ {0, … , 𝑛}. By hypothesis,
we have 𝛾0 = 𝛿0, so 𝑎0 = ⌊𝛾0⌋ = ⌊𝛿0⌋ = 𝑏0.

Suppose inductively that 𝛾𝑖 = 𝛿𝑖 and 𝑎𝑖 = 𝑏𝑖. Then we have

1
𝛾𝑖+1

= 𝛾𝑖 − 𝑎𝑖 = 𝛿𝑖 − 𝑏𝑖 = 1
𝛿𝑖+1

,

so 𝛾𝑖+1 = 𝛿𝑖+1 and 𝑎𝑖+1 = ⌊𝛾𝑖+1⌋ = ⌊𝛿𝑖+1⌋ = 𝑏𝑖+1. Suppose 𝑚 < 𝑛. Then 𝛾𝑚 =
𝛿𝑚 and 𝑎𝑚 = 𝑏𝑚, but 𝛾𝑚 = 𝑎𝑚 and 𝛿𝑚 > 𝑏𝑚, a contradiction. An analogous
contradiction arises if we assume 𝑛 < 𝑚, so we are done. �

Corollary 2.1. Every finite simple continued fraction is rational, and every rational
number can be written as a finite simple continued fraction in exactly two ways.

2.2. Infinite Simple Continued Fractions. As previously mentioned, continued
fractions can be infinite in length, a concept we will make unambiguous with the
following results. Let {𝑎𝑖}∞

𝑖=0 be a sequence of integers such that 𝑎𝑖 > 0 for all
positive integers 𝑖. We define {ℎ𝑖}∞

𝑖=−2 and {𝑘𝑖}∞
𝑖=−2 recursively as follows:

ℎ−2 = 0, ℎ−1 = 1, ℎ𝑖 = 𝑎𝑖ℎ𝑖−1 + ℎ𝑖−2 for all 𝑖 ≥ 0,

and
𝑘−2 = 1, 𝑘−1 = 0, 𝑘𝑖 = 𝑎𝑖𝑘𝑖−1 + 𝑘𝑖−2 for all 𝑖 ≥ 0.

Then 𝑘0 = 𝑎0𝑘−1 + 𝑘−2 = 1 and 𝑘1 = 𝑎1𝑘0 + 𝑘−1 = 𝑎1 ≥ 1. Since the 𝑎𝑖 are positive
for all positive 𝑖, our recursive definition of 𝑘𝑖 implies that the 𝑘𝑖 are positive for
𝑖 ≥ 0 and increasing for 𝑖 ≥ 1.

Theorem 2.2. For any positive 𝑥 ∈ ℝ, we have

[𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝑥] = 𝑥ℎ𝑛−1 + ℎ𝑛−2
𝑥𝑘𝑛−1 + 𝑘𝑛−2

.

Proof. If 𝑛 = 0, we have

𝑥ℎ−1 + ℎ−2
𝑥𝑘−1 + 𝑘−2

= 𝑥
1

= 𝑥 = [𝑥].
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If 𝑛 = 1, we have

𝑥ℎ0 + ℎ−1
𝑥𝑘0 + 𝑘−1

= 𝑥(𝑎0ℎ−1 + ℎ−2) + ℎ−1
𝑥(𝑎0𝑘−1 + 𝑘−2) + 𝑘−1

= 𝑥𝑎0 + 1
𝑥

= 𝑎0 + 1
𝑥

= [𝑎0; 𝑥].

Suppose inductively that

[𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝑥] = 𝑥ℎ𝑛−1 + ℎ𝑛−2
𝑥𝑘𝑛−1 + 𝑘𝑛−2

.

Then we have

[𝑎0; 𝑎1, … , 𝑎𝑛, 𝑥] = [𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝑎𝑛 + 1
𝑥

]

= (𝑎𝑛 + 1/𝑥)ℎ𝑛−1 + ℎ𝑛−2
(𝑎𝑛 + 1/𝑥)𝑘𝑛−1 + 𝑘𝑛−2

= 𝑎𝑛ℎ𝑛−1 + ℎ𝑛−1/𝑥 + ℎ𝑛−2
𝑎𝑛𝑘𝑛−1 + 𝑘𝑛−1/𝑥 + 𝑘𝑛−2

= 𝑥(𝑎𝑛ℎ𝑛−1 + ℎ𝑛−2) + ℎ𝑛−1
𝑥(𝑎𝑛𝑘𝑛−1 + 𝑘𝑛−2) + 𝑘𝑛−1

= 𝑥ℎ𝑛 + ℎ𝑛−1
𝑥𝑘𝑛 + 𝑘𝑛−1

.

�

Corollary 2.2. Defining 𝑝𝑛 = [𝑎0; 𝑎1, … , 𝑎𝑛] for all non-negative integers 𝑛, we
have

𝑝𝑛 = ℎ𝑛
𝑘𝑛

.

Proof. By Theorem 2.2, we have

[𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝑎𝑛] = 𝑎𝑛ℎ𝑛−1 + ℎ𝑛−2
𝑎𝑛𝑘𝑛−1 + 𝑘𝑛−2

= ℎ𝑛
𝑘𝑛

.

�

Example 2. Again consider the fraction 23/17 = [1; 2, 1, 5] from Example 1. We
have

ℎ0 = 1 ⋅ 1 + 0 = 1, 𝑘0 = 1 ⋅ 0 + 1 = 1,
ℎ1 = 2 ⋅ 1 + 1 = 3, 𝑘1 = 2 ⋅ 1 + 0 = 2,
ℎ2 = 1 ⋅ 3 + 1 = 4, 𝑘2 = 1 ⋅ 2 + 1 = 3,
ℎ3 = 5 ⋅ 4 + 3 = 23, 𝑘3 = 5 ⋅ 3 + 2 = 17,

so the convergents of 23/17 are

1
1

, 3
2

, 4
3

, and 23
17

.
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Theorem 2.3. For all integers 𝑖 such that 𝑖 ≥ 1, we have
ℎ𝑖𝑘𝑖−1 − ℎ𝑖−1𝑘𝑖 = (−1)𝑖−1,

𝑝𝑖 − 𝑝𝑖−1 = (−1)𝑖−1

𝑘𝑖𝑘𝑖−1
,

ℎ𝑖𝑘𝑖−2 − ℎ𝑖−2𝑘𝑖 = (−1)𝑖𝑎𝑖,

𝑝𝑖+1 − 𝑝𝑖−1 =
(−1)𝑖+1𝑎𝑖+1

𝑘𝑖+1𝑘𝑖−1
.

It follows that the fractions ℎ𝑖/𝑘𝑖 are in lowest terms.

Proof. If 𝑖 = −1, we have
ℎ−1𝑘−2 − ℎ−2𝑘−1 = 1 ⋅ 1 − 0 ⋅ 0 = 1 = (−1)−2.

Suppose inductively that ℎ𝑖𝑘𝑖−1 − ℎ𝑖−1𝑘𝑖 = (−1)𝑖−1. We have
ℎ𝑖+1𝑘𝑖 − ℎ𝑖𝑘𝑖+1 = (𝑎𝑖+1ℎ𝑖 + ℎ𝑖−1)𝑘𝑖 − ℎ𝑖(𝑎𝑖+1𝑘𝑖 + 𝑘𝑖−1)

= 𝑎𝑖+1ℎ𝑖𝑘𝑖 + ℎ𝑖−1𝑘𝑖 − 𝑎𝑖+1ℎ𝑖𝑘𝑖 − ℎ𝑖𝑘𝑖−1

= ℎ𝑖−1𝑘𝑖 − ℎ𝑖𝑘𝑖−1

= −(ℎ𝑖𝑘𝑖−1 − ℎ𝑖−1𝑘𝑖)
= −(−1)𝑖−1

= (−1)𝑖.
This proves the first identity. We then have

ℎ𝑖𝑘𝑖−1 − ℎ𝑖−1𝑘𝑖 = (−1)𝑖−1

ℎ𝑖
𝑘𝑖

− ℎ𝑖−1
𝑘𝑖−1

= (−1)𝑖−1

𝑘𝑖−1𝑘𝑖

𝑝𝑖 − 𝑝𝑖−1 = (−1)𝑖−1

𝑘𝑖−1𝑘𝑖
,

which proves the second identity. To prove the third identity, we have
ℎ𝑖𝑘𝑖−2 − ℎ𝑖−2𝑘𝑖 = (𝑎𝑖ℎ𝑖−1 + ℎ𝑖−2)𝑘𝑖−2 − ℎ𝑖−2(𝑎𝑖𝑘𝑖−1 + 𝑘𝑖−2)

= 𝑎𝑖ℎ𝑖−1𝑘𝑖−2 + ℎ𝑖−2𝑘𝑖−2 − 𝑎𝑖ℎ𝑖−2𝑘𝑖−1 − ℎ𝑖−2𝑘𝑖−2

= 𝑎𝑖ℎ𝑖−1𝑘𝑖−2 − 𝑎𝑖ℎ𝑖−2𝑘𝑖−1

= 𝑎𝑖(ℎ𝑖−1𝑘𝑖−2 − ℎ𝑖−2𝑘𝑖−1)
= (−1)𝑖−2𝑎𝑖

= (−1)𝑖𝑎𝑖.
We then see that

ℎ𝑖+1𝑘𝑖−1 − ℎ𝑖−1𝑘𝑖+1 = (−1)𝑖+1𝑎𝑖+1

ℎ𝑖+1
𝑘𝑖+1

− ℎ𝑖−1
𝑘𝑖−1

=
(−1)𝑖+1𝑎𝑖+1

𝑘𝑖+1𝑘𝑖−1

𝑝𝑖+1 − 𝑝𝑖−1 =
(−1)𝑖+1𝑎𝑖+1

𝑘𝑖+1𝑘𝑖−1
.

Finally, we can see that the first identity shows that gcd (ℎ𝑖, 𝑘𝑖) = 1, as any factor
of both must necessarily divide (−1)𝑖−1. �
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Theorem 2.4. The 𝑝𝑛 with even index form an increasing sequence, the 𝑝𝑛 with
odd index form a decreasing sequence, and every 𝑝𝑛 of even index is less than every
𝑝𝑛 of odd index. In symbols, we have

𝑝0 < 𝑝2 < 𝑝4 < ⋯ < 𝑝5 < 𝑝3 < 𝑝1.

Furthermore, the limit
lim

𝑛→∞
𝑝𝑛

exists.

Proof. By Theorem 2.3, we have, for all 𝑖 ≥ 0,

𝑝2𝑖+2 − 𝑝2𝑖 =
(−1)2𝑖+2𝑎2𝑖+2

𝑘2𝑖+2𝑘2𝑖
=

𝑎2𝑖+2
𝑘2𝑖+2𝑘2𝑖

> 0

because the 𝑘𝑖 are positive for 𝑖 ≥ 0 and the 𝑎𝑖 are positive for 𝑖 ≥ 1. Thus
𝑝2𝑖+2 > 𝑝2𝑖 for 𝑖 ≥ 0, so the 𝑝𝑖 of even index form an increasing sequence.

Using the same identity, for 𝑖 ≥ 0 we have

𝑝2𝑖+3 − 𝑝2𝑖+1 =
(−1)2𝑖+3𝑎2𝑖+3

𝑘2𝑖+3𝑘2𝑖+1
= −

𝑎2𝑖+3
𝑘2𝑖+3𝑘2𝑖+1

< 0

for the same reasons as before. Thus 𝑝2𝑖+3 < 𝑝2𝑖+1 for 𝑖 ≥ 0, so the 𝑝𝑖 of odd index
form a decreasing sequence.

By Theorem 2.3 again, for all 𝑖 ≥ 0 we have

𝑝2𝑖+1 − 𝑝2𝑖 = (−1)2𝑖

𝑘2𝑖+1𝑘2𝑖
= 1

𝑘2𝑖+1𝑘2𝑖
> 0

because the 𝑘𝑖 are positive for 𝑖 ≥ 0. Thus 𝑝2𝑖+1 > 𝑝2𝑖 for all 𝑖 ≥ 0.
Hence, for all 𝑖, 𝑗 ≥ 0, we have

𝑝2𝑖 ≤ 𝑝2𝑖+2𝑗 < 𝑝2𝑖+2𝑗+1 ≤ 𝑝2𝑗+1,

so 𝑝2𝑖 < 𝑝2𝑗+1 for all 𝑖, 𝑗 ≥ 0.
Since the 𝑝𝑛 of even index form an increasing sequence bounded above by 𝑝1, it

has a least upper bound. Similarly, the 𝑝𝑛 of odd index form a decreasing sequence
bounded below by 𝑝0, so they have a greatest lower bound. Since

lim
𝑖→∞

(𝑝𝑖 − 𝑝𝑖−1) = lim
𝑖→∞

(−1)𝑖−1

𝑘𝑖𝑘𝑖−1
= 0,

these bounds must be equal, so the limit

lim
𝑛→∞

𝑝𝑛

exists. �

The preceding results allow us to make the following definition unambiguously.

Definition 2.1. An infinite sequence of integers {𝑎𝑖}∞
𝑖=0 with 𝑎𝑖 > 0 for 𝑖 > 0 can

be formed into an infinite simple continued fraction [𝑎0; 𝑎1, 𝑎2, … , ]. We define

[𝑎0; 𝑎1, 𝑎2, … ] = lim
𝑛→∞

[𝑎0; 𝑎1, … , 𝑎𝑛],

with the number [𝑎0; 𝑎1, … , 𝑎𝑛] being called the 𝑛th convergent of [𝑎0; 𝑎1, 𝑎2, … ].
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We saw in the previous section that the simple continued fractions of finite
length correspond exactly to the rational numbers. In an example of the elegance
of continued fractions, it turns out that the infinite simple continued fractions
correspond exactly to the irrational numbers. The next theorem is the first direction
of this statement.

Theorem 2.5. Every infinite simple continued fraction is irrational.

Proof. Let 𝜉 = [𝑎0; 𝑎1, 𝑎2, … ] be an infinite simple continued fraction. Suppose 𝜉 is
rational, so that 𝜉 = 𝑝/𝑞 for some integers 𝑝 and 𝑞 with gcd (𝑝, 𝑞) = 1 and 𝑞 > 0.
Let 𝑝𝑛 denote the 𝑛th convergent of 𝜉. By Theorem 2.4, 𝜉 is strictly between 𝑝𝑛
and 𝑝𝑛+1, so we have

0 < |𝜉 − 𝑝𝑛| < |𝑝𝑛+1 − 𝑝𝑛|

0 < ∣𝑝
𝑞

− ℎ𝑛
𝑘𝑛

∣ < ∣ (−1)𝑛

𝑘𝑛+1𝑘𝑛
∣

0 < |𝑘𝑛𝑝 − ℎ𝑛𝑞| < 𝑞
𝑘𝑛+1

.

The 𝑘𝑛 are increasing in 𝑛, so we can choose 𝑛 such that 𝑞 < 𝑘𝑛+1. But then the
integer |𝑘𝑛𝑝 − ℎ𝑛𝑞| would lie strictly between 0 and 1, a contradiction. �

Remark 2. We now know that any finite simple continued fraction is rational, and
that any infinite simple continued fraction is irrational. In the case of finite simple
continued fractions, we saw that every rational number has exactly two represen-
tations. It is then natural to ask whether two distinct infinite simple continued
fractions can have the same value.

Lemma 2.1. Let 𝜉0 = [𝑎0; 𝑎1, 𝑎2, … ] be a simple continued fraction. Then 𝑎0 = ⌊𝜉0⌋
and—letting 𝜉1 = [𝑎1; 𝑎2, 𝑎3, … ]—we have 𝜉0 = 𝑎0 + 1/𝜉1.

Proof. By Theorem 2.4, 𝑝0 < 𝜉0 < 𝑝1, i.e., 𝑎0 < 𝜉0 < 𝑎0 + 1/𝑎1. Since 𝑎1 ≥ 0, we
have 𝑎0 < 𝜉0 < 𝑎0 + 1, so ⌊𝜉0⌋ = 𝑎0. Finally, we have

𝜉0 = lim
𝑛→∞

[𝑎0; 𝑎1, … , 𝑎𝑛]

= lim
𝑛→∞

(𝑎0 + 1
[𝑎1; 𝑎2, … , 𝑎𝑛]

)

= 𝑎0 + 1
lim

𝑛→∞
[𝑎1; 𝑎2, … , 𝑎𝑛]

= 𝑎0 + 1
𝜉1

.

�

Theorem 2.6. Distinct infinite simple continued fractions have distinct values.

Proof. Let 𝜉 = [𝑎0; 𝑎1, 𝑎2, … ] = [𝑏0; 𝑏1, 𝑏2, … ] and let 𝜉𝑖 = [𝑎𝑖; 𝑎𝑖+1, 𝑎𝑖+2, … ] for all
𝑖 ≥ 1. By Theorem 2.1, we have ⌊𝜉⌋ = 𝑎0 = 𝑏0. Suppose inductively that 𝑎𝑖 = 𝑏𝑖
for integers 𝑖 ∈ [0, 𝑘]. Note that

[𝑎0; 𝑎1, 𝑎2, … ] = [𝑎0; 𝑎1, … , 𝑎𝑘, [𝑎𝑘+1; 𝑎𝑘+2, … ]]
and

[𝑏0; 𝑏1, 𝑏2, … ] = [𝑏0; 𝑏1, … , 𝑏𝑘, [𝑏𝑘+1; 𝑏𝑘+2, … ]].
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Since these are both equal to 𝜉 and have the same first 𝑘 + 1 convergents, we must
have

[𝑎𝑘+1; 𝑎𝑘+2, 𝑎𝑘+3, … ] = [𝑏𝑘+1; 𝑏𝑘+2, 𝑏𝑘+3, … ].

But then, by Theorem 2.1, 𝑎𝑘+1 = 𝑏𝑘+1. Hence 𝑎𝑖 = 𝑏𝑖 for all non-negative integers
𝑖 by mathematical induction. �

We have seen that every infinite simple continued fraction is an irrational num-
ber. We now consider the converse: whether every irrational number can be repre-
sented as an infinite simple continued fraction.

Let 𝜉 be an irrational number. Letting 𝜉0 = 𝜉 and 𝑎0 = ⌊𝜉0⌋, we define

(1) 𝜉𝑖+1 = 1
𝜉𝑖 − 𝑎𝑖

and 𝑎𝑖+1 = ⌊𝜉𝑖+1⌋.

The 𝑎𝑖 are integers by definition. 𝜉0 = 𝜉 is irrational by definition, and the recursive
formula

𝜉𝑖+1 = 1
𝜉𝑖 − 𝑎𝑖

shows by induction that the 𝜉𝑖 are all irrational. We then have

⌊𝜉𝑖−1⌋ < 𝜉𝑖−1 < ⌊𝜉𝑖−1⌋ + 1
𝑎𝑖−1 < 𝜉𝑖−1 < 𝑎𝑖−1 + 1

0 < 𝜉𝑖−1 − 𝑎𝑖−1 < 1

1 < 1
𝜉𝑖−1 − 𝑎𝑖−1

= 𝜉𝑖,

so 𝑎𝑖 = ⌊𝜉𝑖⌋ ≥ 1 for 𝑖 ≥ 1. Next we have

𝜉 = 𝜉0 = 𝑎0 + 1
𝜉1

= [𝑎0; 𝜉1].

If 𝜉 = [𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝜉𝑛], then we have

𝜉 = [𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝜉𝑛] = [𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝑎𝑛 + 1
𝜉𝑛+1

] = [𝑎0; 𝑎1, … , 𝑎𝑛, 𝜉𝑛+1].

Hence by induction we have

𝜉 = [𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝜉𝑛]

for all integers 𝑛 ≥ 0.
By Theorem 2.2, we now have

𝜉 = [𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝜉𝑛] = 𝜉𝑛ℎ𝑛−1 + ℎ𝑛−2
𝜉𝑛𝑘𝑛−1 + 𝑘𝑛−2

.
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This then implies

𝜉 − ℎ𝑛−1
𝑘𝑛−1

= 𝜉𝑛ℎ𝑛−1 + ℎ𝑛−2
𝜉𝑛𝑘𝑛−1 + 𝑘𝑛−2

− ℎ𝑛−1
𝑘𝑛−1

= 𝑘𝑛−1(𝜉𝑛ℎ𝑛−1 + ℎ𝑛−2)
𝑘𝑛−1(𝜉𝑛𝑘𝑛−1 + 𝑘𝑛−2)

− ℎ𝑛−1(𝜉𝑛𝑘𝑛−1 + 𝑘𝑛−2)
𝑘𝑛−1(𝜉𝑛𝑘𝑛−1 + 𝑘𝑛−2)

= 𝜉𝑛ℎ𝑛−1𝑘𝑛−1 + ℎ𝑛−2𝑘𝑛−1 − 𝜉𝑛ℎ𝑛−1𝑘𝑛−1 − ℎ𝑛−1𝑘𝑛−2
𝑘𝑛−1(𝜉𝑛𝑘𝑛−1 + 𝑘𝑛−2)

= −(ℎ𝑛−1𝑘𝑛−2 − ℎ𝑛−2𝑘𝑛−1)
𝑘𝑛−1(𝜉𝑛𝑘𝑛−1 + 𝑘𝑛−2)

𝜉 − ℎ𝑛−1
𝑘𝑛−1

= (−1)𝑛−1

𝑘𝑛−1(𝜉𝑛𝑘𝑛−1 + 𝑘𝑛−2)
.(2)

Since 𝑘𝑛 → ∞ as 𝑖 → ∞ and the 𝜉𝑛 are positive for 𝑛 ≥ 1, the above fraction tends
to 0 as 𝑛 → ∞. Hence we have

𝜉 = lim
𝑛→∞

ℎ𝑛
𝑘𝑛

= lim
𝑛→∞

[𝑎0; 𝑎1, … , 𝑎𝑛] = [𝑎0; 𝑎1, 𝑎2, … ].

We can summarize the preceding discussion in the following theorem.
Theorem 2.7. Every irrational number 𝜉 has a unique representation as an infinite
simple continued fraction. Letting 𝜉0 = 𝜉 and using the recursive definitions of
Equation (1), we find that 𝜉 = [𝑎0; 𝑎1, 𝑎2, … ]
Example 3. Consider computing the continued fraction expansion of 𝜋. We have

𝜉0 = 𝜋, 𝑎0 = ⌊𝜋⌋ = 3,

𝜉1 = 1
𝜋 − 3

= 7.062 … , 𝑎1 = ⌊7.062 … ⌋ = 7,

𝜉2 = 1
7.062 ⋯ − 7

= 15.996 … , 𝑎2 = ⌊15.996 … ⌋ = 15.

Thus the continued fraction expansion of 𝜋 begins [3; 7, 15, … ] and the first three
convergents of 𝜋 are

3, 22
7

, and 333
106

.

Before moving on, we quickly note the following result, which can easily be
proved by induction.
Theorem 2.8. Let 𝑥 be a real number greater than 1. The 𝑖th convergent of 1/𝑥
is the reciprocal of the (𝑖 − 1)th convergent of 𝑥.

3. Approximating Irrational Numbers

We now show that that the convergents to an irrational number form an “effi-
cient” sequence of rational approximations in the sense that the errors are small
compared to the size of the denominators.
Theorem 3.1. For all integers 𝑛 ≥ 0, we have

∣𝜉 − ℎ𝑛
𝑘𝑛

∣ < 1
𝑘𝑛𝑘𝑛+1

and
|𝜉𝑘𝑛 − ℎ𝑛| < 1

𝑘𝑛+1.
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Proof. By Equation (2), we have

∣𝜉 − ℎ𝑛
𝑘𝑛

∣ = ∣ (−1)𝑛

𝑘𝑛(𝜉𝑛+1𝑘𝑛 + 𝑘𝑛−1)
∣

= 1
𝑘𝑛(𝜉𝑛+1𝑘𝑛 + 𝑘𝑛−1)

< 1
𝑘𝑛(𝑎𝑛+1𝑘𝑛 + 𝑘𝑛−1)

= 1
𝑘𝑛𝑘𝑛+1

.

Hence

∣𝜉 − ℎ𝑛
𝑘𝑛

∣ < 1
𝑘𝑛𝑘𝑛+1

,

which immediately implies

|𝜉𝑘𝑛 − ℎ𝑛| < 1
𝑘𝑛+1

via multiplication by 𝑘𝑛. �

Since 𝑘𝑛 ≤ 𝑘𝑛+1 for all 𝑛 ≥ 0, we have the weaker inequality

∣𝜉 − ℎ𝑛
𝑘𝑛

∣ < 1
𝑘2

𝑛
.

Since the ℎ𝑛/𝑘𝑛 are infinitely many rationals satisfying the above equation, we have
the following result.

Corollary 3.1. For every irrational number 𝜉, there exists infinitely many rationals
𝑝/𝑞 with 𝑞 > 0 such that

∣𝜉 − 𝑝
𝑞

∣ < 1
𝑞2 .

Theorem 3.2. For all integers 𝑛 ≥ 0, we have

|𝜉𝑘𝑛+1 − ℎ𝑛+1| < |𝜉𝑘𝑛 − ℎ𝑛|

and

∣𝜉 −
ℎ𝑛+1
𝑘𝑛+1

∣ < ∣𝜉 − ℎ𝑛
𝑘𝑛

∣ .

Proof. Since the 𝜉𝑛 are irrational, 𝜉𝑛 < ⌊𝜉𝑛⌋ + 1 = 𝑎𝑛 + 1, so

𝜉𝑛+1𝑘𝑛 + 𝑘𝑛−1 < (𝑎𝑛+1 + 1)𝑘𝑛 + 𝑘𝑛−1

= 𝑎𝑛+1𝑘𝑛 + 𝑘𝑛−1 + 𝑘𝑛

= 𝑘𝑛+1 + 𝑘𝑛

≤ 𝑎𝑛+2𝑘𝑛+1 + 𝑘𝑛

= 𝑘𝑛+2.

We now have, by Equation (2),

∣𝜉 − ℎ𝑛
𝑘𝑛

∣ = 1
𝑘𝑛(𝜉𝑛+1𝑘𝑛 + 𝑘𝑛−1)

> 1
𝑘𝑛𝑘𝑛+2

.



12 ETHAN MADDOX

Multiplying by 𝑘𝑛 and using Theorem 3.1, we have

|𝜉𝑘𝑛 − ℎ𝑛| > 1
𝑘𝑛+2

> |𝜉𝑘𝑛+1 − ℎ𝑛+1|,

which proves the first inequality. We then have

∣𝜉 −
ℎ𝑛+1
𝑘𝑛+1

∣ = 1
𝑘𝑛+1

|𝜉𝑘𝑛+1 − ℎ𝑛+1|

< 1
𝑘𝑛+1

|𝜉𝑘𝑛 − ℎ𝑛|

≤ 1
𝑘𝑛

|𝜉𝑘𝑛 − ℎ𝑛|

= ∣𝜉 − ℎ𝑛
𝑘𝑛

∣ ,

which proves the second inequality. �

Theorem 3.3. Let 𝑝/𝑞 be a rational number with 𝑞 > 0. If |𝜉𝑞 − 𝑝| < |𝜉𝑘𝑛 − ℎ𝑛|
for some 𝑛 ≥ 0, then 𝑞 ≥ 𝑘𝑛+1. Furthermore, if |𝜉 − 𝑝/𝑞| < |𝜉 − ℎ𝑛/𝑘𝑛| for some
𝑛 ≥ 1, then 𝑞 > 𝑘𝑛.

Proof. Suppose |𝜉𝑞 − 𝑝| < |𝜉𝑘𝑛 − ℎ𝑛| for some 𝑛 ≥ 0 and 𝑞 < 𝑘𝑛+1. Consider the
linear system

{𝑥ℎ𝑛 + 𝑦ℎ𝑛+1 = 𝑝,
𝑥𝑘𝑛 + 𝑦𝑘𝑛+1 = 𝑞.}

Noting that

det [ℎ𝑛 ℎ𝑛+1
𝑘𝑛 𝑘𝑛+1

] = ℎ𝑛𝑘𝑛+1 − ℎ𝑛+1𝑘𝑛 = (−1)𝑛+1

by Theorem 2.3, Cramer’s Rule implies that our system has the unique solution

[𝑥
𝑦] = [ℎ𝑛 ℎ𝑛+1

𝑘𝑛 𝑘𝑛+1
]

−1

[𝑝
𝑞]

= 1
ℎ𝑛𝑘𝑛+1 − ℎ𝑛+1𝑘𝑛

[𝑘𝑛+1 −ℎ𝑛+1
−𝑘𝑛 ℎ𝑛

] [𝑝
𝑞]

= (−1)𝑛+1 [𝑘𝑛+1 −ℎ𝑛+1
−𝑘𝑛 ℎ𝑛

] [𝑝
𝑞] ,

which will be an integer solution. We claim that 𝑥 and 𝑦 are non-zero. If 𝑥 = 0, then
𝑞 = 𝑦𝑘𝑛+1, so 𝑦 ≥ 1 and 𝑞 ≥ 𝑘𝑛+1, contradicting our assumption that 𝑞 < 𝑘𝑛+1. If
𝑦 = 0, then 𝑝 = 𝑥ℎ𝑛, 𝑞 = 𝑥𝑘𝑛, and

|𝜉𝑞 − 𝑝| = |𝜉𝑥𝑘𝑛 − 𝑥ℎ𝑛| = |𝑥||𝜉𝑘𝑛 − ℎ𝑛| ≥ |𝜉𝑘𝑛 − ℎ𝑛|,

contradicting our assumption that |𝜉𝑞 − 𝑝| < |𝜉𝑘𝑛 − ℎ𝑛|.
We can further prove that 𝑥 and 𝑦 have opposite signs. If 𝑦 < 0, then 𝑥𝑘𝑛 =

𝑞 − 𝑦𝑘𝑛+1 > 0, so 𝑥 > 0. If 𝑦 > 0, then our assumption that 𝑞 < 𝑘𝑛+1 implies that
𝑞 < 𝑦𝑘𝑛+1. Then 𝑥𝑘𝑛 = 𝑞 − 𝑦𝑘𝑛+1 < 0, so 𝑥 < 0. By Theorem 2.7, 𝜉𝑘𝑛 − ℎ𝑛 and
𝜉𝑘𝑛+1 − ℎ𝑛+1 have opposite signs, so 𝑥(𝜉𝑘𝑛 − ℎ𝑛) and 𝑦(𝜉𝑘𝑛+1 − ℎ𝑛+1) have the
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same signs. By the equations defining 𝑥 and 𝑦, we get

𝜉𝑞 − 𝑝 = 𝜉(𝑥𝑘𝑛 + 𝑦𝑘𝑛+1) − (𝑥ℎ𝑛 + 𝑦ℎ𝑛+1)
= 𝑥𝜉𝑘𝑛 + 𝑦𝜉𝑘𝑛+1 − 𝑥ℎ𝑛 − 𝑦ℎ𝑛+1

= 𝑥(𝜉𝑘𝑛 − ℎ𝑛) + 𝑦(𝜉𝑘𝑛+1 − ℎ𝑛+1).

Since the two terms on the right have the same signs, the absolue value of their
sum equals the sum of their absolute values. Hence we have

|𝜉𝑞 − 𝑝| = |𝑥(𝜉𝑘𝑛 − ℎ𝑛) + 𝑦(𝜉𝑘𝑛+1 − ℎ𝑛+1)|
= |𝑥(𝜉𝑘𝑛 − ℎ𝑛)| + |𝑦(𝜉𝑘𝑛+1 − ℎ𝑛+1)|
> |𝑥(𝜉𝑘𝑛 − ℎ𝑛)|
= |𝑥||𝜉𝑘𝑛 − ℎ𝑛|
≥ |𝜉𝑘𝑛 − ℎ𝑛|.

But this contradicts our assumption that |𝜉𝑞 − 𝑝| < |𝜉𝑘𝑛 − ℎ𝑛|. Hence we have
proven the first implication by contradiction.

We now prove the second implication again by contradiction. Suppose there
exists a rational 𝑝/𝑞 with 𝑞 > 0 such that |𝜉 − 𝑝/𝑞| < |𝜉 − ℎ𝑛/𝑘𝑛| and 𝑞 ≤ 𝑘𝑛.
Multiplying these two inequalities, we get |𝜉𝑞 − 𝑝| < |𝜉𝑘𝑛 − ℎ𝑛|, which by the
statement just proven implies that 𝑞 ≥ 𝑘𝑛+1 > 𝑘𝑛, contradicting our assumption
that 𝑞 ≤ 𝑘𝑛. This proves our second implication. �

Theorem 3.4. Let 𝜉 be an irrational number. If 𝑝/𝑞 is a rational number with
𝑞 > 0 such that

∣𝜉 − 𝑝
𝑞

∣ < 1
2𝑞2 ,

then 𝑝/𝑞 is a convergent of the simple continued fraction expansion of 𝜉.

Proof. Let 𝑝/𝑞 be a rational number satisfying the hypotheses of the theorem.
Without loss of generality, we may take gcd (𝑝, 𝑞) = 1. Let ℎ𝑖/𝑘𝑖 be the 𝑖th con-
vergent of the simple continued fraction expansion of 𝜉 for all 𝑖 ≥ 0. Suppose that
𝑝/𝑞 is not one of these convergents. There exists a unique integer 𝑛 such that
𝑘𝑛 ≤ 𝑞 < 𝑘𝑛+1. By Theorem 3.3, we must then have

|𝜉𝑘𝑛 − ℎ𝑛| ≤ |𝜉𝑞 − 𝑝| < 1
2𝑞

∣𝜉 − ℎ𝑛
𝑘𝑛

∣ < 1
2𝑞𝑘𝑛

.
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By assumption, 𝑝/𝑞 ≠ ℎ𝑛/𝑘𝑛, so we have

1
𝑞𝑘𝑛

≤ |𝑞ℎ𝑛 − 𝑝𝑘𝑛|
𝑞𝑘𝑛

= ∣ℎ𝑛
𝑘𝑛

− 𝑝
𝑞

∣

≤ ∣ℎ𝑛
𝑘𝑛

− 𝜉∣ + ∣𝜉 − 𝑝
𝑞

∣

1
𝑞𝑘𝑛

< 1
2𝑞𝑘𝑛

+ 1
2𝑞2

1
2𝑞𝑘𝑛

< 1
2𝑞2

1
𝑘𝑛

< 1
𝑞

𝑞 < 𝑘𝑛,

contradicting the definition of 𝑘𝑛. �

The next two results establish a stronger result than the one in Corollary 3.1.

Lemma 3.1. Let 𝑥 ∈ [1, ∞). If 𝑥 + 𝑥−1 <
√

5, then 𝑥 < (
√

5 + 1)/2 and 𝑥−1 >
(
√

5 − 1)/2.

Proof. If 𝑥 ∈ (1, ∞), then we have

𝑥2 > 1

1 > 1
𝑥2

1 − 1
𝑥2 > 0

𝑑
𝑑𝑥

(𝑥 + 𝑥−1) > 0,

so 𝑥 + 𝑥−1 is increasing for 𝑥 ≥ 1. Since 𝑥 + 𝑥−1 =
√

5 for 𝑥 = (
√

5 + 1)/2,
𝑥 + 𝑥−1 <

√
5 implies 𝑥 < (

√
5 + 1)/2. We then have

𝑥 <
√

5 + 1
2

2√
5 + 1

< 1
𝑥

√
5 − 1
2

< 1
𝑥

.

�

Theorem 3.5 (Hurwitz’s Theorem). Let 𝜉 be an irrational number. There exists
infinitely many rational numbers 𝑝/𝑞 such that

∣𝜉 − 𝑝
𝑞

∣ < 1√
5𝑞2

.
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Proof. We will show that at least one of every three consecutive convergents of the
simple continued fraction expansion of 𝜉 satisfies the given inequality. This then
immediately implies the theorem.

Let 𝑢𝑖 = 𝑘𝑖/𝑘𝑖−1. We first prove that

𝑢𝑗 + 𝑢−1
𝑗 <

√
5

if
∣𝜉 − ℎ𝑖

𝑘𝑖
∣ ≥ 1√

5𝑘2
𝑖

for 𝑖 = 𝑗 − 1 and 𝑖 = 𝑗. Suppose the above does hold for 𝑖 = 𝑗 − 1 and 𝑖 = 𝑗. Then
we have

∣𝜉 −
ℎ𝑗−1

𝑘𝑗−1
∣ + ∣𝜉 −

ℎ𝑗

𝑘𝑗
∣ ≥ 1√

5𝑘2
𝑗−1

+ 1√
5𝑘2

𝑗
.

Since 𝜉 is between ℎ𝑗−1/𝑘𝑗−1 and ℎ𝑗/𝑘𝑗 by Theorem 2.3, we have

∣𝜉 −
ℎ𝑗−1

𝑘𝑗−1
∣ + ∣𝜉 −

ℎ𝑗

𝑘𝑗
∣ = ∣

ℎ𝑗−1

𝑘𝑗−1
−

ℎ𝑗

𝑘𝑗
∣ = 1

𝑘𝑗−1𝑘𝑗
.

Combining these, we get
1√

5𝑘2
𝑗−1

+ 1√
5𝑘2

𝑗
≤ 1

𝑘𝑗−1𝑘𝑗

𝑘𝑗

𝑘𝑗−1
+

𝑘𝑗−1

𝑘𝑗
≤

√
5

𝑢𝑗 + 𝑢−1
𝑗 ≤

√
5.

Since the left side is rational and the right side is irrational, this is actually a strict
inequality, as claimed.

Now suppose that

∣𝜉 − ℎ𝑖
𝑘𝑖

∣ ≥ 1√
5𝑘2

𝑖

for 𝑖 = 𝑗 − 1, 𝑗, 𝑗 + 1. We then have 𝑢𝑖 + 𝑢−1
𝑖 <

√
5 for 𝑖 = 𝑗, 𝑗 + 1. By Lemma 3.1,

this implies, in particular, that 𝑢−1
𝑗 > (

√
5 − 1)/2 and 𝑢𝑗+1 < (

√
5 + 1)/2. Thus we

have √
5 + 1
2

> 𝑢𝑗+1

=
𝑘𝑗+1

𝑘𝑗

=
𝑎𝑗+1𝑘𝑗 + 𝑘𝑗−1

𝑘𝑗

= 𝑎𝑗+1 + 𝑢−1
𝑗

> 𝑎𝑗+1 +
√

5 − 1
2

≥ 1 +
√

5 − 1
2

=
√

5 + 1
2

,
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a contradiction. �

Theorem 3.6. The constant
√

5 in Hurwitz’s Theorem is the best possible, i.e.,
there exists an irrational number 𝜉 such that, for all 𝜖 > 0, there exists only finitely
many rationals 𝑝/𝑞 such that

∣𝜉 − 𝑝
𝑞

∣ < 1
(
√

5 + 𝜖)𝑞2
.

Proof. Let 𝜉 = [1; 1, 1, … ]. We have

𝜉 = 1 + 1
[1; 1, 1, … ]

𝜉 = 1 + 1
𝜉

𝜉2 = 𝜉 + 1
𝜉2 − 𝜉 − 1 = 0.

Thus

𝜉 = 1 ±
√

5
2

,

but since 𝜉 > 1, we in fact have 𝜉 = (1 +
√

5)/2. Letting 𝜉0 = 𝜉 and 𝑎0 = ⌊𝜉0⌋,
define the sequences {𝑎𝑖}∞

𝑖=0 and {𝜉𝑖}∞
𝑖=0 as in Equation (1). Suppose inductively

that 𝜉𝑖 = (1 +
√

5)/2. We then have

𝜉𝑖+1 = 1
𝜉𝑖 − 𝑎𝑖

= 1
(
√

5 + 1)/2 − 1
= 1

(
√

5 − 1)/2
=

√
5 + 1
2

,

so 𝜉𝑖 = 𝜉 for all 𝑖 ≥ 0. Noting that 𝑎𝑖 = 1 for all 𝑖 ≥ 0, we can rewrite ℎ𝑖 = ℎ𝑖−1+ℎ𝑖−2
and 𝑘𝑖 = 𝑘𝑖−1 + 𝑘𝑖−2, so

𝑘1 = 𝑘0 + 𝑘−1 = 𝑘−1 + 𝑘−2 + 𝑘−1 = 1 = ℎ−1 + ℎ−2 = ℎ0.
If 𝑘𝑖+1 = ℎ𝑖 for all integers 𝑖 ∈ [0, 𝑛 − 1], then we have

𝑘𝑛+1 = 𝑘𝑛 + 𝑘𝑛−1 = ℎ𝑛−1 + ℎ𝑛−2 = ℎ𝑛,
so by induction 𝑘𝑖+1 = ℎ𝑖 for all integers 𝑖 ≥ 0. Then

lim
𝑛→∞

(𝜉𝑛+1 + 𝑘𝑛−1
𝑘𝑛

) = lim
𝑛→∞

𝜉𝑛+1 + lim
𝑛→∞

𝑘𝑛−1
𝑘𝑛

= 𝜉 + lim
𝑛→∞

𝑘𝑛−1
ℎ𝑛−1

= 𝜉 + 1
𝜉

=
√

5.

This means that 𝜉𝑛+1 + 𝑘𝑛−1/𝑘𝑛 is eventually less than
√

5 + 𝜖 for every 𝜖 > 0, so

𝜉𝑛+1 + 𝑘𝑛−1
𝑘𝑛

>
√

5 + 𝜖

holds for only finitely many integers 𝑛. Hence there are only finitely many 𝑖 such
that

∣𝜉 − ℎ𝑖
𝑘𝑖

∣ = 1
𝑘𝑖(𝜉𝑖+1𝑘𝑖 + 𝑘𝑖−1)

= 1
𝑘2

𝑖 (𝜉𝑖+1 + 𝑘𝑖−1/𝑘𝑖)
< 1

(
√

5 + 𝜖)𝑘2
𝑖

.
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Since any rational number 𝑝/𝑞 satisfying |𝜉 − 𝑝/𝑞| < 1/((
√

5 + 𝜖)𝑞2) < 1/2𝑞2 is one
of the convergents of the simple continued fraction of 𝜉 by Theorem 3.4, this proves
the result. �

3.1. Quadratic Irrationals. Let [𝑎0; 𝑎1, 𝑎2, … ] be an infinite simple continued
fraction. [𝑎0; 𝑎1, 𝑎2, … ] is periodic if there exists an integer 𝑛 such that 𝑎𝑖 = 𝑎𝑖+𝑛
for 𝑖 sufficiently large. We can write these in the form

[𝑎0; 𝑎1, … , 𝑎𝑗, 𝑎𝑗+1, … , 𝑎𝑗+𝑛],

where the bar above 𝑎𝑗+1, … , 𝑎𝑗+𝑛 indicates that this block of partial quotients is
repeated indefinitely.

In the following result, quadratic irrationals are those irrational numbers which
are the solutions to quadratic equations with integer coefficients.

Theorem 3.7. Let 𝜉 = [𝑎0; 𝑎1, 𝑎2, … , ]. [𝑎0; 𝑎1, 𝑎2, … ] is periodic if and only if 𝜉 is
a quadratic irrational.

Proof. Suppose 𝜉 is periodic so that 𝜉 = [𝑎0; 𝑎1, … , 𝑎𝑗, 𝑎𝑗+1, … , 𝑎𝑗+𝑛]. Letting

𝜃 = [𝑎𝑗+1, … , 𝑎𝑗+𝑛] = [𝑎𝑗+1; 𝑎𝑗+2, … , 𝑎𝑗+𝑛, 𝜃]

we have

𝜃 = 𝜃ℎ𝑛−1 + ℎ𝑛−2
𝜃𝑘𝑛−1 + 𝑘𝑛−2

,

which is a quadratic equation in 𝜃 with integer coefficients, so 𝜃 is either a rational
or quadratic irrational. Since 𝜃 is necessarily irrational, 𝜃 is a quadratic irrational.
Now we have

𝜉 = [𝑎0; 𝑎1, … , 𝑎𝑗, 𝜃] = 𝜃𝑝 + 𝑝′

𝜃𝑞 + 𝑞′ ,

where 𝑝/𝑞 and 𝑝′/𝑞′ are the last two convergents of [𝑎0; 𝑎1, … , 𝑎𝑗]. Hence 𝜉 is also
a quadratic irrational.

Suppose 𝜉 is a quadratic irrational, so it can be represented as 𝜉 = 𝜉0 = (𝑎+
√

𝑏)/𝑐
for some integers 𝑎, 𝑏, 𝑐 with 𝑏 positive and 𝑐 non-zero. Since 𝜉 is irrational, 𝑏 is not
a perfect square. We then have

𝜉0 = 𝑎 +
√

𝑏
𝑐

= 𝑎|𝑐| + |𝑐|
√

𝑏
𝑐|𝑐|

= 𝑎|𝑐| +
√

𝑏𝑐2

𝑐|𝑐|
,

so we can write

𝜉0 = 𝑚0 +
√

𝑑
𝑞0

for some integers 𝑚0, 𝑞0, 𝑑 such that 𝑞0 ≠ 0, 𝑞0 ∣ (𝑑 − 𝑚2
0), and 𝑑 is not a perfect

square. Defining

(3)

𝑎𝑖 = ⌊𝜉𝑖⌋, 𝑚𝑖+1 = 𝑎𝑖𝑞𝑖 − 𝑚𝑖,

𝑞𝑖+1 =
𝑑 − 𝑚2

𝑖+1
𝑞𝑖

, 𝜉𝑖 = 𝑚𝑖 +
√

𝑑
𝑞𝑖

,

we claim that 𝜉 = [𝑎0; 𝑎1, 𝑎2, … ].
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We first show that 𝑚𝑖 and 𝑞𝑖 are integers such that 𝑞𝑖 ≠ 0 and 𝑞𝑖 ∣ (𝑑 − 𝑚2
𝑖 ).

Having already established this for 𝑖 = 0, suppose inductively that this is true for
𝑖. Then 𝑚𝑖+1 = 𝑎𝑖𝑞𝑖 − 𝑚𝑖 is an integer since 𝑎𝑖 is an integer by definition, and

𝑞𝑖+1 =
𝑑 − 𝑚2

𝑖+1
𝑞𝑖

= 𝑑 − (𝑎2
𝑖 𝑞2

𝑖 − 2𝑎𝑖𝑚𝑖𝑞𝑖 + 𝑚2
𝑖 )

𝑞𝑖
= 𝑑 − 𝑚2

𝑖
𝑞𝑖

+ 2𝑎𝑖𝑚𝑖 − 𝑎2
𝑖 𝑞𝑖

is an integer because 𝑞𝑖 ∣ (𝑑 − 𝑚2
𝑖 ). If 𝑞𝑖+1 = 0, then 𝑑 = 𝑚2

𝑖+1, contradicting
the fact that 𝑑 is not a perfect square; thus 𝑞𝑖+1 ≠ 0. Since 𝑞𝑖𝑞𝑖+1 = 𝑑 − 𝑚2

𝑖+1,
𝑞𝑖+1 ∣ (𝑑 − 𝑚2

𝑖+1), so we are done.
Noting that

𝜉𝑖 − 𝑎𝑖 = 𝑚𝑖 +
√

𝑑
𝑞𝑖

− 𝑎𝑖

= −(𝑎𝑖𝑞𝑖 − 𝑚𝑖) +
√

𝑑
𝑞𝑖

=
√

𝑑 − 𝑚𝑖+1
𝑞𝑖

=
𝑑 − 𝑚2

𝑖+1

𝑞𝑖(
√

𝑑 + 𝑚𝑖+1)

=
𝑞𝑖+1√

𝑑 + 𝑚𝑖+1

= 1
𝜉𝑖+1

𝜉𝑖 = 𝑎𝑖 + 1
𝜉𝑖+1

,

we have proven that 𝜉 = [𝑎0; 𝑎1, 𝑎2, … ] by Theorem 2.7.
Let 𝜉′

𝑖 = (𝑚𝑖 −
√

𝑑)/𝑞𝑖 for 𝑖 ≥ 0 (𝜉′
𝑖 is the conjugate of 𝜉𝑖). By rules of conjugation

and Theorem 2.2, we then have

𝜉′
0 = 𝜉′

𝑖ℎ𝑖−1 + ℎ𝑖−2
𝜉′

𝑖𝑘𝑖−1 + 𝑘𝑖−2
𝜉′

0𝜉′
𝑖𝑘𝑖−1 + 𝜉′

0𝑘𝑖−2 = 𝜉′
𝑖ℎ𝑖−1 + ℎ𝑖−2

𝜉′
𝑖(𝜉′

0𝑘𝑖−1 − ℎ𝑖−1) = −(𝜉′
0𝑘𝑖−2 − ℎ𝑖−2)

𝜉′
𝑖 = −𝑘𝑖−2

𝑘𝑖−1
(𝜉′

0 − ℎ𝑖−2/𝑘𝑖−2
𝜉′

0 − ℎ𝑖−1/𝑘𝑖−1
) .

ℎ𝑖−2/𝑘𝑖−2, ℎ𝑖−1/𝑘𝑖−1 → 𝜉0 as 𝑖 → ∞, and since 𝜉0 ≠ 𝜉′
0, the fraction in parenthesis

goes to 1. Thus 𝜉′
𝑖 is negative for 𝑖 > 𝑁 for some fixed 𝑁. Since 𝜉𝑖 is positive for

𝑖 ≥ 1, this implies 𝜉𝑖 − 𝜉′
𝑖 > 0 for 𝑖 > 𝑁. We thus have

2
√

𝑑
𝑞𝑖

= 𝑚𝑖 +
√

𝑑
𝑞𝑖

− 𝑚𝑖 −
√

𝑑
𝑞𝑖

> 0,
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so 𝑞𝑖 > 0 for 𝑖 > 𝑁. We also have
𝑞𝑖 ≤ 𝑞𝑖𝑞𝑖+1 = 𝑑 − 𝑚2

𝑖+1 ≤ 𝑑,
𝑚2

𝑖+1 < 𝑚2
𝑖+1 + 𝑞𝑖𝑞𝑖+1 = 𝑑

|𝑚𝑖+1| <
√

𝑑,
for 𝑖 > 𝑁. Since 𝑑 is fixed, this implies that there are only finitely many values for
𝑞𝑖 and 𝑚𝑖 and thus only finitely many distinct pairs (𝑚𝑖, 𝑞𝑖). Hence we can choose
integers 𝑟, 𝑠 with 𝑟 < 𝑠 such that 𝑚𝑟 = 𝑚𝑠 and 𝑞𝑟 = 𝑞𝑠. But then

𝜉𝑟 = 𝑚𝑟 +
√

𝑑
𝑞𝑟

= 𝑚𝑠 +
√

𝑑
𝑞𝑠

= 𝜉𝑠,

so 𝑎𝑟 = 𝑎𝑠. Suppose inductively that 𝑚𝑟+𝑖 = 𝑚𝑠+𝑖 and 𝑞𝑟+𝑖 = 𝑞𝑠+𝑖. Then 𝜉𝑟+𝑖 =
𝜉𝑠+𝑖, so 𝑎𝑟+𝑖 = 𝑎𝑠+𝑖. But then we have

𝑚𝑟+𝑖+1 = 𝑎𝑟+𝑖𝑞𝑟+𝑖 − 𝑚𝑟+𝑖 = 𝑎𝑠+𝑖𝑞𝑠+𝑖 − 𝑚𝑠+𝑖 = 𝑚𝑠+𝑖+1

and
𝑞𝑟+𝑖+1 =

𝑑 − 𝑚2
𝑟+𝑖+1

𝑞𝑟+𝑖
=

𝑑 − 𝑚2
𝑠+𝑖+1

𝑞𝑠+𝑖
= 𝑞𝑠+𝑖+1.

Hence by induction

𝑎𝑟+𝑖 = ⌊𝜉𝑟+𝑖⌋ = ⌊
𝑚𝑟+𝑖 +

√
𝑑

𝑞𝑟+𝑖
⌋ = ⌊

𝑚𝑠+𝑖 +
√

𝑑
𝑞𝑠+𝑖

⌋ = ⌊𝜉𝑠+𝑖⌋ = 𝑎𝑠+𝑖

for all 𝑖 ≥ 0. Thus [𝑎0; 𝑎1, 𝑎2, … ] is periodic. �

We say that a simple continued fraction is purely periodic if it is of the form
[𝑎0; 𝑎1, … , 𝑎𝑛].

Theorem 3.8. Let 𝜉 = [𝑎0; 𝑎1, 𝑎2, … , ] be a quadratic irrational. Then [𝑎0; 𝑎1, 𝑎2, … ]
is purely periodic if and only if 𝜉 > 1 and −1 < 𝜉′ < 0, where 𝜉′ is the conjugate of
𝜉.

Proof. Suppose 𝜉 > 1 and −1 < 𝜉′ < 0. Defining 𝜉𝑖 for 𝑖 ≥ 0 as in Equation (1), by
rules of conjugation we have

1
𝜉′

𝑖+1
= 𝜉′

𝑖 − 𝑎𝑖.

Since 𝜉0 = 𝜉 > 1, 𝑎𝑖 ≥ 1 for all 𝑖 ≥ 0. Thus if 𝜉′
𝑖 < 0, by the above equation we

must have 1/𝜉′
𝑖+1 < −1, so that −1 < 𝜉′

𝑖+1 < 0. Since −1 < 𝜉′ = 𝜉′
0 < 0, this proves

by induction that −1 < 𝜉′
𝑖 < 0 for all 𝑖 ≥ 0. Hence

0 < −𝜉′
𝑖 = −𝑎𝑖 − 1

𝜉′
𝑖+1

< 1,

so ⌊−1/𝜉′
𝑖+1⌋ = 𝑎𝑖. Since 𝜉 is a quadratic irrational, we must have 𝜉𝑟 = 𝜉𝑠 for some

integers 0 < 𝑟 < 𝑠. Then 𝜉′
𝑟 = 𝜉′

𝑠 and we have

𝑎𝑟−1 = ⌊− 1
𝜉′

𝑟
⌋ = ⌊− 1

𝜉′
𝑠
⌋ = 𝑎𝑠−1,

𝜉𝑟−1 = 𝑎𝑟−1 + 1
𝜉𝑟

= 𝑎𝑠−1 + 1
𝜉𝑠

= 𝜉𝑠−1.

By iterating this argument, we then have 𝜉0 = 𝜉𝑠−𝑟. Thus
𝜉 = 𝜉0 = [𝑎0; 𝑎1, … , 𝑎𝑟−𝑠−1, 𝜉𝑟−𝑠] = [𝑎0; 𝑎1, … , 𝑎𝑟−𝑠−1, 𝜉0] = [𝑎0; 𝑎1, … , 𝑎𝑟−𝑠−1].
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Suppose conversely that 𝜉 is purely periodic, i.e., 𝜉 = [𝑎0; 𝑎1, … , 𝑎𝑛−1]. Since
𝑎0 = 𝑎𝑛 ≥ 1, 𝑎𝑖 ≥ 1 for all 𝑖 ≥ 0. Then 𝜉 > ⌊𝜉⌋ = 𝑎0 ≥ 1. We also have

𝜉 = [𝑎0; 𝑎1, … , 𝑎𝑛−1, 𝜉] = 𝜉ℎ𝑛−1 + ℎ𝑛−2
𝜉𝑘𝑛−1 + 𝑘𝑛−2

,

so 𝜉 satisfies the quadratic equation

𝑓(𝑥) = 𝑘𝑛−1𝑥2 + (𝑘𝑛−2 − ℎ𝑛−1)𝑥 − ℎ𝑛−2 = 0.

𝜉 and 𝜉′ are the only solutions to this equation, so it suffices to show that 𝑓 has a
root between −1 and 0 by showing that 𝑓(−1) and 𝑓(0) have opposite signs. We
have 𝑓(0) = −ℎ𝑛−2 < 0 since the 𝑎𝑖 are positive for 𝑖 ≥ 0. Further, we have

𝑓(−1) = 𝑘𝑛−1 − 𝑘𝑛−2 + ℎ𝑛−1 − ℎ𝑛−2

= 𝑎𝑛−1𝑘𝑛−2 + 𝑘𝑛−3 − 𝑘𝑛−2 + 𝑎𝑛−1ℎ𝑛−2 + ℎ𝑛−3 − ℎ𝑛−2

= (𝑘𝑛−2 + ℎ𝑛−2)(𝑎𝑛−1 − 1) + 𝑘𝑛−3 + ℎ𝑛−3

≥ 𝑘𝑛−3 + ℎ𝑛−3

> 0

for 𝑛 ≥ 1. �

Theorem 3.9. Let 𝑑 be a positive integer that is not a perfect square. The simple
continued fraction expansion of

√
𝑑 has the form

√
𝑑 = [𝑎0; 𝑎1, … , 𝑎𝑟−1, 2𝑎0].

Furthermore, setting 𝜉0 =
√

𝑑, 𝑞0 = 1, and 𝑚0 = 0 and letting 𝑟 be the length of
the shortest period in the expansion of

√
𝑑, we have 𝑞𝑖 = 1 if and only if 𝑟 ∣ 𝑖 and

𝑞𝑖 ≠ −1 for all 𝑖 ≥ 0.

Proof. Consider the number
√

𝑑 + ⌊
√

𝑑⌋. We have
√

𝑑 + ⌊
√

𝑑⌋ ≥
√

2 + 1 > 1 and

⌊
√

𝑑⌋ <
√

𝑑 < ⌊
√

𝑑⌋ + 1 ⟹ −1 < −
√

𝑑 + ⌊
√

𝑑⌋ < 0,

so by Theorem 3.8
√

𝑑 + ⌊
√

𝑑⌋ is purely periodic, i.e.,
√

𝑑 + ⌊
√

𝑑⌋ = [𝑎0; 𝑎1, … , 𝑎𝑟−1] = [𝑎0; 𝑎1, … , 𝑎𝑟−1, 𝑎0],

where 𝑟 is chosen as small as possible. Note that 𝜉𝑖 = [𝑎𝑖; 𝑎𝑖+1, 𝑎𝑖+2, … ] is purely
periodic for all 𝑖 and 𝜉0 = 𝜉𝑗𝑟 for all 𝑗 ≥ 0. We must also have 𝜉1, … , 𝜉𝑟−1 all
different from 𝜉0, for otherwise would imply that 𝑟 is not minimal. Thus 𝜉𝑖 = 𝜉0 if
and only if 𝑖 = 𝑗𝑟 for some 𝑗 ≥ 0.

Let 𝜉0 =
√

𝑑 + ⌊
√

𝑑⌋, 𝑞0 = 1, and 𝑚0 = ⌊
√

𝑑⌋. Then 𝑚0, 𝑞0 ∈ ℤ, 𝑞0 ≠ 0, and
𝑞0 ∣ (𝑑 − 𝑚2

0). Thus we have, for all 𝑗 ≥ 0,

𝜉𝑗𝑟 = 𝜉0

𝑚𝑗𝑟 +
√

𝑑
𝑞𝑗𝑟

= 𝑚0 +
√

𝑑
𝑞0

𝑚𝑗𝑟 +
√

𝑑
𝑞𝑗𝑟

=
√

𝑑 + ⌊
√

𝑑⌋

𝑚𝑗𝑟 − 𝑞𝑗𝑟⌊
√

𝑑⌋ = (𝑞𝑗𝑟 − 1)
√

𝑑.
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Since the left side is an integer and the right side is irrational when 𝑞𝑗𝑟 ≠ 1, we
must have 𝑞𝑗𝑟 = 1. Suppose 𝑞𝑖 = 1. Then 𝜉𝑖 = 𝑚𝑖 +

√
𝑑, so by Theorem 3.8 we have

−1 < 𝑚𝑖 −
√

𝑑 < 0 ⟹
√

𝑑 − 1 < 𝑚𝑖 <
√

𝑑,

so 𝑚𝑖 = ⌊
√

𝑑⌋. Then 𝜉𝑖 = 𝜉0, so 𝑖 = 𝑗𝑟 for some 𝑗 ≥ 0.
Suppose 𝑞𝑖 = −1. Then 𝜉𝑖 = −𝑚𝑖−

√
𝑑, so by Theorem 3.8 we have −𝑚𝑖−

√
𝑑 > 1

and −1 < −𝑚𝑖 +
√

𝑑 < 0. But this implies
√

𝑑 < 𝑚𝑖 < −
√

𝑑 − 1, a contradiction.
Seeing that 𝑎0 = ⌊

√
𝑑 + ⌊

√
𝑑⌋⌋ = 2⌊

√
𝑑⌋, we now have

√
𝑑 = −⌊

√
𝑑⌋ + (

√
𝑑 + ⌊

√
𝑑⌋)

= −⌊
√

𝑑⌋ + [𝑎0; 𝑎1, … , 𝑎𝑟−1, 𝑎0]

= −⌊
√

𝑑⌋ + [2⌊
√

𝑑⌋; 𝑎1, … , 𝑎𝑟−1, 2⌊
√

𝑑⌋]

= [⌊
√

𝑑⌋; 𝑎1, … , 𝑎𝑟−1, 2⌊
√

𝑑⌋] .

Consider applying our recursive definitions to the starting values 𝜉0 =
√

𝑑, 𝑞0 =
1, and 𝑚0 = 0. We have

𝑎0 = ⌊𝜉0⌋ = ⌊
√

𝑑⌋,

𝑚1 = 𝑎0𝑞0 − 𝑚0 = ⌊
√

𝑑⌋,

𝑞1 = 𝑑 − 𝑚2
1

𝑞0
= 𝑑 − ⌊

√
𝑑⌋2.

But the values of 𝑚1 and 𝑞1 are the same when we start with 𝜉0 =
√

𝑑 + ⌊
√

𝑑⌋,
𝑚0 = ⌊

√
𝑑⌋, and 𝑞0 = 1, so the partial quotients 𝑎𝑖 are the same for

√
𝑑 and√

𝑑 + ⌊
√

𝑑⌋ for 𝑖 ≥ 1. �

4. Pell’s Equation

Let 𝑑 and 𝑁 be integers, with 𝑑 > 0 and not a perfect square. The Diophantine
equation 𝑥2 − 𝑑𝑦2 = 𝑁 is called Pell’s equation. It shares its name with English
mathematician John Pell due to a mistaken attribution by Euler. In the following
section, we explore how our results on continued fractions can be applied to Pell’s
equation.

Theorem 4.1. Let 𝑑 be a positive integer not a perfect square. Setting 𝜉0 =
√

𝑑,
𝑞0 = 1, and 𝑚0 = 0, expand

√
𝑑 into a simple continued fraction and let ℎ𝑖/𝑘𝑖 be

the 𝑖th convergent of
√

𝑑. Then we have ℎ2
𝑖 − 𝑑𝑘2

𝑖 = (−1)𝑖−1𝑞𝑖+1 for all integers
𝑖 ≥ 0.

Proof. We have

√
𝑑 = 𝜉0 = [𝑎0; 𝑎1, … , 𝑎𝑖, 𝜉𝑖+1] =

𝜉𝑖+1ℎ𝑖 + ℎ𝑖−1
𝜉𝑖+1𝑘𝑖 + 𝑘𝑖−1

=
(𝑚𝑖+1 +

√
𝑑)ℎ𝑖 + 𝑞𝑖+1ℎ𝑖−1

(𝑚𝑖+1 +
√

𝑑)𝑘𝑖 + 𝑞𝑖+1𝑘𝑖−1
,
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and so
√

𝑑 =
(𝑚𝑖+1 +

√
𝑑)ℎ𝑖 + 𝑞𝑖+1ℎ𝑖−1

(𝑚𝑖+1 +
√

𝑑)𝑘𝑖 + 𝑞𝑖+1𝑘𝑖−1
√

𝑑 =
𝑚𝑖+1ℎ𝑖 + ℎ𝑖

√
𝑑 + 𝑞𝑖+1ℎ𝑖−1

𝑚𝑖+1𝑘𝑖 + 𝑘𝑖
√

𝑑 + 𝑞𝑖+1𝑘𝑖−1

𝑚𝑖+1𝑘𝑖
√

𝑑 + 𝑑𝑘𝑖 + 𝑞𝑖+1𝑘𝑖−1
√

𝑑 = 𝑚𝑖+1ℎ𝑖 + ℎ𝑖
√

𝑑 + 𝑞𝑖+1ℎ𝑖−1

(𝑚𝑖+1𝑘𝑖 + 𝑞𝑖+1𝑘𝑖−1 − ℎ𝑖)
√

𝑑 = 𝑚𝑖+1ℎ𝑖 + 𝑞𝑖+1ℎ𝑖−1 − 𝑑𝑘𝑖.

If 𝑚𝑖+1𝑘𝑖 +𝑞𝑖+1𝑘𝑖−1 −ℎ𝑖 ≠ 0, then the left side is irrational and the right is rational,
a contradiction, so both sides must equal zero. This then immediately implies

𝑚𝑖+1ℎ𝑖𝑘𝑖 + 𝑞𝑖+1ℎ𝑖𝑘𝑖−1 − ℎ2
𝑖 = 0

and
𝑚𝑖+1ℎ𝑖𝑘𝑖 + 𝑞𝑖+1ℎ𝑖−1𝑘𝑖 − 𝑑𝑘2

𝑖 = 0,
so we have

𝑚𝑖+1ℎ𝑖𝑘𝑖 + 𝑞𝑖+1ℎ𝑖𝑘𝑖−1 − ℎ2
𝑖 = 𝑚𝑖+1ℎ𝑖𝑘𝑖 + 𝑞𝑖+1ℎ𝑖−1𝑘𝑖 − 𝑑𝑘2

𝑖

ℎ2
𝑖 − 𝑑𝑘2

𝑖 = (ℎ𝑖𝑘𝑖−1 − ℎ𝑖−1𝑘𝑖)𝑞𝑖+1

ℎ2
𝑖 − 𝑑𝑘2

𝑖 = (−1)𝑖−1𝑞𝑖+1.

�

Thus Pell’s equation is guaranteed to be solvable if 𝑁 can be found amongst the
integers (−1)𝑖−1𝑞𝑖+1. The periodicity of

√
𝑑 then implies that the convergents to√

𝑑 in fact provide infinitely many solutions.

Corollary 4.1. Let 𝑑 be a positive integer not a perfect square, let ℎ𝑖/𝑘𝑖 be the 𝑖th
convergent of

√
𝑑, and let 𝑟 be the length of the shortest period of the expansion of√

𝑑. Then, for all integers 𝑖 ≥ 0, we have

ℎ2
𝑖𝑟−1 − 𝑑𝑘2

𝑖𝑟−1 = (−1)𝑖𝑟−2𝑞𝑖𝑟 = (−1)𝑖𝑟.

Theorem 4.2. Let 𝑑 be a positive integer not a perfect square, let ℎ𝑖/𝑘𝑖 be the 𝑖th
convergent to

√
𝑑, and let 𝑁 be an integer with |𝑁| <

√
𝑑. If 𝑠 and 𝑡 are positive

integers such that 𝑠2 − 𝑑𝑡2 = 𝑁 and gcd (𝑠, 𝑡) = 1, then 𝑠 = ℎ𝑖 and 𝑡 = 𝑘𝑖 for some
integer 𝑖 ≥ 1.

Proof. Let 𝐸 and 𝑀 be positive integers such that gcd (𝐸, 𝑀) = 1 and 𝐸2 −𝜌𝑀2 =
𝜎, where 𝜌 and 𝜎 are real numbers with √𝜌 irrational and 0 < 𝜎 < √𝜌. Then

𝐸
𝑀

− √𝜌 =
𝐸 − 𝑀√𝜌

𝑀
= 𝐸2 − 𝜌𝑀2

𝑀(𝐸 + 𝑀√𝜌)
= 𝜎

𝑀(𝐸 + 𝑀√𝜌)
,

so we have

0 < 𝜎
𝑀(𝐸 + 𝑀√𝜌)

= 𝐸
𝑀

− √𝜌 <
√𝜌

𝑀(𝐸 + 𝑀√𝜌)
= 1

𝑀2(𝐸/(𝑀√𝜌) + 1)
.

Since 0 < 𝐸/𝑀 − √𝜌, we have 𝐸/(𝑀√𝜌) > 1, so the above implies

∣ 𝐸
𝑀

− √𝜌∣ < 1
2𝑀2 .
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By Theorem 3.4, 𝐸/𝑀 must be a convergent of the continued fraction expansion
of √𝜌.

Suppose 𝑁 > 0. Letting 𝜎 = 𝑁, 𝜌 = 𝑑, 𝐸 = 𝑠, and 𝑀 = 𝑡, the argument above
shows that the theorem holds in this case.

Suppose 𝑁 < 0. Since 𝑡2 − 𝑠2/𝑑 = −𝑁/𝑑, letting 𝜎 = −𝑁/𝑑, 𝜌 = 1/𝑑, 𝐸 = 𝑡,
and 𝑀 = 𝑠, we see that 𝐸/𝑀 = 𝑡/𝑠 must be a convergent of √𝜌 = 1/

√
𝑑. By

Theorem 2.8, this shows that 𝑠/𝑡 is a convergent of
√

𝑑. �

Theorem 4.3. Let 𝑑 be a positive integer not a perfect square and let 𝑟 be the length
of the shortest period in the expansion of

√
𝑑. If 𝑟 is even, then 𝑥2 −𝑑𝑦2 = −1 has no

solution, and all positive solutions of 𝑥2 − 𝑑𝑦2 = 1 are 𝑥 = ℎ𝑖𝑟−1 and 𝑦 = 𝑘𝑖𝑟−1 for
integers 𝑖 ≥ 1. If 𝑟 is odd, then 𝑥 = ℎ𝑖𝑟−1 and 𝑦 = 𝑘𝑖𝑟−1 give all positive solutions of
𝑥2 − 𝑑𝑦2 = −1 for positive odd integers 𝑖 and all positive solutions of 𝑥2 − 𝑑𝑦2 = 1
for positive even integers.

Proof. Since 𝑑 is a positive integer not a perfect square,
√

𝑑 ≥
√

2 > 1, so by
Theorem 4.2, any positive solution of 𝑥2 − 𝑑𝑦2 = ±1 is of the form 𝑥 = ℎ𝑖 and
𝑦 = 𝑘𝑖 for some integer 𝑖 ≥ 1, where ℎ𝑖/𝑘𝑖 is the 𝑖th convergent of

√
𝑑. By Theorem

4.1, we have
𝑥2 − 𝑑𝑦2 = ℎ2

𝑖 − 𝑑𝑘2
𝑖 = (−1)𝑖−1𝑞𝑖+1

for all integers 𝑖 ≥ 0. By Theorem 3.9, 𝑞𝑖+1 = 1 if and only if 𝑟 ∣ 𝑖+1 and 𝑞𝑖+1 ≠ −1
for all 𝑖 ≥ −1. Thus the solutions of 𝑥2 − 𝑑𝑦2 = ±1 can only occur at 𝑥 = ℎ𝑖𝑟−1
and 𝑦 = 𝑘𝑖𝑟−1 for integers 𝑖 ≥ 1.

Suppose 𝑟 is odd. Then 𝑥 = ℎ𝑖𝑟−1 and 𝑦 = 𝑘𝑖𝑟−1 is a solution of 𝑥2 − 𝑑𝑦2 = −1
when 𝑖 is an odd positive integer and a solution of 𝑥2 − 𝑑𝑦2 = 1 when 𝑖 is an even
positive integer.

Suppose 𝑟 is even. Then 𝑥 = ℎ𝑖𝑟−1 and 𝑦 = 𝑘𝑖𝑟−1 is a solution of 𝑥2 − 𝑑𝑦2 = 1
and thus not a solution of 𝑥2 − 𝑑𝑦2 = −1 for all integers 𝑖 ≥ 1. �

We have thus completely solved Pell’s equation for the case 𝑁 = ±1. A more
general result turns out to be not so simple. Suppose 𝑥2 − 𝑑𝑦2 = 𝑁 has a positive
solution (𝑥, 𝑦). Let (𝑢𝑖, 𝑣𝑖) be the positive solutions of 𝑥2 − 𝑑𝑦2 = 1. Then

(𝑢𝑖 + 𝑣𝑖
√

𝑑) (𝑥 + 𝑦
√

𝑑) = (𝑢𝑖𝑥 + 𝑣𝑖𝑦𝑑) + (𝑢𝑖𝑦 + 𝑣𝑖𝑥)
√

𝑑
and
(𝑢𝑖𝑥 + 𝑣𝑖𝑦𝑑)2 − 𝑑(𝑢𝑖𝑦 + 𝑣𝑖𝑥)2 = 𝑢2

𝑖 𝑥2 + 2𝑢𝑖𝑣𝑖𝑥𝑦𝑑 + 𝑣2
𝑖 𝑦2𝑑2 − 𝑢2

𝑖 𝑦2𝑑 − 2𝑢𝑖𝑣𝑖𝑥𝑦𝑑 − 𝑣2
𝑖 𝑥2𝑑

= 𝑢2
𝑖 𝑥2 + 𝑣2

𝑖 𝑦2𝑑2 − 𝑢2
𝑖 𝑦2𝑑 − 𝑣2

𝑖 𝑥2𝑑
= 𝑥2 (𝑢2

𝑖 − 𝑑𝑣2
𝑖 ) − 𝑑𝑦2 (𝑢2

𝑖 − 𝑑𝑣2
𝑖 )

= 𝑥2 − 𝑑𝑦2

= 𝑁.

Thus, given any initial solution of 𝑥2 − 𝑑𝑦2 = 𝑁, we can generate infinitely many
solutions [1]. It can also be shown that there exists a finite set of solutions (𝑥𝑖, 𝑦𝑖)
of 𝑥2 −𝑑𝑦2 = 𝑁 such that every solution is either in the set or of the form 𝑥+𝑦

√
𝑑 =

(𝑥𝑖 + 𝑦𝑖
√

𝑑)(𝑢𝑗 + 𝑣𝑗
√

𝑑) [1].
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