ANNIHILATING PAIRS INEQUALITIES IN ORLICZ SPACES
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ABSTRACT. Some results about annihilating pairs.
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1. INTRODUCTION
In this paper we generalize a result from Jaming, Iosevich, and Mayeli [2] to
Orlicz spaces.
2. FOURIER PRELIMINARIES AND PREVIOUS RESULTS

First, we introduce some definitions and basic theorems relating to Fourier trans-
forms in LP spaces.

Definition 2.1. Let f : Z4 — C. The Fourier transform of f is given by
P _d
Fm)=N=% 37 x(~a-m)f(x),

d
TEZY

27mit

where x(t) = e"~ . The corresponding inverse Fourier transform is given by

fl@)=N"% 3" x(@-m)f(m).

d
mezLy,

We may verify that these are indeed inverse processes, as

N*% Z X(xm)f(m):Nig Z x(z - m) Nﬁ% Z X(=y-m)f(y)

mezg, mezs, yezd,

=N > x(@—y-m)fy)

mezZd, yezy,

=N fw) Y x@—y-m)

yELY, mezd
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= f([l)),
since if z # y, the Gauss sum ZmeZ‘}v X((x—y)-m) = 0, whereas Zmez% x(0) = N4
when x = y.

Definition 2.2. An LP space over Zﬁi\, is the space

(Z f(@l”) <00,

d
TELY

LP(Z%) = f:Z% = C

for p € [1,00), or

Lm(Z%):{f:Z‘}V%C

ma | ()] < oo}
FASYAS

for p = co. We will consider the following norms with respect to sets A C Z¢, and
functions f in the LP space: The LP norm

[ fllzecay = (Z |f(z > 11l o< 4y = max|f(z)],

TEA
and the normalized LP norm

Also, we will use the shorthand || f{[rr(u) = [|fllLr(uq )-
N

Theorem 2.3 (Plancherel). Let f : Z% — C. Then

Hf”L?(Z‘}V) = ||f||L2(Z1dV)
Proof. Squaring the left hand side and expanding, we obtain

||f”i2(z3{,) = Z |f(m)]?

mEZ%
2
= 3 N Y w—am)f(a)
mezy z€LY
= > N x(- (—z-m)f(z)
mezd z€Z%, zeZd
=D N Y X m) f@)f(y
mezs, z,y€LY,
S F@f@NTT > x((z—y)-m).
z,y€z4, meZY,

Note now that for any = # y, the Gauss sum Zmez;{, x((x —y) - m) = 0, whereas
Zmesz x(0) = N¢ when x = y, hence

1By = S 1@ = 1712200

d
TEZY,
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as desired. 0

Theorem 2.4 (Riesz-Thorin). Let po,p1,qo,q1 € [1,00]. Fort € (0,1), let

1 1
Pt = 1% 3 G =11

Po Pp1 q0 q1

Then if T : (LPo + LP)(Z4,) — (L% + L%)(Z%,) is a linear operator such that for
fo € Lpo (Z(]iv) and f1 € L (Z?V)’

1T foll oo zay < Moll foll Lro z4.) 1T fullzor zay < M fillLes za ),
we have that
1—tq st
1Tl poe gy < MET Ml e
for f € LP(Z%).
Theorem 2.5 (Hausdorff-Young). If f : Z4 — C and 1 <p <2,

2 _da2=p
Al r zay <N 25 )Hf”LP(Z‘}V)a

1
1-1-
P

where p’ =

Proof. In the p =1 case, we have

1 flloe = max IN"% 37 x(—2m)f(2)

z€LY,

SN2 | f(a)

IEZ%
_d
=N"> ”fHLl(Z‘}\,)'
In the p = 2 case, we have
1fllz2zey = 1fllL2(ze,)

by Theorem 2.3. Now, letting po = oo, p1 = 2, g9 = 1, ¢1 = 2, we see that the
Fourier transform operator satisfies the assumptions of Theorem 2.4, hence

1Aty < N7ECF L,
for all p € [1,2]. O
We now prove some previous results regarding annihilating pairs inequalities in
74,
Theorem 2.6 (Ghobber and Jaming [1]). Let f : Z4 — C. If E,S c 7%,
|E||S| < N, then

1 .
[fllze@ze) = |1+ ——F—= (||f||L2(EB) + Hf||L2(sG)> :

11— /\6y5|
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Proof. Consider

1

1TefllL2(s) = (Z |1E/f<\m>|2>

mesS

SN x(—z-m)lpf(z)

meS z€ZY,

< d( (g%lx(—x-ﬂ”b)f(ﬂc)>2
=

> |f($)|>
=N"2 (Z ||f||2L1(E)>

NI

A
N

|
<

>

meS

[NI-Y

zeFE
meS
_d L
= N"2|S|2||fllL1(m)
_d ol L
SN72[S|IZ|EZ || fll 22 m),

where the last inequality follows by Cauchy-Schwarz. Now, via triangle inequality
and Theorem 2.3,

e fll2(s0) > 1TeF ) r2@a)—11EFlr2s)
> If e (1 - NHISIEIEL)
hence
1Al z2zay < I fllz2ey + 11 L2 0y
51l so
< 1_\/% + 1 fll L2(m0y
1f = Tpo fll 2 s0)

= S5 + 1 fll L2 (2
Vi

_ 11l 2 sy + 11l 2 oo

e
L=/ e

1

<|l1y— ( f ) .
< |1+ NVICTE £l 2oy + 1 F 1l L2 so)
Nd

O

Under certain assumptions, there is an improvement to the above result which
is of interest. With that in mind, we introduce the following definition:
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Definition 2.7. We say that S C Z4, satisfies a (p, ¢) Fourier restriction esti-
mate (1 < p < ¢) with uniform constant Cj, , > 0 if for any function f : Z¢ — C,

<|;|Z|f<m>|q> <CpgN7E | N [f(@)P

d
mes TELY

1
P

Theorem 2.8 (Jaming, Tosevich, and Mayeli [2]). Let f : Z4 — C, E,S C Z%,
and suppose that a (p, q) Fourier restriction estimate holds for S with constant Cp 4.

If1<p<2<gqand |E|27TP|S\ < C{de) then
p,q

1

Il < [ 1+ —— | (Ifllzeqaoy + 1 Fllzagsoy) -
cz |E| r |S
11/ BalBl 7 18|

If1<p<q<2and|E|"7"|S| < erdey then

11
B2

Il < [ 1+ —— | (If1lz2z9) + 1l sy ) -
1| _ {ChaEL 7 18|
Nd

Proof. Consider first the 1 < p < 2 < g case. By the restriction assumption,
e fllz2s) = 1512116l 2qus)
< 18171151l zous)
< CP7Q|S‘%N7%”]CHLP(E)

1. d
= CplSENTZ (1P lr(m)) " -
By Holder’s inequality, this quantity is bounded by

=

1

2-p \ P 1. d 2-p
BI) = Gl SN B s

2-p
G EIT S
- TH]E”LQ(EJ)-

Now, via triangle inequality and Theorem 2.3,

e fll2s0y 2 11efllL2@e)—I11efllacs)

1 _d
Coal$PNE (1771, 3,,,

P
> || fllzeey | 1 - W |
hence
1l 2zg) < 2 + 1F 12 ey
< HlEfIILz(S:p 1 et

CrqlEl P 1S
Nd
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1f = TpefllLese
= R

2

c2 |E| P |S
|/ GalBl 718
Nz soy + 1Sz2 es)
= — + 1 fll 20y
1 C34lEl P S|
_ /s s
1 ~
<1+ (1£1z2(ze) + 112250y ) -

2-p
1/ CEL 7 18]
Nd

Consider now the 1 < p < ¢ < 2 case. By the restriction assumption and Holder’s
inequality,
— [—
1EfllLas) =S71Ef | Lagus)
1.._d
< CpglSI*N" 2| flle(m)
101 1. 4
< CpglSI7|E|P 2N 2| flp2(m)-

Now, by Theorem 2.5, we have

2—q

— d
1EfllLe@zey 2 Nz )”fHLq'(E)
= NUGD|E77 | £l 1)
1

1_1 1_1
= NGB 2| £ 12,

where ¢’ = 2. With triangle inequality, we combine the above, obtaining
q

Nefllpasey 2 e fllra@y) — NMEfllLos)

> (NDIBEE = |51 BE 0N ) [l
> N9G-D| g (1 _ |5|%|E|%‘5Cp,qN_%) 1fllz2(m)

o/ |S|[E| 7 Cpq

d(i_1 1.1
> NGB T2 | 1 - N

I fllz2(2)

Now

IN

1fll2zay < Iz + 11f 1 2 (w0

11efllLa(se)

<
1_1 1_1 a s|1E|" 7" ce
NUGD|B| 2(1— "N> 1 Fllz2 )

1f = Tgofllpase
= (&) + £l 2 e

1_1 1_1 al|s E%C‘I
NG9 |pi—3 <1— "Nd“> 1fllz2(m)

+ 1 fll 20y
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[fll Lasy + I1f Il La(moy

_ e
11 11 A ISIEl P Cf
NG| g~ <1— %”") 1f1lz2(e)

1_1,.42
1581372 | £l agsey + 11£1 22 oy

< — + 11fll 2 &0y
11 1_1 a/l|S||E Tcg.q
NG 2)|E|q 2 <1 — ||Nd> Hf||L2(E)

- £l 2 (se) + 1L/l 2ee)
- a—p
11 af|s 5 Cl
[Ela™z <1 — BB i ”) 1f1lL2(e)

11
B2

+ 1222y

< |1+

(1711220 + 1 sy ) -

1 if1sue g,
Nd

3. ORLICZ SPACE PRELIMINARIES
Orlicz spaces are a natural generalization of LP spaces.

Definition 3.1. A function ® : [0,00) — [0,00] is a Young function if it is
convex and lim, . ®(z) = 0, lim, o, ®(z) = co. The complementary Young
function to ® is given by

¥(y) = sup{zy — ®(z) [z > 0},y € [0, 00).
The inverse to a Young function @ is defined by

o Hz) =inf{y > 0] d(y) > z}.

Finally, a Young function is called nice if it satisfies both lim,_.q @ = 0 and

limg s o0 @gx) =

Note that a pair of complementary Young functions (®,¥) satisfies Young’s
inequality

zy| < () + V(y).
Definition 3.2. An Orlicz space over Zﬁl\, is the space

> (I)<f§f)|) <1

d
TELY

L*(2%) =S f:2% —C

Let ¥ denote the complementary Young function to ®. We will consider the fol-
lowing norms with respect to sets A C Z4, and functions f in the Orlicz space: The
Orlicz norm

[fll e (ay = sup {Z [ (x)g(x)]

z€A

S w(jg(a))) < 1},

z€A
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the normalized Orlicz norm

Hf”L(‘I’)(A) = sup {i” Z |f(x)g(x

z€A

|y 2 @t }

So(1) <1}

z€A

the Luxemburg norm

||fHL‘P(A) = inf {k >0

and the normalized Luxemburg norm

@g;@('f(;)')“}'

Also, we will use the shorthand [|f|[ze () = [[fllze(u, )-
N

”fHL‘I’(MA) = inf {k >0

We now state some theorems in Orlicz spaces, beginning with Holder’s inequality.
In fact, a version of this inequality follows very naturally from the definition of our
norms.

Theorem 3.3 (Holder’s Inequality [4]). If ®, ¥ are complementary nice Young
functions, for f € L®, g€ LY, A C Z%, we have

1fallruay < Nl gy lglle i)
Proof. Take some u > [|g|[Lv(,,). We have that

1 allzrgn = ﬁ S I (@)gle

rEA

|A|Z|f

z€A

By definition of the Luxemburg norm, |A| Yowca ¥ (Ig(f)‘> < 1, so by definition of

of the Orlicz norm,

)

i 3 e

z€A

Taking u — ||g|| v we obtain

(MA)’
||ngL1(MA) < |\f||L<¢>(MA)||9||LW(;LA),
as desired. O

We will also introduce a number of useful lemmas, beginning with the following
exact computation of the normalized Orlicz norm of an indicator function.

Lemma 3.4. Let ® be a nice Young function with complementary Young function
U, and take some A C Z‘Ii\,. Then

Al oy (N
||1A||L<‘I’>(M):W\P ! ]
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Proof. Let g: 7% — C satisfy
1
Ni ¥
z€ZY,
Then, by Jensen’s inequality,
> zealygl@ > Nd
A] a7 2 Vle@l) < 77

Applying ¥~! to both sides, we have

S Jga)] < A9 (ff)

T€EA
thus
1
ILall Ly = sup § 773 > e (lg()]) <1

wEZ% lEZd

1 1

=sup {77 D 9@ | 57 D ¥

€A z€ZY

Al (N
< — — ).
=va’ 4

Conversely, if g = ¢! (‘A|> 14, then
1
~d Y(lg(z) L,
N 2 - v ZA -
N

hence

1 A, Nd
H1A||L<<1>>(H) > Nd Z [1a(z)g(z)| = W\I} <|A ]

d
TEZLY,

Since both inequalities have been shown, we have that

4], (N4
HlA”L(‘I’)(p):W\p ! )

Lemma 3.5. If ® is a nice Young function satisfying x? < ® for p € [1,00), then

forAQZ?V,
A7 N4
e < ()" (07 (T57) ) Wi

Proof. Let ¥ = (I)(x%). Since P < ®, ¥ is a nice Young function. By Theorem
3.3,

as desired.

Ao eay = 1PN 2rGeny S WP N Lo Guay 1Ll 2eo un)»
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where ¥U* is the complementary Young function to W. Take some u > || f| ze(,.,)

so that
rP <fp ) |A|Z< >§1‘

T€EA €A
Then, letting u — || f| 2 (a), we have that || f?|| v (,,) < uP = ||f|\’£q,(m). As such,

1
||f||Lp(#A) < ||fHLq>(MA)||1||£(‘P*)(#A)'
By Lemma 3.4,

Al yor (N AL (o1 (V)Y
e = \far) = we \* Al
A\ 7 N
e < ()" (07 (T57) ) Wi

as desired. O

SO

Corollary 3.6. Given a nice Young function ® and 1 < p < oo such that 2P < ®,
we have

1 lze ey < (@71)" 1F 1|2 )
Proof. Apply Lemma 3.5 on A = Z4. |

While the inequality from Theorem 3.3 has been useful, as evidenced by the
results above, a more general version of Holder’s inequality will be required for our
result. In particular, recall from the proof of Theorem 2.8 the use of the following
trick

‘:i\'—‘

1l = (Z If(x)l”> T (Z fp<a:>|> (1)

TEA z€A
which allowed us to apply Holder’s inequality to any LP norm, by first bringing it
to L'. Unfortunately, such a cheap trick will no longer work in Orlicz space; luckily,
an analogous result exists which will allow us to apply Holder’s inequality to any
L® norm. Toward that result, we introduce the following lemmas.

Lemma 3.7 (Generalized Young’s Inequality). If &, ¥, O are Young functions sat-
isfying
o7 (z) > U (2)0 7 ()
for all x € [0,00), then for all x,y € [0, 00),
D(zy) < V(z) +O(y).

Proof. 1t follows from the definition of ¥~! that ¥(¥~1(z)) < z < ¥~1(U(z)).
Take some z,y € [0,00), and suppose that ¥(z) < ©(y). Then
)
)

(

P(x )<<I>( He(x)e"H(B(y))
(¥ 1(0(y)0" 1 (B(y))
(@ 1(0(y)))
O(y).
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Similarly, if ¥(z) > O(y), ®(xy) < ¥(x). As such,
O(zy) < max{¥(z),0(y)} < ¥(z) + O(y),
as desired.
Corollary 3.8. If &,V O are Young functions satisfying
o7 (2) > ¥ (2)07 (x)

for all z € [0,00), then for f € LY, g € L®, and A C 7%,

Y@ f@g@)) < Y w(f(@))+ D 0(g(@)).

TEA r€A z€A

Proof. We sum over the inequality
O(|f(x)g(x)]) < ¥([f(2)]) + O(lg(=)]),
which follows immediately from Lemma 3.7.
Lemma 3.9. If ¢ is a Young function, for c € (0,1), x € [0,00),
b(cz) < c®(x).
Proof. Take € > 0. By convexity,
D(cx + (1 —c)e) < cP(x) 4 (1 —¢)P(e).

Taking € — 0, we obtain the desired result.

11

O

Theorem 3.10 (Generalized Holder’s Inequality [3]). If ®,¥,0 are Young func-

tions satisfying

O Hz) > U Hz)0 H(x)

for all z € [0,00), then for f € LY, g € L®, and A C Z‘fv, fgeL® a

I fgllLecay < 20 fllLecayllglliLeay-

nd

Proof. Take some u > || f||Lv(a), v > ||g|lro(a)- By Lemma 3.9 and Corollary 3.8,

o (If(zli}(x)l) < % Yo (W)

z€A T€A

< % <Z v (Ifg)l) Y (|g(vx)|

z€A
1
< 0+ =1

Now let u — || fl|Lwa), v = [|gllzo(a)- Then by definition of the Luxemburg norm,

I fgllecay < 2uv = 2| fllLwallgllze ),

as desired.

Finally, we are ready to introduce our main result.
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4. MAIN RESULTS

Definition 4.1. For nice complementary Young functions (®, V), z < & < ¥, we
say that S C Z¢ satisfies a (®, ¥) Fourier restriction estimate with uniform
constant C(®, V) if for any function f : Z¢ — C,

2 _d
I llze (us) < C, )N fll Lo z4,)-

Theorem 4.2. Let f : Z4, — C, E,S C Z%,, and suppose that a (®,¥) Fourier
restriction estimate holds for S with constant C(®,¥). Ifz < ® < 2? < ¥ and

(o () ¥ < sm

gy < | 14— — o (1711z2(z0) + 1 Flzasey) -
V (o= (k)7 EIN
Proof. By the restriction assumption and Lemma 3.6,
Eflr2es) = 1S ITES | L)
< (WHW)SIE LB )
< C@,0) (T D)?[SIEN T2 fll o ()

then

Let © be a Young function with ©1(z) = 2~ 2® (z). Then by Theorem 3.10,
the above quantity is bounded by

20(®, W) (¥ (1)?S]5 N3] o () 1 28

Note that we may directly compute |1 o (g) as

1
Ble () 1
Mo

1
=0t (
||1||L@ |E]
1

— ! (
||1||L0 |E|

||1||L9(E)=( i )>_1|E|%,

so that the above quantity can be rewritten as

1
20(0, W) ()25 5NF (20 (|E|)) 4 e
DO URIOTEI

(02 () petae

Now, via triangle inequality and Theorem 2.3,

S——" ~——
&
ol=

e fllz2sey 2 1Tmf 2 gy~ Teflacs)
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2 —1 4
>l [ 1- |29 <<I>’\If>l<w (1)4[S|

(0 () petave

hence
[fllz2@zey < 1 llz2my + 1 f1 L2 0y
116 fll 250y
Tyl \/402<<I>,~1v><w1<1>>4s

+ Hf||L2(EG)

(2= (1hr))"1EIN?

1 — Lo Flluese)
1o \/402<<1>,m<w—1<1>>4s + s can

(@~ (&1)) |1EIN

||f||L2(sﬂ) + 1 fll 2oy
- \/402(@‘1”)(‘?1(1))45 T llzee)

(@ (rh7)) " |EIN

1 A
1 ( )
- e 102 ce) + 1oy

IN

(@~ (h1)) 1 BIN
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