
Condensing Hardness in Boolean Functions

Gabriel Hart
Advised by Kaave Hosseini and Alex Iosevich∗

April 2025

1 Complexity Measures and Condensation

Let M be an n× n matrix over R. If M is of rank r, then there exists an r × r submatrix of M with rank
r. This is an example of a condensation property for the rank function. The rank function maps matrices
over R to non-negative integers. For an input M of size n, there exists a restriction of the rank function
to a subset of M ′ ⊆ M , whose size depends only on Rk(M), and not on n, such that Rk(M ′) = Rk(M).
A boolean function is a function f : {0, 1}n → {0, 1}. A complexity measure C maps boolean functions to
values in N (or sometimes in R+). A subfunction g of a boolean function f is a restriction of f to a subcube
of the {0, 1}n cube. That is, the values of some (xi)i∈S are fixed, to obtain a function on the remaining
(xj)j∈[n]\S .

Every boolean function f : {0, 1}n → {0, 1} can be represented by a unique multilinear polynomial P over
Rn. When evaluated at x ∈ {0, 1}n ⊂ Rn, P takes values in {0, 1}. It is important to note that if x ∈ {0, 1}n,
any xi in a monomial of P can be raised to any non-zero exponent without changing the value of P (x). If
a non-linear polynomial Q has the property that Q(x) = f(x)∀x ∈ {0, 1}n, a multilinear polynomial P for
f can be obtained from Q by replacing all exponents in Q with 1, and combining like terms. The number
of non-constant monomials in P with non-zero coefficients gives a complexity measure called the monomial
sparsity of f , denoted Mon(f). Each term in the multilinear polynomial for f is of the form

M(x) = αM

∏
i∈SM

xi

where αM ∈ R\{0}, and SM ⊆ [n]. Call the collection of sets {SM} for all monomials M of f the monomial
set system for f . A hitting set for f is a set H ⊆ [n] such that H ∩ SM ̸= ∅ for every SM in the monomial
set system for f . The size of the smallest possible hitting set for the monomial set system of f gives a
complexity measure called the hitting set size of f , denoted HS(f).

A boolean function f can also be represented by a decision tree. A decision tree T is a directed binary tree,
with edges orient from root to leaf. Every internal vertex v of T is associated with a coordinate iv ∈ [n], and
each leaf has a label in {0, 1}. To evaluate f using T , start at the root of T . At vertex v, if xvi = 1, move
to the right child of v, and if xvi = 0, move to the left child. Once a leaf is reached, f is given by the label
of that leaf. The smallest depth of any decision tree that expresses f is a complexity measure called the
decision tree depth of f , denoted DT(f). An AND decision tree functions the same as a decision tree, but
each internal vertex is associated with a non-empty test set Mv ⊆ [n]. At vertex v in an AND decision tree,
the monomial

∏
i∈Mv

xi is evaluated, or equivalently, the boolean AND
∧

i∈Sv

xi is evaluated, to determine which

branch is taken. The minimum depth of AND decision tree required to represent f is denoted AND(f).

The complexity measures discussed so far have the following relationships:

HS(f) ≤ AND(f) ≤ Mon(f)

∗Thanks also go to Zahra Hadizadeh for her thoughts and contributions in the early stages of this project

1

The bound HS(f) ≤ Mon(f) is immediate from the fact that choosing one xi from each monomial of f gives
a hitting set for f . To see that AND(f) ≤ Mon(f), first, observe that once the value of every monomial
of f at x is known, the value of f(x) is uniquely determined. Let T be an AND decision tree of depth
Mon(f) = k, with every layer full. Let M1...Mk ⊆ [n] be the monomials of f . Equip every node in layer j of
T with the test monomial Mj . Any path from the root of T to a leaf of T evaluates every monomial of T . If
the evaluation paths for x, y terminate in the same leaf of T , then for each monomial Mj , Mj(x) = Mj(y),
so f(x) = f(y). Labeling each leaf of T by f(x) for an arbitrary x in that leaf gives an AND decision tree
for f of depth k.

Showing HS(f) ≤ AND(f) requires slightly more work. A monomial Mi of f is called minimal if there
is no monomial Mj of f such that Mi ⊂ Mj . If Mj is not a minimal monomial, then f necessarily has
another monomial Mi ⊂ Mj . Therefore, H ⊆ [n] is a hitting set of f iff H has non-empty intersection
with every minimal monomial of f . Let Mi be a minimal monomial for f , and x ∈ {0, 1}n be defined by
xj = 1 iff j ∈ Mi. Then Mi(x) = 1, and Mj(x) = 0∀j ̸= i. Since f is a boolean function and Mi has
a non-zero coefficient, the coefficient on Mi in the polynomial for f must be 1 or −1. Importantly, all
monomials Mj , j ̸= i have the same value at x as at 0. Only the value of Mi differs. We can thus conclude
f(x) ̸= f(0). Let {Mi}i∈J be the minimal monomials of f . Define y ∈ {0, 1}n by yi = 1 iff i ∈

⋃
i∈J

Mi \H.

Then f(y) = f(0), since every monomial of f takes on the same value at y as at 0. However, if k ∈ H ∩Mi,
where Mi is a minimal monomial, then Mi(y+ ek) ̸= Mi(y), but for all j ̸= i, Mj(y+ ek) = Mj(y) = Mj(0).
Thus, at y, f is sensitive to all coordinates in H, in that flipping any coordinate in H flips the value of
f . Let My1

...Myr
be the sequence of monomials corresponding to the vertices in an AND decision tree for

f visited when evaluating f(y). If there exists a coordinate k ∈ H such that xk ̸∈ Myi for any i, then we

would have f(y + ek) = f(y), so
r⋃

i=1

Myi must cover H. Suppose k ∈ H is such that if k ∈ Myi for some i,

then there exists k′ ̸= k ∈ H ∩Myi . Then again we have f(y + ek) = f(y), since no monomials Myi differ
between y + ek and y. Therefore, the evaluation path for f at y contains at least one monomial for every
k ∈ H, and we can therefore conclude

AND(f) ≥ r ≥ |H| = HS(f)

Additionally, the following bounds hold:

AND(f) ≤ DT(f) ≤ n

This is because every decision tree is also an AND decision tree. In particular, an AND decision tree is a
decision tree if the test set at each vertex contains only a single coordinate. DT(f) ≤ n follows by exactly
the same argument as AND(f) ≤ Mon(f). If all n coordinates of x are known, then the value of f can be
determined.

2 Condensing Monomial Sparsity

This section will prove the following condensation theorem for monomial sparsity:

Theorem 1 Let f : {0, 1}n → {0, 1} be a boolean function with Mon(f) = k. Then there exists a subfunction
g of f on O(k2) coordinates with Mon(g) = k.

The theorem is trivially true when k ≥
√
n, since in that case, taking g = f is sufficient. Since Mon(f) can

be as high as 2n, Theorem 1 is only relevant in the particular case of low monomial sparsity. The proof of
Theorem 1 follows from a more general combinatorial lemma about set systems.

2.1 Isomorphic Set Systems

Let X be any set. A set system S over X is a collection of non-empty elements of the power set 2X . If S1

is a set system over X1 and S2 is a set system over X2, define a set system isomorphism to be a bijection

2

h : S1 → S2 that preserves inclusions and pair-wise disjointness. That is, A ⊆ B iff h(A) ⊆ h(B), and
A ∩B = ∅ iff h(A) ∩ h(B) = ∅.

Lemma 1 Let S be a set system over a set X, with |S| = k. Then there exists A ⊂ X with |A| ≤ 3k(k−1)
2

such that the set system {E ∩ A : E ∈ S} is isomorphic to S. An isomorphism h : S → {E ∩ A : E ∈ S} is
given by h(E) = E ∩A.

To prove this lemma, we will construct such a set A. For each pair of sets Ei, Ej ∈ S, include in A one
element from each from Ei ∩ Ej , Ei \ Ej , and Ej \ Ei, provided the set in question is non-empty.

For a pair a given pair of sets Ei, Ej ∈ S, at least one, and at most all three of these will be non-empty.

There are k(k−1)
2 pairs of sets Ei, Ej , and each contributes at most 3 distinct elements to A, so |A| ≤ 3k(k−1)

2 .
What remains is to show that h : S → {S ∩A : E ∈ S} given by h(E) = E ∩A is a set system isomorphism.

First, suppose Ei, Ej are disjoint sets in S. Since A ∩ Ei ⊆ Ei and A ∩ Ej ⊆ Ej , h(Ei) ∩ h(Ej) = ∅.
Conversely, if h(Ei) ∩ h(Ej) ̸= ∅, then there exists a ∈ A such that a ∈ Ei ∩ Ej . Then a ∈ A ∩ Ei and
a ∈ A ∩ Ej , so h(Ei) ∩ h(Ej) ̸= ∅.

Next, suppose Ei ⊆ Ej . Then Ei ∩ A ⊆ Ej ∩ A, so h(Ei) ⊆ h(Ej). If h(Ej) ̸⊆ h(Ei), then there exists a
such that a ∈ A∩Ej but a ̸∈ A∩Ei. Therefore, (A∩Ei) \ (A∩Ej) ̸= ∅. But (A∩Ei) \ (A∩Ej) ⊆ Ei \Ej ,
so Ei \ Ej ̸= ∅, and therefore Ei ̸⊆ Ej . □

2.2 Proof of Theorem 1

Let f : {0, 1}n → {0, 1} be a boolean function given by a polynomial P , and let M1...Mk be the monomials
of P . The monomials of P form a set system M = {M1...Mk} over [n]. By Lemma 1, there exists A ⊆ [n]

with |A| ≤ 3k(k−1)
2 such that the set system M ′ = {Mj ∩ A : Mj ∈ M} is isomorphic to M . Let g be the

subfunction of f obtained by fixing xi to 1 for all i ̸∈ A. In general, fixing xi to 0 for some i causes every
monomial of P containing xi to become identically 0. Fixing xi to 1 has the effect of removing xi from each
monomial in which it occurs. Since g is defined by fixing coordinates only to 1, and not to 0, a polynomial
Q for g can be obtained by removing xi from each monomial Mj of P , and then combining like terms.

The monomials obtained by removing all xi ̸∈ A from the monomials of P are precisely M ′ = {Mj ∩ A :
Mj ∈ M}. P is already assumed to be fully simplified, so if Mi,Mj are distinct monomials of P , then at
least one of Mi \ Mj and Mj \ Mi is non-empty. Because M ′ is isomorphic to M under the set system
isomorphism mapping Mi 7→ M ′

i , at least one of M ′
i \M ′

j and M ′
j \M ′

i is non-empty. Therefore, no terms
combine in Q, and the sets in M ′ are precisely the monomials of Q. □

Remark: Q is obtained merely by removing some xi from the monomials of P . No terms combine, and no
modification is made to the coefficients on the monomials. Therefore, each monomial M ′

i has exactly the
same coefficient in Q as Mi does in P . Put another way, the set system isomorphism Mi 7→ M ′

i preserves
the coefficients on monomials when considered as a map from the terms of P to the terms of Q.

2.3 Sharpness

At the time of writing, the question remains open as to whether the O(k2) condensation given in Theorem
1 is the best possible condensation for monomial sparsity, up to constants. The following example, however,
provides a lower bound of Ω(k).

Define f : {0, 1}n → {0, 1} by f(x) = 1 iff x = 1 − ei for some i. That is, f(x) = 1 iff there is some i such
that xi = 0, and xj = 1∀j ̸= i. The multilinear polynomial for f is given by

P (x) =

 n∑
i=1

∏
j ̸=i

xj

− n ·
n∏

j=1

xj

3

This expression for P is fully simplified, and we can observe that Mon(f) = n + 1. Suppose we wished to
build a subfunction g of f with Mon(g) = Mon(f). Fixing any xi to 0 is out of the question. For any xi, the
only monomial not containing xi is

∏
j ̸=i

xj . Fixing xi to 0 causes all other monomials to become identically

0, and the resulting function will have a monomial sparsity of 1. On the other hand, fixing xi to 1 results
in xi being removed from each monomial of P . In this case, the monomial M1 =

∏
j ̸=i

xi remains unchanged,

while the monomial M2 =
n∏

j=1

xj becomes equal to M1, and M1 and M2 combine into a single monomial. In

particular, the subfunction g obtained by fixing xi = 1 in f has Mon(g) = Mon(f) − 1 and is given by the
polynomial

Q((xj)j ̸=i) =

∑
i ̸=j

∏
k ̸=i,j

xk

− (n− 1)
∏
j ̸=i

xj

3 Condensing Hitting Set Size

The notions of minimal monomials and hitting sets as defined previously for the monomial set system of a
boolean function’s polynomial can be extended to arbitrary set systems. One property worth noting is that
a set system isomorphism h : S1 → S2 preserves minimal sets. If E ∈ S1 is such that there does not exist
F ∈ S1 \ {E} with F ⊆ E, then the same will be true of h(E) in S2 due to the inclusion preserving property
of set system isomorphisms. Conversely, if F ⊆ E, then h(F) ⊆ h(E). As noted previously, a necessary and
sufficient condition for H ⊆ [n] to be a hitting set for the monomial set system M of a boolean function
f is for H to have non-empty intersection with every minimal monomial in M . Given the positive result
for condensation of monomial sparsity, it is reasonable to ask whether hitting set size would condense by a
similar construction.

3.1 Condensing With Respect to Monomial Sparsity

One result for condensation of hitting set size comes as a corollary of Theorem 1:

Corollary 1 Let f : {0, 1}n be a boolean function with Mon(f) = k and HS(f) = r. Then there exists a
subfunction g of f on O(k2) variables with HS(g) ≥ r.

Let g be the same subfunction constructed in the proof of Theorem 1, and M and M ′ be the monomial set
systems for f and g respectively. Let H be a hitting set of minimum possible size for M ′. By construction,
M ′

i ⊆ Mi. Therefore, if H ∩ M ′
i ̸= ∅, then H ∩ Mi ̸= ∅. Thus, H is also a hitting set for M , though not

necessarily an optimal one.

Remark: It should be noted that in general, set system isomorphisms do not preserve hitting set size.
As defined, our notion of set system isomorphism captures only the pair-wise incidence relations between
elements of the set system, and does distinguish structural differences that require more than 2 elements to
observe. For example, the following set systems are isomorphic:

S1 = {{1, 2}, {2, 3}, {3, 1}}
S2 = {{1, 2}, {1, 3}, {1, 4}}

However, {1, 2} is an optimal hitting set for S1, whereas {1} is an optimal hitting set for S2.

3.2 Restricting to a Hitting Set Fails

Corollary 1 provides a condensation of hitting set size to a subfunction of size dependent on monomial
sparsity. The question remains, though, as to whether hitting set size can be condensed in a subfunction of

4

size depending on HS(f). One possible method could be to take a minimum hitting set H of f , and fix xi

to 1 for all i ̸∈ H. This construction would seem to preserve every minimal monomial, but for the fact that
it may produce like terms, which might then combine to 0.

The following examples illustrate the failure of this approach. Consider the boolean function

f(x, y, z) = xy + xz − 2xyz

An optimal hitting set for f is H = {x}. Fixing y, z to 1 results in the subfunction

f(x, 1, 1) = x+ x− 2x ≡ 0

More significantly, this function f can be used as a building block to construct larger examples. Let g :
{0, 1}n → {0, 1} be the indicator function of the 0 vector. A polynomial expressing g is given by

g(x) =

n∏
i=1

(1− xi)

Note that every possible monomial occurs with non-zero coefficient in g. Define h : {0, 1}3n → {0, 1} by

h(x1, y1, z1...xn, yn, zn) = g(f(x1, y1, z1), ...f(xn, yn, zn))

From the polynomial representations of f and g, we know that ∀i, the monomials xiyi and xizi occur in h
with coefficient −1. Therefore, a hitting set for h must hit all such monomials. Specifically, H = {x1...xn}
is a minimum hitting set for h. Fixing all variables not in H to 1 gives the subfunction

g(f(x1, 1, 1)...f(xn, 1, 1)) = g(0, ...0) ≡ 1

To summarize, we have constructed a boolean function h on 3n variables such that when all coordinates
outside of a minimum hitting set are fixed to 1, the resulting subfunction is constant.

4 Condensing AND Decision Tree Depth

In this section, I will prove the following condensation theorem1 for AND decision tree depth:

Theorem 2 Let f : {0, 1}n → {0, 1} be a boolean function with Mon(f) = k. Then there exists a subfunction
g of f on O(k2) variables with AND(g) ≥ AND(f). Moreover, g is the same subfunction as the condensation
of monomial sparsity constructed in Theorem 1.

Note that the size of the condensation is still a function of Mon(f), rather than AND(f). [Note: this
should not yet be called a theorem, as it turns out the proof is incorrect. I have left the
incorrect proof in this draft so you can see what I’m trying to do and if there’s any way to
salvage it.]

4.1 Maximal Monomials

Recall that a monomialMi of a boolean function f is considered maximal iff there do not exist any monomials
Mj of f with Mi ⊂ Mj . The proof of theorem 2 will require the following lemma about maximal monomials:
[note: this lemma is no longer used in the proof of theorem 2, but I do plan to still include it]

Lemma 2 Every boolean function has a unique maximal monomial.

1Not actually proved yet, should say conjecture.

5

Let f : {0, 1}n → {0, 1}. The lemma holds trivially in the case that f is constant or Mon(f) = 1, so we
can assume f has at least 2 distinct monomials. By way of contradiction, suppose f has exactly 2 maximal
monomials, M1 and M2. Define g1, g2, g1,2 to be the subfunctions obtained by fixing the coordinates in
M2 \M1, M1 \M2, and M1∆M2 to 0 respectively. The monomials for g1 are precisely those monomials M
of f with M ⊆ M1. Similarly, the monomials of g2 are those with M ⊆ M2, and the monomials of g1,2 have
M ⊆ M1 ∩M2. In particular, extending g1, g2, g1,2 to the whole space {0, 1}n, we can write

f(x) = g1(x) + g2(x)− g1,2(x)

Define X1, X2 ⊆ {0, 1}n by

X1 = {x ∈ {0, 1}n : g1(x) = 1− g1,2(x)}
X2 = {x ∈ {0, 1}n : g2(x) = 1− g1,2(x)}

If X1 ∩X2 = ∅, then g1 ≡ 1− g2, and

f(x) = (1− g2(x)) + g2(x)− g1,2(x) = 1− g1,2(x)

In particular, this implies that the maximal monomials of f are precisely the maximal monomials of g1,2. But
all monomials M of g1,2 have M ⊆ M1∩M2, contradicting the assumption that M1 and M2 are, themselves,
distinct maximal monomials of f .

On the other hand, suppose X1∩X2 ̸= ∅. Then there exists x ∈ {0, 1}n such that g1(x) = g2(x) = 1−g1,2(x).
Then f(x) = 2 − 3g1,2(x). If g1,2(x) = 0, then f(x) = 2. If g1,2 = 1, then f(x) = −1. In either case, the
premise that f is a boolean function is contradicted.

What remains is the case where f might have more than 2 maximal monomials. Suppose f has maximal

monomials M1...Mr. Fixing all xi to 1 for i ∈
r⋃

j=1

Mj \(M1∪M2) gives a subfunction g which, if not constant,

has the maximal monomials M1 and M2. Since M1 and M2 are each maximal, M1 \M2 and M2 \M1 are
both non-empty, so g is not constant. However, the existence of such a g is disallowed by the above result.
□

Corollary 2 Let f : {0, 1}n be a boolean function with monomials {Mi}i∈[k], given by an optimal AND
decision tree T . If N is the test monomial for a vertex of T , then N ⊆ Mi for some monomial Mi of f .

The corollary is almost immediate from the observation that a coordinate xi appears in some node of T iff xi

appears in some monomial Mi for f . If f is constant with respect to xi, then fixing xi to 0 does not change
the value of f . This does, however, kill any monomials and AND decision tree nodes that contain xi, creating
a subfunction identical to f when extended to the whole {0, 1}n cube, but with better monomial sparsity
and/or AND decision tree depth. However, T is assumed to be optimal, and the polynomial representation
of f is unique, so this is not possible. If f is not constant on xi, then there exists x ∈ {0, 1}n such that
f(x) ̸= f(x + ei). If xi does not occur in any monomial of f , then we would have f(x) = f(x + ei). If xi

is not tested in any node N of T , then T also cannot distinguish between x and x + ei. By the previous
lemma, there exists a maximal monomial M0 of f such that Mi ⊆ M0 for every monomial Mi of f . That is,
if xj is present in any monomial of f , then M0 contains xj . Thus, for every test monomial N in T , we have
N ⊆ M0.

4.2 The Topology of AND Decision Trees

Let f : {0, 1}n → {0, 1} be a boolean function with monomials {M1...Mk}, represented by an AND decision
tree T . Define an equivalence relation ∼: [n]× [n] → {0, 1} by x ∼ y iff for all Mi, x ∈ Mi ⇔ y ∈ Mi. The
equivalence classes of ∼ form a basis B for a topology T on [n], which is the same as the topology induced
by the sub-basis of {M1...Mk}.

6

Lemma 3 Define an AND decision tree T ′ by, for each node v in T , replace the test monomial N at v with
a minimal open set containing N in the topology T .2 T ′ is a minimal AND decision tree that decides f .

A minimal open cover relative to T for a set N ⊆ [n] can be obtained by taking
⋃

j∈N

βj , where βj ∈ B is

the basis element containing j. Each j is covered by a unique basis element βj , since the basis B consists
of the equivalence classes of an equivalence relation on [n]. To prove the lemma, it will suffice to show that
replacing a single xj by (xi)i∈βj results in a tree that still decides f . Replacing each xj one at a time in this
manner inductively gives the desired result. Moreover, we only need to show the replacement of xi and xj

xixj where i ∼ j, since the result follows inductively for larger equivalence classes.

Choose some i ∼ j ∈ [n], and let T1 be the AND decision tree that is identical to T except that every test
monomial N in T with xi ∈ N or xj ∈ N has been replaced by the linear monomial N ′ equal to Nxixj

on the {0, 1}n cube. Suppose x has xi = xj = 1. Then xixj = 1, and for every test monomial, we have
N(x) = N ′(x). Therefore, x has the same evaluation path in T1 as in T , and T1 correctly classifies x.
Similarly, if xi = xj = xixj = 0, x has the same evaluation path in T and T1. If one of xi = 0 and xj = 0
holds, then xixj = 0. Let y be identical to x, except yi = yj = 0. The evaluation path of x in T1 is the
same as that of y in T1, which in turn is identical to the evaluation path for y in T . However, this is fine,
because if i ∈ M for some monomial M , then j ∈ M as well, so M(x) = M(y). If a monomial M is such that
i, j ̸∈ M , then M(x) = M(y) since x and y are identical at coordinates other than i, j. Since all monomials
of f take the same value on x and y, f(x) = f(y). Therefore, x is still classified correctly by T1. □

To summarize, every boolean function f has an optimal AND decision tree where every node examines a set
of coordinates that is open in the topology on [n] generated by the sub-basis of the monomials of f .

4.3 Proof of Theorem 2

Recall the construction used in Theorem 1 to condense monomial sparsity. Let f : {0, 1}n → {0, 1} be a
boolean function with Mon(f) = k, and let g : A → {0, 1} be the condensation found in Theorem 1, where
A ⊆ [n] is the set of coordinates not fixed by g, and |A| = O(k2). Let s : {M1...Mk} → {M ′

1...M
′
k} be the

set system isomorphism from the monomials of f to the monomials of g. Lemma 3 guarantees the existence
of an optimal AND decision tree T ′ for g where the test sets at the vertices of T ′ are open in the topology
on A generated by the sub-basis {M ′

1...M
′
k}. To prove Theorem 2, we will build an AND decision tree T for

f that is isomorphic as a graph to T ′.

Let T ′ be the quotient topology on A induced by ∼, which, as established previously, is the same as the
topology generated by the sub-basis {M ′

1...M
′
k}. Every test set N ′ of a vertex v′ in T ′ is open in T ′. By

definition of the topology generated by a sub-basis, we can write N ′ =
⋃
i∈I

⋂
j∈Ji

M ′
j . Let the corresponding

vertex in T have the test monomial N =
⋃
i∈I

⋂
j∈Ji

Mi where s(Mi) = M ′
i . Note that intersecting the test

monomials of T with A gives T ′ exactly.

Since determining the value of all monomialsMi at a point x is sufficient to determine f(x), if y =
⋃

Mi(x)=1

Mi,

then f(x) = f(y). It is therefore sufficient to prove that T decides f at just those x for which {i : xi = 1}
can be given as a union of monomials Mi. Suppose x is such that {i : xi = 1} =

⋃
i∈I

Mi, and let z be the

corresponding restriction of x to the coordinates in A. Then

z =
⋃
i∈I

Mi ∩A =
⋃
i∈I

M ′
i

2The notion of a minimal open set that contains an arbitrary set is not well-defined in general topological spaces, but our
topology T has finitely many open sets.

7

Thus, for all i, we have Mi(x) = M ′
i(z). Recall that the polynomial representations for f and g are given by

f(x) =

k∑
i=1

αiMi(x)

g(z) =

k∑
i=1

αis(Mi)(z) =

k∑
i=1

αiM
′
i(z)

Since for all i, Mi(x) = M ′
i(z), we have f(x) = g(z). Also,

A ∩
⋃
i∈I

⋂
j∈Ji

Mj =
⋃
i∈I

⋂
j∈Ji

A ∩Mj =
⋃
i∈I

⋂
j∈Ji

M ′
j

Therefore, for corresponding decision nodes N and N ′ in T and T ′, we have N(x) = N ′(z)3, so the evaluation
path of x in T is the same as the evaluation path of z in T ′, meaning T decides f . T ′ is an optimal AND
decision tree for g, and T and T ′ have the same depth, so AND(f) ≤ AND(g). □

References

[Hru24] Pavel Hrubeš. “Hard Submatrices for Non-Negative Rank and Communication Complexity”. In:
39th Computational Complexity Conference (CCC 2024). Ed. by Rahul Santhanam. Vol. 300.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2024, 13:1–13:12. isbn: 978-3-95977-331-7. doi: 10.4230/
LIPIcs.CCC.2024.13. url: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.CCC.2024.13.

[Kno+21] Alexander Knop, Shachar Lovett, Sam McGuire, et al. “Log-rank and lifting for AND-functions”.
In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. STOC
2021. Virtual, Italy: Association for Computing Machinery, 2021, pp. 197–208. isbn: 9781450380539.
doi: 10.1145/3406325.3450999. url: https://doi.org/10.1145/3406325.3450999.

[Yan91] Mihalis Yannakakis. “Expressing combinatorial optimization problems by Linear Programs”.
In: Journal of Computer and System Sciences 43.3 (1991), pp. 441–466. issn: 0022-0000. doi:
https://doi.org/10.1016/0022-0000(91)90024-Y. url: https://www.sciencedirect.com/
science/article/pii/002200009190024Y.

[LS88] L. Lovasz and M. Saks. “Lattices, mobius functions and communications complexity”. In: [Pro-
ceedings 1988] 29th Annual Symposium on Foundations of Computer Science. 1988, pp. 81–90.
doi: 10.1109/SFCS.1988.21924.

[Göö+24] Mika Göös, Ilan Newman, Artur Riazanov, et al. “Hardness Condensation by Restriction”. In:
Electronic Colloquium on Computational Complexity. Weizmann Institute of Science, 2024. url:
https://eccc.weizmann.ac.il/report/2023/181/.

[KSP20] Rohan Karthikeyan, Siddharth Sinha, and Vallabh Patil. “On the resolution of the sensitivity
conjecture”. In: Bulletin of the American Mathematical Society 57.4 (Oct. 2020), pp. 615–638.
issn: 0273-0979. doi: 10.1090/bull/1697.

3This is the incorrect step in the proof.

8

https://doi.org/10.4230/LIPIcs.CCC.2024.13
https://doi.org/10.4230/LIPIcs.CCC.2024.13
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.13
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.13
https://doi.org/10.1145/3406325.3450999
https://doi.org/10.1145/3406325.3450999
https://doi.org/https://doi.org/10.1016/0022-0000(91)90024-Y
https://www.sciencedirect.com/science/article/pii/002200009190024Y
https://www.sciencedirect.com/science/article/pii/002200009190024Y
https://doi.org/10.1109/SFCS.1988.21924
https://eccc.weizmann.ac.il/report/2023/181/
https://doi.org/10.1090/bull/1697

	Complexity Measures and Condensation
	Condensing Monomial Sparsity
	Isomorphic Set Systems
	Proof of Theorem 1
	Sharpness

	Condensing Hitting Set Size
	Condensing With Respect to Monomial Sparsity
	Restricting to a Hitting Set Fails

	Condensing AND Decision Tree Depth
	Maximal Monomials
	The Topology of AND Decision Trees
	Proof of Theorem 2

