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1 Introduction

The question of whether diameter 2 graphs are 3-colorable in polynomial time
has a well known open problem in graph theory. Diameter 2 graphs are graphs
where each pair of vertices are either neighbors, or share a common neigh-
bor. Subexponential colorings, polynomial time approximations, and polyno-
mial time algorithms on certain classes (or graphs with restricted subgraphs) are
all known. In this paper, we explore a number of methods for coloring diameter
2 graphs, and provide incremental results towards the goal of polynomial time
3 coloring for diameter 2 graphs.

2 Spectral Background

Matrices with respect to a graph will have a subscript denoting this. If context
if obvious this subscript will be omitted.

Definition 1. The adjacency matrix A has entry aij = 1 if there is an edge
between vertices i, j and 0 otherwise.

Definition 2. The degree matrix D has entry dij = deg(vi) if i = j, and 0
otherwise.

Definition 3. The vertex-edge incidence matrix R of a graph G is n×m, with
entry rij = 1 if vertex vi is an endpoint of edge ej, and 0 otherwise.

Definition 4. Laplacian L is defined as A-D.

Definition 5. The signless Laplacian |L| is defined as A+D. Note this matrix
is positive semidefinite.

Lemma 2.1. If R is the vertex-edge incidence matrix of a graph G, then RRT =
A+D, and RTR = AL(G) + 2I|E|

Proof. The first follows from observing that rows multiplied with a transpose
of itself will count all edges adjacent to a vertex (which is its degree), and rows
multiplied with transposes of other rows will yield a 1 if they share an edge, and
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0 if not. Since we are dealing with simple graphs, we will not count more than
one edge.

The second follows similarly, by noting that each edge connects exactly 2
vertices, so the ”degree matrix” is 2I|E|.

Definition 6. The characteristic polynomial of the adjacency matrix of a graph
G is denoted by PG(λ)

Definition 7. The characteristic polynomial of the signless Laplacian of a graph
G is denoted by QG(λ)

Definition 8. Two graphs are called cospectral if they have the same spectrum.

Definition 9. Two graphs are called Q-spectral if they have the same polyno-
mial Q(λ)

Definition 10. For a graph G, we define the line (dual) graph G’ to swap
vertices and edges.

Definition 11. Two graphs are called L-spectral if their line graphs are cospec-
tral

Lemma 2.2. PG+cI(λ) = PG(λ+ c)

Proof. Note that (det((A + cI) − λI) = det(A + (c − λ)I), then complete a
change of variable.

Lemma 2.3. Let B ∈ Rn×m, with n ≤ m and rank(B) = r. Then,

det(λIm −B⊤B) = λm−n det(λIn −BB⊤)

Proof. Let M = B⊤B ∈ Rm×m, and N = BB⊤ ∈ Rn×n.Then, both of these
are positive semidefinite, and share the same nonzero eigenvalues. As a result,
rank(M) = rank(N) = r. To see this, observe that for any vector x ∈ Rm,

x⊤Mx = x⊤B⊤Bx = (Bx)⊤(Bx) = ∥Bx∥2 ≥ 0,

so M is positive semidefinite. Similarly, N is positive semidefinite.
Now, suppose λ ̸= 0 is an eigenvalue of M with eigenvector x ∈ Rm. Then:

B⊤Bx = λx.

Apply B to both sides:
BB⊤(Bx) = λ(Bx).

So either Bx = 0, which would imply λ = 0, a contradiction, or Bx ̸= 0, and
Bx is an eigenvector of N with eigenvalue λ. A similar argument shows that
every nonzero eigenvalue of N is also an eigenvalue of M .
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Then, let the nonzero eigenvalues of B⊤B and BB⊤ be µ1, . . . , µr. We have:

det(λIm −B⊤B) =

r∏
i=1

(λ− µi) · λm−r

det(λIn −BB⊤) =

r∏
i=1

(λ− µi) · λn−r

Therefore,

det(λIm −B⊤B) = λm−n det(λIn −BB⊤)

Lemma 2.4. [Cvetkovic] PL(G)(λ) = (λ+ 2)m−nQG(λ+ 2), and if Spec(G) =
λ1, . . . , λt, then the eigenvalues of L(G) are θi = λi − 2 i ∈ [t], θi = −2 else.

Proof. This follows from 2.1 and 2.3.

Theorem 2.5 (Cvetkovic). Q-spectral implies L-spectral

Proof. If graphs are Q−spectral, then they have the same number of vertices
and edges. Then, L-spectrality follows from 2.4

However, note that we can find graphs that share a line graph Laplacian
that are not Q−spectral. To see this, consider K4 − e ∪ K2 and the butterfly
graph with an additional disconnected vertex. Then, both line graphs have
characteristic polynomial λ(λ2 − λ − 4)(λ − 1)(λ + 1)2, however the first has
Q polynomial λ(λ− 1)(λ− 2)(λ− 3)(λ2 − 5λ+ 2), while the latter has λ2(λ−
1)(λ− 2)(λ− 3)(λ2 − 5λ+ 2).

Lemma 2.6. An independent set in L(G) corresponds to a matching in G.

Proof. By selecting edges in a matching, we ensure that these edges are adjacent
to no other edges. Thus, these edges are not connected in the line graph.

Lemma 2.7. For a graph G, |E| = −p1

2 where p1 is the coefficient of λn−1 in
QG

Proof. The trace of |L| is equal to the sum of vertex degrees of G, and all lengths
of walk 2 are edges.

Theorem 2.8 (Cvetkovic et al.). Let H be G after switching edges ab, cd to non
edges ad, bc. Let x be a principal eigenvector of G. If (xa − xc)(xb − xd)] ≥ 0.
then λH

1 ≥ λG
1 , with equality iff both of the two products are 0.
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Proof. First, note that

λG
1 = sup

x∈Rn−{0}

xTQGx

xtx
= max

∥x∥=1
xTQx

, then if we change edges we have, if x is the eigenvector corresponding to λG
1 ,

that

λH
1 − λG

1 = max
∥y∥=1

yTQHy − xTQGx ≥ xT (AH −AG)x+ xT (DH −DG)x

With equality if and only if x is also the principle eigenvector for QH . Then,
from this we obtain

λH
1 − λG

1 ≥ 2(xa − xc)(xb − xd)

and our result follows.

Theorem 2.9. Let λ1 be the largest eigenvalue of A. Then,

λ1 ≥ 2m

n
(1)

Proof. Consider that λ1 = maxx∈Rn
xTAx
xT x

, and let x = 1n. Then, we count
each edge twice in the numerator, yielding 2m and the denominator will be n
summations of 1, so we have our desired lower bound.

Theorem 2.10 (Ando). If G is vertex diameter 2-critical with δ ≥ 4 then

5n− 17

2
≤ m ≤ 5n+ 17

2
(2)

Proof. If δ ≥ 5, then we have deg(V ) ≥ 5n. Else, if there is a vertex of degree
4, we have

deg(V ) = deg(t) + deg(N(t) + deg(V −N [t]) (3)

≥ 4 + (n− 1) + 4(n− 5) (4)

= 5n− 17 (5)

Theorem 2.11. Let D be the distance matrix, Ā the complement and J of all
ones. Then,

D2 = 4(J − I)Ā+A2 (6)

D = 2(J − I) +A (7)

Lemma 2.12. Given a star graph K1,s, the line graph L(K1,s) has a hamilto-
nian cycle.
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Proof. Since all edges are adjacent to the central vertex (and thus each other),
we have that L(K1,s) = Ks.

Theorem 2.13. For all integers n ≥ 4, the line graph of the complete graph
Kn has a Hamiltonian cycle.

Proof. Assign the vertices some arbitrary order. Then, traverse all edges of v1 in
any order such that we traverse the edge connected v1 to v2 last. Then, traverse
the edges of v2 similarly, traversing the edge connecting v2 to v3 last.

Definition 12. A circuit C is a walk in which all edges are distinct, and the
first and last vertices are equal. A D−circuit is a circuit in which every edge of
G is incident with at least one vertex in the D−circuit.

Definition 13. If C is a circuit and Z a cycle of G such that V (Z) ∩ V (C) ̸=
∅ ≠ V (Z) ∩ (V (G) − V (C)) and G[E(C)△E(Z)] (where △ denotes symmetric
difference) is connected, then Z is called a C-augmenting cycle. Clearly, if C is
a circuit and Z is a C-augmenting cycle, then G[E(C)△E(Z)] is also a circuit,
and |V (G[E(C)△E(Z)])| > |V (C)|, implying that if C is a maximal circuit, we
have no C−augmenting cycle.

Definition 14. Define τ to be P3 with two new non-adjacent vertices adjacent
to one of the end vertices. Similarly, define τ+ to be P3 with two new adjacent
vertices adjacent to one of the end vertices.

Lemma 2.14 (Veldman 1988). Let G be a graph and C a maximal circuit.
Then, there is no cycle Z with

V (Z) ∩ V (Z) ̸= ∅ ≠ V (Z) ∩ (V (G)− V (C)) ∧ |E(z) ∩ E(C)| ≤ 1 (8)

Definition 15. A block of a graph is a maximal connected subgraph with no
cut-vertices, that is no vertices whose removal would disconnect the graph. For
example, all complete graphs of size 3 or larger are blocks, while no paths of
length 3 or longer are.

Lemma 2.15 (Veldman 1988). If x1, . . . , xk is a path in G, and for 1 ≤ i <
j < k if we have xixi+1, xjxj+1 in the same block B of G, then xmxm+1 ∈
E(B)∀i < m < j.

Theorem 2.16 (Veldman 1988). Let G be a connected graph that is not a tree
such that every subgreaph isomorphic to τ or τ+ with d(ai) ≥ 2, i ∈ {1, 2}
satisfies at least one of the following:

1. |N(a) ∩N(c)| ≥ 2

2. |N(b) ∩N(c) ≥ 1|

3. For i ∈ {1, 2}, |N(b) ∩N(ai)| ≥

{
2 a1a2 ∈ E(G)

3 else
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4. For i ∈ {1, 2}, |N(a) ∩N(b)| ≥ 1

Then L(G) is hamiltonian

Proof. Let G satisy our initial conditions, but assume L(G) is nonhamiltonian.
Let C be a maximal circuit of G. Then C is not a D-circuit of G, as by Harary
and Nash-Williams G would otherwise have hamiltonian L(G). Thus there exists
a path u1uu2u with u1, u2 /∈ V (C) and u ∈ V (C). Let vv1, vv2 ∈ E(C).
Then, as a result of 2.14 it follows that some subgraph H ≤ G with vertices
{u1, u2, u, u1, u2} is isomorphic to τ or τ+, and (N(u1)∩N(u))−{u2} = N(u2)∩
N(u) = ∅. . We must have dC(u1) ≥ dC(u2) ≥ 2 (i = 1, 2), so we know that H
satisfies (3) or (4).

First, assume that H satisfies (3). Then, assume H = τ+, so v1v2 ∈ E(G).
Assume without loss of generality that u2 and v1 have a common neighbor
w with w ̸= u. By 2.14, v1w ∈ E(C). If v1v2 ∈ E(C), then vu2wv1v is a
C-augmenting cycle, a contradiction with 13. If v1v2 ∈ E(G) − E(C), then
vu2wv1v2v is a C-augmenting cycle, which contradicts that C is maximal.

Thus, we can only have that u1u2 /∈ E(G), so H = τ . Assume without loss
of generality that v1 and u2 have common neighbors not equal to v, label these
w1 and w2. By 2.14, v1w1, v1w2 ∈ E(C). If v1v, v1w1, and v1w2 are in the same
block of C, then C − {v1w1, v1w2} is connected, implying that u2w1v1w2u2 is
a C-augmenting cycle, contradicting 13. If v1v and v1w1 are in different blocks
of C, then C − {v1v, v1w1} is connected ( since every block of C is 2-edge-
connected), so vu2w1v1v is a C-augmenting cycle, which contradicts that C is
maximal.

So H cannot satisfy (3), and instead must satisfy (4).
Call a path P special if it satisfies the following requirements:

• P has origin v,

• E(P ) ⊆ E(C),

• each block of C contains at most one edge of P , and

• u1 and the terminus of P have a common neighbor.

Note that, if P is a special path, then, by the third requirement, C − E(P )
is connected.

Since H1 satisfies (4), G contains a special path of length 1. Let P be a spe-
cial path of maximum length, x the terminus of P , y the immediate predecessor
of x on P , and z a common neighbor of u1 and x.Then , we know z /∈ V (P ), oth-
erwise G contains the C-augmenting cycle Q1 ∪ vu2u1z, where Q1 denotes the
(v, z)-subpath of P . Also, z ̸= u2, otherwise P ∪ vu2x is a C-augmenting cycle.
Furthermore, xz is an edge of C, otherwise the cycle Z1, with Z1 = P ∪uu2u1zx
is a C-augmenting cycle. Moreover, the edges xy and xz are in the same block
of C; assuming the contrary, by 2.15, all edges of E(P ) ∪ {xz} are in different
blocks of C, again yielding the contradiction that Z1 is a C-augmenting cycle.
This contradiction is avoided only if {xy, xz} is a 2-edge cut of C. Thus, either
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dC(x) = 2 or x is a cut vertex of C. If dC(x) = 2, then G[E(C)△E(Z1)] con-
sists of a trivial component and a component that is a circuit; the latter circuit
contains one vertex more than C, contradicting the maximality of C. Thus x is
a cut vertex of C.

Let B be a block of C containing x and different from the block that contains
xy (and xz). Then, by 2.15, B differs from all blocks of C that contain an edge
of P . Let xx1 and xx2 be two edges of B and let H1 = G[{u1, z, x, x1, x2}].
By 2.14, u1x /∈ E(G). Also, u1xi /∈ E(G), otherwise P ∪ vu2u1xix is a C-
augmenting cycle (i = 1, 2). Since P is a longest special path, zxi /∈ E(G)
(i = 1, 2), so H1 is isomorphic to τ or τ+. Since dG(xi), dC(xi) ≥ 2 (i = 1, 2),
H1 satisfies one of our requirements. We finish by showing that each case yields
a contradiction.

First suppose H1 satisfies (1). Let z1 ∈ (N(u1) ∩ N(x)) − {z}. As in the
last paragraph, we have z1 /∈ V (P )∪ {u2}, xz1 is an edge of C, and xz1 and xy
are in the same block of C. Since xz is also in this block, C − (E(P )∪ {xz}) is
connected, and Z is a C augmenting cycle, which is a contradiction.

Now suppose H1 satisfies (2). Let y1 ∈ N(z) ∩ N(x). As a result of 2.14,
y1 /∈ {u1, u2}. If y1 ∈ V (P ), then Q2∪vu2u1zy1, with Q2 as the (u, y1)-subpath
of P , is a C-augmenting cycle, whether zy1 ∈ E(C) or not. Thus we must have
y1 /∈ V (P ). If xy1 and zy1 are edges of C, then Z1 is a C-augmenting cycle, else
P ∪ vu2u1zy1x forms a contradiction.

Next suppose H1 satisfies (3), with b = z and x1, x2 = a1, a2. Let x3 ∈
(N(z) ∩N(x1)) − {x}. Earlier arguments imply that x3 cannot be a vertex in
V (P )∪{u1, u2}. We consider all possible cases for the membership of x1x3, x3z
with respect to C. If both x1x3 and x3z are edges of C, then Z1 is a C-
augmenting cycle. If both x1x3 and x3z are in E(G) − E(C), then the cycle
Z1, with Z1 = P ∪ vu2u1zx3x1x is a C-augmenting cycle. Assume x1x3 ∈
E(G) − E(C) and x3z ∈ E(C). By 2.15, x3z is not an edge of the block
B of C containing x1, so, x3z is not a cut edge of the connected subgraph
(C+x1x3)−(E(P )∪{xx1}) of G, since zx∪Q3∪x1x3 ( Q3 is an (x, x1)-path in
B − xx1) is a (z, x1)-path in this subgraph. This implies Z1 is a C-augmenting
cycle. Finally, Now assume x1x3 ∈ E(C) and x3z ∈ E(G) − E(C). We finally
distinguish two cases.

First, if x1x2 ∈ E(G), then x3 ̸= x2, otherwise H1 would satisfy (2), which
we already proved generates a contradiction. If x1x2 ∈ E(C), then Z1 is a
C-augmenting cycle. If x1x2 ∈ E(G) − E(C), then P ∪ uu2u1zx3x1x2x is a
C-augmenting cycle, so we must have no edge x1x2.

Thus, we must have that x1x2 /∈ E(G). Consider some x4 ∈ (N(z)∩N(x1))−
{x, x3}. Similar to the consideration for x3, we may assume x4 /∈ V (P ) ∪
{u1, u2}, x1x4 ∈ E(C), and x4z ∈ E(G) − E(C). If both x1x3 and x1x4 are
edges of B, then B−{xx1, x1x3} is connected and Z1 is a C-augmenting cycle.
Else, with x1x4 /∈ E(B), then by 2.15 all edges of E(P ) ∪ {xx1, x1x4} are in
different blocks of C, and hence P ∪ vu2u1zx4x1x is a C-augmenting cycle.

Finally, suppose H1 satisfies (iv). Assume without loss of generality that
N(u1) ∩ N(x1) ̸= ∅. Then P ∪ xx1 is a special path longer than P , our final
contradiction.
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Theorem 2.17 (Veldman 1988). If G is diameter 2 with at least 4 vertices,
L(G) is Hamiltonian

Proof. If G has diameter 1, then G is complete, so L(G) is hamiltonian by 2.13.
Else, every induced subgraph isomorphic to τ or τ+ satisfies 2.16, so either L(G)
is hamiltonian or G is a tree. If G is a tree, then G is isomorphic to the star
graph, and L(G) is hamiltonian by 2.12

3 Removals and Interlacing

Theorem 3.1 (Cauchy, Poincare). Suppose A ∈ Rn×n is symmetric. Let B ∈
Rm×m with m < n be a principal submatrix (obtained by deleting both the i-th
row and i-th column for some i). Suppose A has eigenvalues λ1 ≤ · · · ≤ λn and
B has eigenvalues µ1 ≤ · · · ≤ µm. Then:

λk ≤ µk ≤ λk+n−m for k = 1, . . . ,m.

Proof by Williamson. Without loss of generality, assume

A =

[
B XT

X Z

]
.

Let {x1, . . . , xn} be the eigenvectors of A, and {y1, . . . , ym} the eigenvectors of
B.

Define the following subspaces:

V = span(xk, . . . , xn), W = span(y1, . . . , yk),

W ′ =

{[
w
0

]
∈ Rn

∣∣∣∣w ∈ W

}
.

Since dim(V ) = n−k+1 and dim(W ′) = dim(W ) = k, there exists w′ ∈ V ∩W ′,

and w′ =

[
w
0

]
for some w ∈ W . Thus,

w′TAw′ =
[
wT 0

] [B XT

X Z

] [
w
0

]
= wTBw.

Since we have λk = minx∈V
xTAx
xT x

, βk = maxx∈W
xTBx
xT x

, we can conclude

λk ≤ w′TAw′

w′Tw′ =
wTBw

wTw
≤ βk.

To prove the second inequality, define:

V = span(x1, . . . , xk+n−m), W = span(yk, . . . , ym),
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W ′ =

{[
w
0

]
∈ Rn

∣∣∣∣w ∈ W

}
.

Then dim(V ) = k+n−m and dim(W ′) = m−k+1, so there exists w′ ∈ V ∩W ′

and w′ =

[
w
0

]
for some w ∈ W . We again compute w′TAw′ = wTBw, therefore,

λk+n−m = max
x∈V

xTAx

xTx
≥ w′TAw′

w′Tw′ =
wTBw

wTw
≥ min

x∈W

xTBx

xTx
= βk.

4 Eigenvalues to Partition Certain Graphs

Lemma 4.1. Reordering vertices preserves the spectrum of the adjacency, lapla-
cian, signless laplacian, and line graph.

Proof. To see this, reorder the eigenvectors in the same way the matrix was
reordered.

Theorem 4.2 (Aspvall and Gilbert 1983). Let G be a block regular 3- par-
tite graph. Then there is a set of 2 eigenvectors whose sign patterns properly
partition vertices of the graphs.

Proof. Let G be tripartite with partition V1, V2, V3 with each part having size
r, s, t respectively. Then, let

A =

 0 A12 A13

AT
12 0 A23

AT
13 AT

23 0

B =

 0 b12 b13
b21 0 b23
b31 b32 0


Where A is the adjacency matrix of G, and B is the block degree matrix.
Observe that these share eigenvalues, up to multiplications by 1i to scale the
block degree eigenvector to match the dimension of A (and vice versa), that is
(α1, β1, γ1)T is an eigenvector of A with eigenvalue λ if and only if (α, β, γ) is
an eigenvector of B with eigenvalue λ.

We apply the following coloring algorithm: Repeatedly select and eigenvalue
and use the sign of its components (let zero be positive) to refine the coloring
so that all vertices with the same signs across multiple eigenvectors will be in
the same color class.

We can see that if we use every eigenvalue, we will partition each vector
into its own set. Aspvall and Gilbert conjecture that this algorithm will find a
coloring after only considering negative eigenvalues. Furthermore, in our block
regular graph, we need only 2.

Note that rb12 = sb21, rb13 = tb31, andsb23 = tb32, then let D be a diagonal
matrix with entries

√
r,
√
s,
√
t. Then, let B′ = DBD−1, which is symmetric

and nonnegative with zero diagonal entries, and furthermore B and B′ share
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eigenvalues, with identical sign patterns. These then partition the rows of B′

into singletons, and thus B and A.
This algorithm does not provide the needed eigenvectors, but they can be

found in polynomial time, unless one of B’s negative eigenvalues has higher
multiplicity as an eigenvalue of A than of B. Otherwise, we need not try all
pairs of eigenvalues. The negative sum od the corresponding eigenvalues is
equal to the spectral radius of A, so we need only try half as many colorings as
there are negative eigenvalues of its adjacency matrix.

Note that the conjecture made has, to the best of my knowledge, not been
proved. This conjecture is also a critical part of the proof of the Alon-Kahale
algorithm.

4.1 Alon-Kahale Algorithm

The Alon-Kahale assumes the graph is random (edges are added between 3
groups of n vertices with uniform probability p), that we remove high degree
vertices (with degree greater than or equal to 5d, where d = np), and that
color classes are balanced (shown by each color class having n vertices). This
is because we wish to control the spectrum, in order for proofs about eigen-
value partitions to hold. However, diameter 2 graphs tend to have a relatively
controlled spectrum.

The algorithm roughly works by (after removing high degree vertices) first
finding a linear combination of the smallest two eigenvalues of the adjacency
matrix with median zerom normalized to have ℓ2 norm

√
2n, call this tu. Then,

it partitions vectors to be all vertices by norm after multiplication by tu into
three categories - within

∣∣ 1
2

∣∣ of 0, strictly greater than 1
2 , and strictly less than

− 1
2 . This first stage almost always generates a proper 3 coloring. It then

performs a balancing stage, by recoloring algorithms by the least popular color
of its neighbors. After this stage, it takes all vertices with few neighbors colored
any one color, and attempts to brute force color these final vertices. With high
probability, this produces a proper 3 coloring.

Empirical experimentation shows that the relative size of the color classes
are not so important, nor is the exact probability p, although they must both
be so that no one color class is ”too small”, so any failed coloring can usually
be resolved by keeping the same relative sizes of color classes and probability p,
and increasing n. This is because large imbalance leads to certain thresholds in
the later stages not being met, and the algorithm terminating (even though the
first stage usually produces a very close to correct 3-coloring).

I found that removing high degree vertices was not quite so easily relaxed,
and that leaving high degree vertices tended to lead to a failure in coloring.
This is because, intuitively, these vertices have more impact on the spectrum,
and so they are ”overrepresented” in the spectrum.

I also found that given an arbitrary random graph with unknown probability
p and unknown color class sizes, by observing the degree distribution we are able
to estimate the expected number of vertices in each color class. This informs
balancing in later stages of the algorithm.
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I made efforts to control the spectrum of the graph, and to attempt to reduce
the degree of high degree vertices. Observe that if we have a triangle lattice, we
can add or remove edges from this lattice without affecting coloring, as some
vertices are forced to be different (even if they are far). Alternatively, if two
vertices are at odd distance from each other along some cycle, then we can
remove an edge between them and know that they will still be different colors.

5 Degree-Based algorithms

5.1 Brute Force Dominating Set

Let G be a graph with minimum degree ≥ αn. Let log(n) = αn. Then, select
log(n) vertices, call this set S. We can color S using brute force colorings in
time 3logn = O(n). Consider an arbitrary vertex, and consider the odds that
this vertex or none of its neighbors have been colored, with the assumption this
node has log n neighbors. We are have

(
n

logn

)
total possible options for S , and(

n−logn
logn

)
of these will avoid the log n neighbors of our vertex. Then, we bound

the odds that vertex i will not be in N [S] as follows:

P (i /∈ N [S]) ≤
(
n−logn
logn

)(
n

logn

) (9)

=
(n− log n)!2

(n− 2 log n)!n!
(10)

By Stirling

≈

(√
2π(n− log n)

(
n−logn

e

)n−logn
)2

√
2π(n− 2 log n)

(
n−2 logn

e

)n−2 logn

·
√
2πn

(
n
e

)n (11)

≈

(
n−logn

e

)2(n−logn)

(
n−2 logn

e

)n−2 logn (
n
e

)n (12)

≈n→∞

(
n− log n

n

)n

(13)

So this approach does not quite work.
A second approximation considers the odds a vertex with log n neighbors has

any of these log n neighbors selected. The odds the first neighbor is not selected

is
(
1− logn

n

)
, and since each neighbor is independent, we have our end result as(

1− logn
n

)logn

. This goes to 1 as n → ∞. So we cannot prove our result with
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this method. However, we have parameters. If A = the number of neighbors

that our vertex has, we consider our probability as limn→∞

(
1− logn

n

)A
.

Select one vertex of maximum degree c log n, color this vertex and its neigh-
borhood by brute force (time 3c logn = O(n3c), then color the remaining neigh-
bors by 2-list coloring. However, we are not guaranteed a vertex with small
degree.

If we have log n vertices with degree cn
logn , then the odds that any vertex

is not colored approaches is
(
1− c

logn

)logn

→ 1
ec as n grows large. Then, the

odds that at least one of our n − log n vertices are not in a neighborhood is
1− (1−e−c)n−logn, which approaches 1 as n → ∞, so this does not work either.

Say we, similarly, take f(n) samples of log n nodes with degree n
logn . Then,

the odds that all nodes are hit in a sample is

(
1−

(
n− n

log n

n

)logn
)n−logn

. Then,

the odds that 1 sample fails is 1 minus this. So the probability that f(n) samples

fail is

(
1−

(
1−

(
n− n

log n

n

)logn
)n−logn

)f(n)

, which goes to 1 for polynomial f ,

and thus we can say with probability 1 all samples will fail, and we will not
obtain a dominating set.

Thus, we cannot naively select high degree nodes. The diameter 2 constraint
should give us some power here, we have P(neighbor or share a neighbor) = 1,
so if we can calculate 2/3 of P(neighbor), P(share a neighbor), and P(neighbor
and shares a neighbor) then we can get the final third for free.

5.2 Size of Dominating Set

Theorem 5.1 (Henning and Yeo). Dominating number of diameter 2 graphs

is bounded above by
(

1+ln(δ)
δ

)
n

Theorem 5.2 (Henning nad Yeo). For diameter 2 graphs, if the min degree is
larger than ln(n)

√
n, then the size of the dominating set is bounded by 1 +

√
n

Proof. Assume n ≥ 3. Then, let our domination number be γt(G). We have by

5.1 abd by noting that 1+ln(n)
n is decreasing in n, that

γt(G) ≤
(
1 + ln(δ)

δ

)
n (14)

≤
(
1 + ln(

√
n ln(n))√

n ln(n)

)
n (15)

=

(
1 + 1

2 ln(n) + ln(ln(n))

ln(n)

)√
n (16)

=

√
n

2
+

1 + ln(ln(n))

ln(n)

√
n (17)

12



So we show that 1+ln(ln(n))
ln(n)

√
n ≤ 1 +

√
n
2 . This holds for n ≥ 213 as the LHS is

decreasing and less than 1
2 , and computer verification resolves all other cases.

Theorem 5.3 (Henning and Yeo). For diameter 2 graphs, the dominating set
is bounded by 1 +

√
n ln(n), and this bound is tight.

Proof. We set up a similar inqeuality to 5.2

γt(G) ≤
(
1 + ln(δ)

δ

)
n (18)

≤

(
1 + ln(

√
n ln(n))√

n ln(n)

)
n (19)

=

(
1 + 1

2 ln(n) + ln(ln(n))√
ln(n)

)
√
n (20)

=

√
n ln(n)

2
+

1 + ln(ln(n))

ln(n)

√
n ln(n) (21)

So we need prove that(
1 + 1

2 ln(ln(n))

ln(n)

√
n ln(n) ≤ 1 +

√
n ln(n)

2

)
(22)

Which holds when n ≥ 24, as the LHS is decreasing and less than 1
2 . The

following cases follow from computer verification.

Theorem 5.4 (Henning and Yeo ). If the domination number is greater than
1 +

√
n , then the min. degree is between

√
n and ln(n)

√
n

Proof. This follow from 5.2 and by noting that if we have minimum degree of
some vertex v less than

√
n, we can take N(v) as a dominating set with size less

than or equal to 1 +
√
n

Thus, even if min degree is n
lnn , we have the size of the dominating set

bounded by ln2(n), which is too large to brute force color.

5.3 Claw Free Dominating Set

Definition 16. The claw graph is K1,3.

Definition 17. A vertex v is complete so a set S if it is adjacent to every
vertex in S, and anticomplete if it is adjacent to none of the vertices in S.

Definition 18. A W-join is a pair of disjoint non-empty sets of vertices (A,B)
such that |A|+ |B| > 2, both are cliques, A is neither complete nor anticomplete
to B, and every vertex of V (G)\(A ∪ B) is either complete or anticomplete to
A and complete or anticomplete to B.

13



Definition 19. Neighborhoods of vertices u, v are distinct if we do not have
N [u] ⊂ N [v], or vice versa. If all such vertices have this property in a graph,
we say the graph has distinct neighborhoods.

Definition 20. A proper circular arc graph is defined by the following charac-
teristics: each vertex corresponds to an arc on a circle, and vertices are adjacent
if their arcs intersect. Furthermore, what makes this graph proper is that no arc
is entirely contained within another.

Theorem 5.5 (Martin et al.). Every claw free graph with distinct neighbor-
hoods, maximal independent set number at least 3, and more than 13 vertices is
either a proper circular-arc graph or a line graph.

Theorem 5.6 (Bouqet et al.). Finding a dominating set is polynomial time
solvable for line graphs with diameter 2.

Proof. Bouqet et al. prove that 2K2 free graphs (which have diameter 2 line
graphs) have maximal stable sets that can be enumerated in polynomial time.
Then, as matchings in the original graph correspond to a dominating set in the
dual, the result follows.

Theorem 5.7 (Hsu and Tsai). Constructing a dominating set for a proper
circular arc graph can be done in polynomial time.

Proof. First, cut at an arbitrary point to make the circular arc graph an interval
graph. Then, use a sweep algorithm to process arcs, and record all intersections.
Then, run a greedy algorithm that picks an interval covering the leftmost arc
that extends the furthest to the right.

Theorem 5.8 (Bouqet et al.). Finding a dominating set in claw-free diameter
two graphs is solvable in polynomial time.

Proof. Let G be a claw-free diameter 2 graph. Then, assume the size of the
dominating set is larger than 4, as else we can brute force it in polynomial
time. It follows that G has no W−join, and since the dominating set size is
less than or equal to the maximal independent set size, the size of the maximal
independent set is at least 3. We can also assume that |V | > 13, as else we can
find a dominating set in constant time.

Next, assume that there is a pair of adjacent vertices u, v such that the
neighborhood of u without v is a subset of the neighborhood of v without u.
Then, for ever dominating setD of G−u, we have N(u)∩D ̸= ∅, so a dominating
set of G−u also dominates G. Also, removing u does not increase the diameter.
Thus, we can search for all such pair u, v and remove them from G in polynomial
time.

Thus, we can apply 5.5. If G is a line graph (which can be checked in
polynomial time) we use 5.6, else we use 5.7.

Definition 21. A Vertex Cover of a graph is a subset of vertices such that
each edge has at least one endpoint in this subset. This problem is known to be
NP−complete.
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Theorem 5.9 (Bouqet et al). Finding a dominating set is NP -Complete for
K1,4 free graphs with diameter 2.

Proof. This follows from a polynomial time reduction from vertex cover. From
I = (G = (V,E), k) an instance of Vertex Cover, we build an instance I ′ =
(G′, γ) where G′ is K1,4-free with diameter 2 and γ = k.

We start by constructing G′ = (V ′, E′). The vertices of V ′ are partitioned
into V1, E1, E2, S, s. We define these sets and the edges of G′ as follows:

• For each vertex v ∈ V , there is a vertex v1 ∈ V1, that is, V1 = v1 | v ∈ V ;

• For each edge uv ∈ E, there is a vertex e1uv ∈ E1 and e2uv ∈ E2, that is,
E1 = e1uv | uv ∈ E and E2 = e2uv | uv ∈ E;

• For each u1 ∈ V1, the vertices u1 ∪ e1uv | u = u1 and u1 ∪ e2uv | u = u1 form
two cliques;

• V1 ∪ S ∪ s is a clique;

• For each pair e, e′ ∈ E1 ∪ E2 such that N(e) ∩ N(e′) ∩ V1 = ∅, there is
a vertex se,e′ ∈ S and the two edges se,e′e, se,e′e

′ ∈ E′. Note that these
edges e, e′ correspond to copies of non-incident edges in G.

Since V1 ∪S ∪ s is a clique and that every pair of vertices e, e′ ∈ E1 ∪E2 has
a common neighbor in V1 ∪S, it follows that diam(G′) = 2. We show that G′ is
K1,4-free. For each vertex of G′, we give a partition of its neighborhood into at
most three cliques. For u1 ∈ V1: N(u1)∩E1, N(u1)∩E2, and N(u1)∩(S∪V1∪s).
For eiuv ∈ Ei, i ∈ 1, 2: N(eiuv) ∩ N(u1), N(eiuv) ∩ N(v1), and N(euv) ∩ S. For
se,e′ ∈ S: se,e′ , e, se,e′ , e

′, and V1 ∪ S ∪ s. For the vertex s: N(s) = S ∪ V1.
Therefore G′ is K1,4-free.

Let C, |C| ≤ k = γ, be a vertex cover of G. Then its copy in V1 is a
dominating set of G′ of size at most γ.

Let I ′ = (G′, γ) be a positive instance, so there exists Γ, |Γ| ≤ γ a dominating
set of G′. From Γ we will construct a dominating set Γ′ such that Γ′ ⊆ V1. Since
N(s) = V1 ∪ S we can assume that s /∈ Γ. Let Si be the vertices of S with two
neighbors in Ei, that is, Si = se,e′ | e, e′ ∈ Ei, i = 1, 2. Let Γi = Γ ∩ (Ei ∪ Si).
Without loss of generality |Γ1| ≤ |Γ2|. Let Γ′ = Γ\Γ2. For each e1 ∈ Γ1, we add
e2 to Γ′, and for each se1,e′1 ∈ Γ1, we add se2,e′2 to Γ′. Since G′[E1 ∪S1 ∪ V1] is
isomorphic to G′[E2 ∪ S2 ∪ V1], it follows that Γ

′ is a dominating set of G′ such
that |Γ′| ≤ γ.

Let E0
i be the vertices eiuv ∈ Ei such that Γ′ ∩ N(eiuv) ∩ V1 = ∅, i = 1, 2.

For each e1uv ∈ E0
1 , there is e2uv ∈ E0

2 , and vice versa, because N(e1uv) ∩ V1 =
N(e2uv) ∩ V1. Since N(e1uv) ∩ N(e2uv) ∩ S = se,e′ , with e = e1uv, e

′ = e2uv, and
that each vertex of S has exactly two neighbors in E1 ∪ E2, it follows that
|E0

1 | ≤ |S ∩ Γ′|. Then we remove the vertices of S from Γ′ and we replace them
by u1 ∈ V1 for each e1uv ∈ E0

1 . It follows that Γ
′ is a dominating set of G′ such

that |Γ′| ≤ γ. Note that Γ′ ⊆ V1.
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Let C be the copies of the vertices of Γ′ ∩ V1 in G. Since each vertex
e1uv ∈ E1 has a neighbor in Γ′ ∩ V1, it follows that C is a vertex cover of G such
that |C| ≤ k.

Definition 22. A split graph S is a graph whose vertices can be partitioned into
S = (K, I), where K is a clique and I is an independent set.

Theorem 5.10. Given a split graph, we can find the split in polynomial time.

Proof. First, we sort all vertices by degree. Find the largest k for which we have
k vertices of degree k − 1 or larger. Consider all vertices with degree exactly
k − 1. Then, these vertices must be connected to all vertices in the k clique,
and we can pick any to be in the clique.

Definition 23. A vertex v is called simplicial when N(v) is a clique.

Lemma 5.11 (Bouqet et al.). If u, v are vertices of a graph such that N(u) ⊂
N(v), and v is simplicial, then the dominating set of G is not affected by the
removal of v.

Proof. For any graph containing a simplicial vertex, there is a dominating set
that does not contain this vertex. Let S be such a set that does not contain v.
Then S is a dominating set of G− v. Then, it follows that u is simplicial, and
that uv /∈ E. Thus, there is a set |S′| that dominates and does not contain u,
with |S| = |S′|.

Theorem 5.12 (Bouqet et al). Finding a dominating set is NP -complete for
triangle-free graphs with diameter 2

Proof. We give a polynomial transformation from Dominating Set, which is NP-
complete for split graphs with diameter 2 (see [9]). From I = (G, k) an instance
of Dominating Set, we build an instance I ′ = (G′, k′).

In I = (G, k), G = (K ∪ S,E) is a split graph with diameter 2 where K
is a clique and S is a stable set. Let u, v ∈ S. First, since the vertices of S
are simplicial, it follows from 5.11 that we can suppose that N(u)N(v) and
N(v)N(u). Second, since diam(G) = 2, there exists w ∈ K such that u−w− v
is a path in G.

From G we build G′ = (V ′, E′) as follows. We take a copy K1 of K and
two copies S1, S2 of S. For the sake of simplicity, for v ∈ K, its copy in K1 is
denoted by v1, whereas for v ∈ S, its copies in S1, S2 are denoted by v1, v2,
respectively. We then add two vertices t and s. For each pair u ∈ K, v ∈ S, if
uv ∈ E, then we add the edge u1v1; otherwise, we add the edge u1v2. For every
v ∈ S, we add the edge v1v2. Then we make t complete to K1 and s complete
to S2. Last, we add the edge st. Note that t,K1, s, S1, S2 is a partition of G′

into stable sets. Finally, we take k′ = k + 1.
We show that G′ is triangle-free. Since N(t) = K1 ∪ s and N(s) = S2 ∪ t

are two stable sets, it follows that t and s cannot be in a triangle. Thus, if a
triangle exists, it has one vertex u1 ∈ K1, one vertex in S1, and one vertex in
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S2. So this triangle contains the edge v1v2. But when u1v1 is an edge, u1v2 is
not an edge, and vice versa. So G′ is triangle-free.

We show that diam(G′) = 2. We observe that t and s are at distance at
most two from any vertex of the graph. So we can focus on the vertices of
K1 ∪ S1 ∪ S2. Since t is complete to K1 and s is complete to S2, for any
pair v1, u1 ∈ K1 (respectively v2, u2 ∈ S2), there exists the path v1 − t − u1

(respectively v2 − s− u2).
Since diam(G) = 2, for any pair v1, u1 ∈ S1, there exists w1 ∈ K1 such that

v1 − w1 − u1 is a path of G′. Now let u1 ∈ S1, v1 ∈ K1 (respectively u2 ∈ S2,
v1 ∈ K1), such that uv /∈ E (respectively uv ∈ E). Then u2v1 ∈ E′ (respectively
u1v1 ∈ E′), so u1 − u2 − v1 (respectively u2 − u1 − v1) is a path of G′. Now
let u1 ∈ S1, v2 ∈ S2, u ̸= v. From Lemma 4.1, we can assume that there exists
w ∈ N(u), w /∈ N(v). Therefore u1w1, v2w1 ∈ E′, and u1 −w1 − v2 is a path in
G′. So diam(G′) = 2.

Let D be a dominating set of G with |D| ≤ k. Let D′ be the set of the
copies of the vertices of D in K1 ∪ S1. Then D′ ∪ t is a dominating set of G′

and |D′ ∪ t| ≤ k + 1 = k′.
Conversely, let D′ be a dominating set of G′ with |D′| ≤ k′ = k + 1. Since

N(s) = S2 ∪ t, it follows that |D′ ∩ (t, s ∪ S2)| ≥ 1.
First, suppose S2 ∩D′ = ∅. So |D′ ∩ t, s| ≥ 1. For each v1 ∈ D′ ∩ S1, if any,

let a unique u1 ∈ N(v1) ∩K1. Then let
Second, if |S2 ∩D′| ≥ 1 and t ∈ D′, then for each v2 ∈ D′ ∩ S2, let a unique

u1 ∈ N(v1) ∩K1 (where v1 is the neighbor of v2 in S1). Then let
Third, if |S2 ∩ D′| ≥ 1 and t /∈ D′, then for each v1 ∈ S1 which is not

dominated by a vertex of K1 or by itself, we have that v1 is dominated by v2,
its neighbor in S2. Let any w ∈ N(v1) ∩K1. Since t /∈ D′, we have that w is
dominated either by u1 ∈ N(w) ∩ S1, u1 ̸= v1, or by u2 ∈ S2, u2 ̸= v2. In the
first case, we replace u1 by w in D′, in the second case we replace u2 by w in
D′. Then we take D̄ = D′ ∩ (K1 ∪ S1).

In all cases, we take D to be the copies of the vertices of D̄ in G. We have
that D is a dominating set of G with |D| ≤ k.

6 Family of all Diameter 2 Graphs

6.1 Well Quasi Ordering

Definition 24. A well-quasi-order is a preorder (P, ≤), such that for any
infinite sequence {xi}i∈I , there exists some i < j with xi ≤ xj.

Alternatively, this is expressed by satisfying two conditions. First, there
must be no infinite antichains (set in which no two elements are comparable), so
for any infinite sequence in P, there is some pair of elements that are comparable.
Second, there must be no strictly decreasing infinite sequence in P.

Definition 25. A cograph is a graph which does not contain P4 as an induced
subgraph.
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Theorem 6.1 (Damaschke). Cographs are well-quasi ordered under the sub-
graph relation.

Theorem 6.2. The family of claw-free and C5 free diameter 2 graphs are well-
quasi ordered.

Proof. If a diameter 2 graph has an induced path P4 = v1v2v3v4, then we know
there must be edges v1v5, v4v5 ∈ E in order for d(v1, v4) ≤ 2 to hold. Then,
we could still have this graph not be a cograph if v2v5 or v3v5 ∈ E, as either
would imply that v1v2v3v4v5v1 is not an induced 5 cycle. Forbidding claws and
5 cycles thus ensures that we cannot have P4 as a subgraph. Then, all remaining
graphs are cographs, and so the remaining family is a collection of cographs,
and thus is well-quasi ordered.

6.2 Counting Graphs

Definition 26. We call a graph G strongly regular of degree k if it can be
described as (n, d, p, q), where every pair of adjacent neighbors have p neighbors
in common, and every nonadjacent pair has q neighbors in common. Such a
graph is primitive if both itself and its complement are connected. Note that
these graphs are diameter 2 (and distance regular) if q > 0.

Lemma 6.3 (Haemers). Let fn be the multiplicity of λn. Then,

γ(G) ≥ max{1 + fn, 1−
λn

λ2
} (23)

Proof. Let γ ≤ fn. Then, λn = λn−γ+1. By observing that

(γ − 1)λk+1 ≥ −λn−k(γ−1) (24)

the result follows, with k = 1.

Lemma 6.4 (Haemers). If G is primitive and strongly regular, and not the
pentagon or the complete γ−bipartite graph, then

1. d ≤ −λn(γ(G)− 1)

2. −λ)n ≤ λ2(γ(G)− 1)

3. λ2 ≤ γ(G)− 1

Proof. First, we prove that γ(G) ≥ max{1 − λ1

λn
, 1 − λn

λ2
}. If n ≤ 28, we verify

this by computer checking. If λ2 < 2, then either it is equal to 1, or G is the
conference graph (and thus n<25). Else, strongly regular graphs with λ2 = 1
were proven by Seidel [CITE] to satisfy n ≤ 28, be a ladder, complement of a
lattice, of complement of a triangular graph, all of which satisfy the bound on
γ(G). Finally, let λ2 ≥ 2. If G is imprimitive, the result follows, so assume G
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is primitive. Then, if the result did not hold, we have λ1 < n, and fnλn + (n−
1− fnλ2 + λ1 = 0 implies

f2
n < −fnλn

λ)2
(25)

= n− 1− fn +
λ1

λ2
(26)

<
3

2
n− fn (27)

So f2
n+3fn < 3

2n+2
√

3
2n, thus n < 24, we have a contradiction, and our bound

on γ(G) follows.
Then, we can deduce (1) and (2).
Since G is primitive, 0 < q = d−λ2λn, so by (1) we have γ(G)−1 ≥ − d

λn
>

λ2

Lemma 6.5 (Vieta). For a strongly regular graph G, we have q − d = λ2λn

Theorem 6.6 (Haemers). For any n ∈ N, the number of primitive strongly
regular graphs with chromatic number n is finite.

Proof. If G is primitive, then q ≥ 1, and so by 6.4

n ≤ nq = (d− λ2)(d− λn) ≤ d(d− λn) ≤ d(d− λn) < γ(γ − 1)5 (28)

Theorem 6.7 (Hoffman and Singleton). Every graph with diameter 2 and girth
5 is a moore graph that is k-regular with k2 + 1 vertices, with k ∈ {2, 3, 7, 57},
with the existence of k = 57 being a mystery.

6.3 Mycielskian

Definition 27. The Mycielskian M(G) of a graph G is a construction obtained
by adding n+1 vertices such that, if the original vertices are v1, . . . , vn, we have
for each edge vivj new edges uivj and ujvi. Call u1 . . . , un auxiliary vertices.
Finally, connect the n+1th new vertex to all auxiliary vertices.

Theorem 6.8. If G is diameter 2, then M(G) is as well.

Proof. Consider all vertices in G ≤ M(G). Then, these can reach all vertices
in G in 2 steps by assumption, and all new auxillary vertices by either directly
traveling to it or by traveling through a common vertex. Furthermore, they can
reach the final new vertex by traveling through any auxiliary vertices. The new
vertices form a star, so they can all reach each other as well.

Theorem 6.9. The Mycielskian construction increases the chromatic number.
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Proof. Color G ≤ M(G) as you normally would. Then, we must use all of the
colors in the auxiliary vertices, and the final new vertex increases the chromatic
number by 1.

Theorem 6.10 (Mycielski). The Mycielskian constrution does not add cliques

Proof. The only new triangles must be of the form vivjuk, where vivjvk is a
triangle in G.

Lemma 6.11. If G ⊂ G′, then M(G) ⊂ M(G′)

Proof. This follows from the construction of M(G)

6.4 Ci and Pj freeness

This is open for Pt free graphs when t ≥ 8. For t ≥ 2, we have that Pt free
graphs are a subclass of C<t free graphs (both due to Matin et al). Rojas and
Stein prove poly time for (Codd

<t−3, Pt) free. It is also polynomial time solvable
for the following diameter 2 graphs:

• Diamond-free graphs with an articulation neighborhood but without nested
neighborhoods

• (C3, C4)-free graphs

• K2,1,r-free graphs for every r ≥ 1;

• S1,2,2-free graphs

[By Martin et al]
Martin et al expands to C5 free, C6 free, and (C4, Ct) free for t ∈ {3, 5, 6, 7, 8, 9}.

We have poylnomial time 3 coloring for (C4, Ct) free when t ≥ 10, solved by
Klimosova and Sahlot. Finally, (C3, Cs) with s ≥ 8 remains open.

Let G be a (C3, C8) free graph. Then, we can assume there is an induced
5-cycle, as otherwise we would have a (C3, C5) free graph, which is polynomial
time colorable. Call our cycle C5 on vertices 1,2,3,4,5. Let N1 = N(C5), and
let N2 = N(N1)\C5. Let Col1 be the list of all vertices in N1 with list size 1,
and similarly Col2 the list of all vertices in N2 with list size 1.
Without a loss of generality, color 1 and 3 a, 2 and 4 b, and 5 c. Let A be the
set of all vertices in N1 connected to 1 or 3 but not in Col1, let B be the set of
all vertices in N1 connected to 2 or 4 but not in Col1, and let C be the set of
all vertices connected to 5 but not in Col1.
Since the cycle is colored, all vertices in N(C5) have list size at most 2, so our
vertices in sets A,B,C have list size exactly 2. As a result of this, vertices in
A are not connected to 2,4,5, similar for B and 1,3,5, and C for 1,2,3,4 (as
otherwise they would have list size 1).
Further partition A,B,C so that A1 are the vertices connected to 1 but not
3, A3 are the vertices connected to 3 but not 1, and A13 are connected to
both. Similarly construct B2, B4, B24. Then, partition N2 into L3, L2, and L1,
collections of vertices with list 3, list 2, and list 1.
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Lemma 6.12. If v ∈ L3, then v has an edge in A,B,C

This result follows from G being diameter 2. WLOG let v not have an edge
in C. Then, v cannot reach 5 in 2 steps.

We must have a 7 cycle. Then, we can assume two cases for the coloring of
this cycle. From this, we can deduce rules about connections between groups of
vertices, which informs coloring.

6.5 Counting Forbidden Subgraphs

Theorem 6.13 (Pan, Stefankovic). There is an infinite family of forbidden
diameter two subgraphs that force 4 or higher chromatic number

Proof. Consider a diameter 2 graph G with 3k vertices. Let V = {{0, 1, 2}k},,
and let our edge set satisfy E = {{a, b}|∀iai ̸= bi}. This graph is 3 colorable and
diameter 2 with 3k colorings. To see that G satisfies the diameter 2 constraint,
consider two vertices without an edge u, v. Then, they differ by at least one
coordinate, however there is at least one third node w that differs from all
coordinates from both nodes, so there is an edge between u,w and w, v. To find
a coloring, partition all vertices by their ith coordinate, then each set will be
independent. Next we generate forbidden subgraphs. We add k edges between
vertices sharing ai, bi, and the ith edge removes the ith coloring. Each edge
addition creates a graph that is not a subgraph of prior graphs, and we can do
this for any k, creating an arbitrarily large family.
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