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Problem #1. Compute the following integrals. You must state (not prove) any theorems

you wish to use in the process.

i) Compute the following integral using the calculus of residues. Explicitly justify every step.

∫ ∞

−∞

x− 1

x5 − 1
dx.

ii) Compute the following integral using the calculus of residues. Explicitly justify every

step.

∫ ∞

0

sin2(x)

x2
dx.

Hint: You may want to consider expressing sin2(x) in terms of cos(2x) and then expressing

cos(2x) using complex exponentials.
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Problem #2. i) Suppose γ is a closed curve in region Ω with γ ∼ 0 in Ω and n(γ, z) = 0

or 1 for all z ∈ Ω \ γ. Prove that if f and g are analytic in Ω and satisfy

|f(z) + g(z)| < |f(z)|+ |g(z)|

for all z ∈ γ, then f and g have the same number of zeroes enclosed by γ.

ii) Does the function ez − z have any zeroes on the unit disk centered at the origin? Justify

your assertion.

Hint: Consider a suitable function on the unit disk that has no zeroes.
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Problem #3. i) Suppose f is analytic in the open unit disk D and suppose |f(z)| < 1. If

z, a ∈ D, then ∣∣∣∣∣ f(z)− f(a)

1− f(a)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − a

1− az

∣∣∣∣
and

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.

If you use the maximum principle in your argument, you must state it precisely and prove

it.

ii) Suppose f is analytic in the open unit disk D and suppose |f(z)| < 1. Is it possible for

such a function to satisfy f(1
2
) = 3

4
and f ′(1

2
) = 2

3
? If such a function exists, construct it. If

it does not exist, prove it. Justify all your work.
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Problem #4. i) Prove that if f is analytic on C \ {z0} for some z0 ∈ C and one-to-one,

then

f(z) =
az + b

cz + d

for some a, b, c, d ∈ C.

ii) Let Ω be the intersection of the disk of radius 1 centered at the origin and the disk of

radius
√
2 centered at 1 + i. Construct a conformal map that maps Ω to the unit disk

centered at the origin.
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Problem #5. Let fn be analytic over a region Ω in the complex plane. If there is an M > 0

such that ∫ ∫
Ω

|fn(x+ iy)|2dxdy ≤ M

for each n, then {fn} is a normal family. Your solution must include a precise (and correct)

definition of a normal family of functions.

Hint: On each compact subset X of Ω, prove the existence of r > 0 such that B(a, r) is

contained in Ω for every a ∈ X. Bound the displayed integral from below by the integral

over B(a, r) and use it to obtain an upper bound for |f(a)|.
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