Math 467: Theory of Analytic Functions

Final May, 2023

NAME (please print legibly): ______ Your University ID Number: _____

Instructions:

- 1. Read the notes below:
 - Using any notes, books, online resources, or contacting any other people during this exam is prohibited.
- 2. Read the following Academic Honesty Statement and sign:

I affirm that I will not use any unauthorized resourced, or give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:_____

1. (10 points) If f is a harmonic function in a domain Ω , then show that f^2 cannot be harmonic unless f is a constant function.

2. (10 points) Let a_1, a_2, \ldots be a sequence of distinct complex numbers, and A_1, A_2, \ldots any sequence of complex numbers. Either prove that there must exist an entire function f with $f(a_n) = A_n$ for all $n \in \mathbb{N}$, or give a counterexample and justify it.

3. (10 points) Prove, that if f is an entire function which is injective, then $\exists a \neq 0, b \in \mathbb{C}$ such that f(z) = az + b.

Hint: f will have an isolated singularity at ∞ . You can argue by analyzing the type of singularity f can have at ∞ .

4. (10 points) Evaluate $\int_{-\infty}^{\infty} \frac{e^{itx}}{1+x^2} dx$ where t is any real constant.

5. (10 points)

a) Recall, that given a non-empty open subset G of \mathbb{C} , the Bergman space $L^2_a(G)$ is defined to be the space of analytic functions $f: G \to \mathbb{C}$ such that $\int_G |f|^2 dx dy < \infty$, and it is a Hilbert space with respect to the inner product $\langle f, g \rangle := \int_G f \bar{g} dx dy$.

Find an orthonormal basis of $L^2_a(D)$, where D is the unit disk.

b) Prove that if $\sum_{n=0}^{\infty} |a_n|^2$ converges, then $\sum_{n=0}^{\infty} \sqrt{n+1} a_n z^n$ is analytic in the region |z| < 1.

Extra page

Extra page