Gradience at the syntax-phonology interface Evidence from Mandarin and Wenzhounese

Chen Xie (DPhil student)
Faculty of Linguistics, Philology and Phonetics
Hertford College, University of Oxford
chen.xie@ling-phil.ox.ac.uk
https://users.ox.ac.uk/~kell5077/

Roadmap

1. Introduction
2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG
4. Conclusion

Roadmap

1. Introduction
2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG
4. Conclusion

1. Introduction

Target languages

- Mandarin Chinese (based on previous work)
- Wenzhounese: a southern Wu dialect (my field work)

Shared properties

- Canonical word order: SVO
- Topic prominence (Li \& Thompson 1976)
- Many words have monosyllabic and disyllabic variants

1. Introduction

For example, in Mandarin, - 'to plant' zhong or zhong.zhi - 'tree' shu or shu.mu

Four logically possible combinations for the VP 'to plant trees'

	Syllabicity	Verb	Object
a.	$2+2$	zhong.zhi	shu.mu
b.	$1+2$	zhong	shu.mu
c.	$1+1$	zhong	shu
d.	$2+1$	zhong.zhi	shu

1. Introduction

All of them are syntactically well-formed, but (d) is far less acceptable

	Syllabicity	Verb	Object
a.	$2+2$	zhong.zhi	shu.mu
b.	$1+2$	zhong	shu.mu
c.	$1+1$	zhong	shu
d.	$2+1$	zhong.zhi	shu

The syllabicity constraint:

$2+1$ VPs (disyllabic verb + monosyllabic object) are prosodically ill-formed ${ }^{1}$

1. Introduction

Research questions

1. How much less acceptable are $2+1 \mathrm{VPs}$ in Mandarin?
2. How much less acceptable are $2+1 \mathrm{VPs}$ in Wenzhounese?
3. Implications for modularity

- Does phonology have (direct) access to syntactic information?
- How should the syllabicity constraint be formalised in LFG?

4. Implications for grammaticality

- Binary or gradient?
- How can LFG incorporate gradient grammaticality?

Roadmap

1. Introduction
2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG
4. Conclusion

2. The syllabicity constraint in Mandarin

Duanmu's (2012) corpus study:
The token count of $2+1 \mathrm{VPs}$ is exceptionally low, which would be unexpected if monosyllabic and disyllabic objects are freely variable.

Pattern	Token	Percentage
$2+2$	711	16.2%
$1+2$	838	19.91%
$1+1$	2,749	62.8%
$2+1$	81	1.8%

2. The syllabicity constraint in Mandarin

Duanmu's (2012) corpus study:
The token count of $2+1 \mathrm{VPs}$ is exceptionally low, which would be unexpected if monosyllabic and disyllabic objects are freely variable.

Pattern	Token	Percentage
$\mathbf{2 + 2}$	$\mathbf{7 1 1}$	$\mathbf{1 6 . 2 \%}$
$1+2$	838	19.91%
$1+1$	2,749	62.8%
$\mathbf{2 + 1}$	$\mathbf{8 1}$	$\mathbf{1 . 8 \%}$

2. The syllabicity constraint in Mandarin

Judgment study (adapted from Duanmu et al. 2018):

Roadmap

FACULTY OF

1. Introduction

2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG
4. Conclusion

2. The syllabicity constraint in Wenzhounese

Experiment 1

- Production test: Is a disyllabic verb more likely to induce a disyllabic object (i.e. $2+2$) than a monosyllabic verb is (i.e. $1+2$)?
- Judgment test: Are $2+1$ VPs considered less acceptable than 2+2 VPs?

2. The syllabicity constraint in Wenzhounese

Experiment 1: Procedure

- 32 native speakers of Wenzhounese (note: they also speak Mandarin)
- Production test: Wenzhounese sentences elicited
- Judgment test: listened to and rated audio stimuli

2. The syllabicity constraint in Wenzhounese

Production test: Results

Monosyllabic verb $<$| Pattern | Percentage |
| :---: | :---: |
| $2+2$ | 71% |
| $1+2$ | 46% |
| $1+1$ | 54% |
| $2+1$ | 29% |

2. The syllabicity constraint in Wenzhounese

Production test: Results

Disyllabic verb | Pattern | Percentage |
| :---: | :---: |
| $\mathbf{2 + 2}$ | $\mathbf{7 1 \%}$ |
| $1+2$ | 46% |
| $1+1$ | 54% |
| $\mathbf{2 + 1}$ | $\mathbf{2 9 \%}$ |

2. The syllabicity constraint in Wenzhounese

Production test: Results

Pattern	Percentage	Likelihood ratio test
$2+2$	71%	$x^{2}(1)=20.90$
$p<0.0001$		
$1+2$	46%	
$1+1$	54%	
$2+1$	29%	

- Compared to a monosyllabic verb, a disyllabic verb is significantly more likely to induce a disyllabic object
- $2+1$ VPs are disfavoured in production

2. The syllabicity constraint in Wenzhounese

Production test: Compare with 2+1 and 2+2 VPs in Mandarin

2. The syllabicity constraint in Wenzhounese

Production test: Compare with 2+1 and 2+2 VPs in Mandarin

Similarity: $\quad 2+1$ VPs are disfavoured in both varieties
Difference: $\quad 2+1$ VPs are more disfavoured in Mandarin than in Wenzhounese
Implication: Strong vs. weaker constraint

2. The syllabicity constraint in Wenzhounese

Judgment test: Results

Pattern	Rating	Z-score	SD	Likelihood ratio test
$2+2$	6.26	0.68	0.40	$x^{2}(1)=16.37$
$2+1$	5.96	0.52	0.61	

- Both $2+1$ and $2+2$ VPs are acceptable (rated above 4)
- But $2+1$ VPs are significantly less acceptable than $2+2$ VPs

2. The syllabicity constraint in Wenzhounese

Judgment test: Linking hypothesis
Grammaticality vs. Acceptability

- The relation is indirect (Lau et al. 2017; Phillips et al. 2021)
- There can be mismatches (Haider 2019)
a. The rat the cat the dog chased killed ate the malt.
b. *The key to the cabinets are rusty.

2. The syllabicity constraint in Wenzhounese

Judgment test: Linking hypothesis

- The stimuli in this experiment are simple SVO sentences, so the lower acceptability of $2+1 \mathrm{VPs}$ is unlikely to result from processing difficulties.
- The results of the judgment test are corroborated by the results of the production test, according to which the preference for $2+2$ over $2+1 \mathrm{VPs}$ is high but not absolute.
- Therefore, at least in this experiment, acceptability is a reliable indicator of grammaticality (see also Almeida 2014 and Featherston 2005)

2. The syllabicity constraint in Wenzhounese

Judgment test: Interpretation

Pattern	Rating	Z-score	SD	Likelihood ratio test
$2+2$	6.26	0.68	0.40	$X^{2}(1)=16.37$,
$2+1$	5.96	0.52	0.61	$p<0.0001$

- Both $2+1$ and $2+2$ VPs are grammatical if grammaticality is binary.
- But 2+1 VPs are less grammatical than 2+2 VPs.
- Binary grammaticality misses the generalisation.

2. The syllabicity constraint in Wenzhounese

Judgment test: Compare with the judgement test in Mandarin

Pattern	Rating	Z-score	SD	Likelihood ratio test
$2+2$	6.26	0.68	0.40	$x^{2}(1)=16.37$,
$2+1$	5.96	0.52	0.61	$p<0.0001$

In Mandarin

- median of rating ≈ 6 for $2+2 \mathrm{VPs}$
- median of rating ≈ 2 for $2+1 \mathrm{VPs}$

The syllabicity constraint

- Strong in Mandarin but weaker in Wenzhounese

2. The syllabicity constraint in Wenzhounese

Experiment 2

- Topic prominence may affect word order
- What if the object is displaced?
- What is the target of the syllabicity constraint?
- A local domain [V NP], or
- The head-dependent relation regardless of word order

2. The syllabicity constraint in Wenzhounese

Experiment 2

A sample stimulus

| Object | Verb | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tsho/tci-tsho | sei.t6i | he | ba | mei | a |
| car/petrol-car | design | PFV | SFP | NEG | Q |

2. The syllabicity constraint in Wenzhounese

Experiment 2

- 30 participants, Wenzhounese-Mandarin bilinguals
- Listened to audio stimuli and asked to rate against a seven-point scale
- No significant difference $\left(X^{2}(1)=0.66, p=0.42\right)$

2. The syllabicity constraint

Summary:

- 2+1 VPs are dispreferred in production and acceptability judgment.
- Wenzhounese is more tolerant of $2+1 \mathrm{VPs}$ than Mandarin is.
- The syllabicity constraint is strong in Mandarin but weaker in Wenzhounese, which challenges binary grammaticality.
- The syllabicity constraint only applies locally to the object governed by the verb.

Roadmap

1. Introduction

2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG
4. Conclusion

3. Theoretical implications for LFG

Q1: Is there a more general principle that subsumes the syllabicity constraint?

Non-head stress (Duanmu 2007: 146)

- In the syntactic structure [XXP] (or [XP X]), where X is the syntactic head and XP the syntactic nonhead, XP should be stressed.
- Asymmetrical tonal neutralisation cross-linguistically (Hyman 2019: 22)

3. Theoretical implications for LFG

Non-head stress + Metrical requirements (Duanmu 2012: 106)
a. Foot binary: A foot needs two syllables, i.e. ($\sigma \sigma$)
b. Every stress represents a foot.

Pattern	Metrical structure $^{\mathbf{1}}$
$2+2$	$(\sigma \sigma)(\sigma \sigma)$
${ }^{*} 2+1$	$(\sigma \sigma)(\sigma)$
$1+2$	$\sigma(\sigma \sigma)$
$1+1$	$(\sigma \sigma)$

3. Theoretical implications for LFG

Q2: How do we formalise non-head stress in a modular way, given that phonology should not know the difference between head and non-head (or, relatedly, the head-adjunct distinction; Tamelan \& Arka 2021)?

Step 1: The metrical structure is stored in the lexicon (Levelt 1999; Bögel 2015) e.g., 'to repair cars' in Wenzhounese

	Monosyllabic	Disyllabic
repair	$[$ sou $]$	[sou.lei]
car	$\left[\mathrm{ts}^{\mathrm{h}} \mathrm{o}\right]$	$\left[\mathrm{th}^{\text {hi.tsho }}\right]$

3. Theoretical implications for LFG

Lexical entries for 'repair' in Wenzhounese

s-form	$(\bullet$ FM $)=$ sou	$(\bullet$ FM $)=$ soulei
	$\lambda(\pi(\bullet))=\mathrm{V}$	$\lambda(\pi(\bullet))=\mathrm{V}$
p-form	$/ \mathrm{s} \mathrm{o} \mathrm{u} /$	$/ \mathrm{s}$ o u l e i i/
	σ	$(\sigma \sigma)_{\mathrm{Ft}}$

Lexical entries for 'car' in Wenzhounese

s-form	$(\bullet \mathrm{FM})=\mathrm{ts}^{\mathrm{h}} \mathrm{O}$	$(\bullet \mathrm{FM})=\mathrm{t}^{\mathrm{h}}{ }^{\mathrm{h}} \mathrm{Fs}^{\mathrm{h}} \mathrm{O}$
	$\lambda(\pi(\bullet))=\mathrm{N}$	$\lambda(\pi(\bullet))=\mathrm{N}$
p-form	$/ \mathrm{ts}^{\mathrm{h}} \mathrm{o} /$	$/ \mathrm{th}^{\mathrm{h}} \mathrm{i} \mathrm{ish}^{\mathrm{h}} \mathrm{o} /$
	σ	$(\sigma \sigma)_{\mathrm{Ft}}$

3. Theoretical implications for LFG

Step 2: Prosodic phrasing (Selkirk 2011; Interface Harmony)

P-structure for $2+1 \mathrm{VPs}$

3. Theoretical implications for LFG

Step 3: Phrasal stress is assigned to the right edge of a Φ (cf. Dalrymple et al. 2019: 422), which must be realised on a binary foot (Duanmu 2012)

3. Theoretical implications for LFG

\checkmark Modularity
∇ Locality

3. Theoretical implications for LFG

Q3: How do we capture the difference between Mandarin and Wenzhounese?

- Mandarin: $2+1$ VPs are strongly dispreferred
- Wenzhounese: 2+1 VPs are grammatical but less acceptable

Step 1: Assume OT-LFG (e.g. Bresnan 2000; Lowe 2016)
Step 2: Assume Stochastic OT (SOT), where constraints are weighted and there is a noise component that temporarily impacts the grammar (Boersma 1999)

3. Theoretical implications for LFG

(adapted from Boersma \& Hayes 2001: 47, 49)

- $C_{1} \gg C_{2} \gg C_{3}$
- $C_{1}-C_{2}>C_{2}-C_{3}$

3. Theoretical implications for LFG

(adapted from Boersma \& Hayes 2001: 47, 49)

- The ranking between C_{2} and C_{3} is more prone to the impact of noise.

3. Theoretical implications for LFG

(adapted from Boersma \& Hayes 2001: 47, 49)

- Occasionally, $C_{3} \gg C_{2}$

3. Theoretical implications for LFG

Two hypothetical constraints for the syllabicity constraint

- C_{1} : penalises $2+1 \mathrm{VPs}$
- C_{2} : an economy constraint that penalises longer forms, e.g. $2+2 \mathrm{VPs}$
$C_{1}>C_{2}$ in both Mandarin and Wenzhounese

3. Theoretical implications for LFG

Mandarin	$C_{1}=53.5$	$C_{2}=50$
$2+2 \mathrm{VP}$		$*$
$2+1 \mathrm{VP}$	$*!$	

100-trial simulation in $\mathrm{R}: C_{1} \gg C_{2}=90 \%, C_{2} \gg C_{1}=10 \%$
Result of the corpus study: $2+2 \mathrm{VP}=89.8 \%, 2+1 \mathrm{VP}=10.2 \%$

Wenzhounese	$C_{1}=50.8$	$C_{2}=50$
$2+2 \mathrm{VP}$		${ }^{*}$
$2+1 \mathrm{VP}$	$*!$	

100-trial simulation in $\mathrm{R}: C_{1} \gg C_{2}=70 \%, C_{2} \gg C_{1}=30 \%$
Result of the production test: $2+2 \mathrm{VP}=71 \%, 2+1 \mathrm{VP}=29 \%$

3. Theoretical implications for LFG

Q4: Does OT's domain-general computation undermine LFG's modularity?

One of the input-output relations in OT-LFG (Mohanan \& Mohanan 2003: 313) $\alpha \rightarrow \alpha, \beta, \gamma, \ldots$

Constraints from different modules are present in a single computation

3. Theoretical implications for LFG

Category-specific effects in Panoan languages: verbs and non-verbs have different phonological realisations (Elias-Ulloa 2021)

Hypothetical examples (where /C/ stands for an underspecified consonant)

Category	UR	SR
Verb	/saCa/	[sata]
Noun	/saCa/	[saka]
Adjective	/saCa/	[saka]

*t $\mathbf{t}_{\text {verb }}$: assign a violation mark to a verb whose /C/ is realised as [t] (adapted from Elias-Ulloa 2021)

3. Theoretical implications for LFG

Are category-specific effects real?

3. Theoretical implications for LFG

Assume that every markedness constraint is domain-specific, for example:

1. *t: Assign a violation mark to a word whose /C/ is realised as [t]
2. *NEG-V: Assign a violation mark to expressions like / eat not, as opposed to I don't eat (adapted from Bresnan 2001: 28)

However these constraints are ranked, there is no interaction between syntax and phonology.

3. Theoretical implications for LFG

Q4: Does OT's domain-general computation undermine LFG's modularity?

No, as long as markedness constraints are domain-specific.

Roadmap

1. Introduction

2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG

4. Conclusion

4. Conclusion

1. $2+1 \mathrm{VPs}$ are less acceptable than $2+2 \mathrm{VPs}$ in Mandarin and Wenzhounese.
2. This syllabicity constraint can be formalised in a modular fashion.
3. The difference between Mandarin and Wenzhounese results from different constraint strength, which challenges binary grammaticality.
4. SOT-LFG can model gradient grammaticality without violating modularity.

References

1. Almeida, Diogo. 2014. Subliminal wh-islands in Brazilian Portuguese and the consequences for syntactic theory. Revista da ABRALIN 13(2). 55-93.
2. Bögel, T. (2015). The syntax-prosody interface in Lexical Functional Grammar (PhD thesis). Universität Konstanz.
3. Bresnan, J. (2000). Optimal Syntax. In Dekkers et al. (eds.)., Optimality Theory: Phonology, syntax and acquisition: 334-385. OUP.
4. Bresnan, J. (2001). Explaining morphosyntactic competition. In M. Baltin \& C. Collins (Eds.), Handbook of contemporary syntactic theory, 11-44. Blackwell.
5. Boersma, P. 1997. How we learn variation, optionality, and probability. In IFA proceedings 21. 43-58. Institute of Phonetic Sciences, University of Amsterdam.
6. Boersma, Paul \& Hayes, Bruce. 2001. Empirical tests of the Gradual Learning Algorithm. Linguistic inquiry 32(1). 45-86.
7. Dalrymple, M., Lowe, J. J., \& Mycock, L. (2019). The Oxford reference guide to Lexical Functional Grammar. OUP.
8. Duanmu, San. 2007. The phonology of Standard Chinese. Oxford University Press.
9. Duanmu, San. 2012. Word-length preferences in Chinese: A corpus study. Journal of East Asian Linguistics 21(1). 89-114.
10. Duanmu, San \& Feng, Shengli \& Dong, Yan \& Zhang, Yingyue. 2018. A judgment study of length patterns in Chinese: Prosody, last resort, and other factors. Journal of Chinese Linguistics 46(1). 42-68.
11. Elias-Ulloa, J. (2021). Lexical category-governed neutralization to coronal and non-coronal place of articulation in latent consonants: The case of ShipiboKonibo and Capanahua (Pano). Languages, 6, 158.
12. Feng, Shengli. 1997. Prosodically determined word-formation in Mandarin Chinese. Social Sciences in China 4. 120-137.
13. Featherston, Sam. 2005. Magnitude estimation and what it can do for your syntax: Some wh-constraints in German. Lingua 115(11). 1525-1550.
14. Haider, Hubert. 2019. Grammatical rules are discrete, not weighted, and not vulnerable. In Christensen, Ken Ramshøj \& Jørgensen, Henrik \& Wood, Johanna L. (eds.), The sign of the V: Papers in honour of Sten Vikner, 205-226. Aarhus University.
15. Hyman, Larry M. 2019. Towards a topology of postlexical tonal neutralizations. In Kubozono, Haruo \& Giriko, Mikio (eds.), Tonal change and neutralization, 726. De Gruyter Mouton.
16. Lau, Jey Han \& Clark, Alexander \& Lappin, Shalom. 2017. Grammaticality, acceptability, and probability: A probabilistic view of linguistic knowledge. Cognitive science 41. 1202-1241.
17.Li, C., \& Thompson, S. (1976). Subject and topic: A new typology of language. In C. Li (Ed.), Subject and topic (pp. 457-489). Academic Press.
17. Levelt, W. J. (1999). Models of word production. Trends in cognitive sciences, 3(6), 223-232.
19.Lowe, J. J. (2016). Clitics: Separating syntax and prosody. Journal of Linguistics, 52(2), 375-419.
18. Mohanan, T., \& Mohanan, K. P. (2003). Input, output candidates, markedness constraints, and ineffability in OT-LFG. In M. Butt \& T. H. King (Eds.), Proceedings of the LFG03 conference, 307-327. CSLI Publications.
19. Phillips, Colin \& Gaston, Phoebe \& Huang, Nick \& Muller, Hanna. 2021. Theories all the way down: Remarks on "theoretical" and "experimental" linguistics. In Goodall, Grant (ed.), The Cambridge handbook of experimental syntax, 587-616. Cambridge University Press.
20. Selkirk, E. (2011). The syntax-phonology interface. In J. Goldsmith, J. Riggle, \& A. C. L. Yu (Eds.), The handbook of phonological theory: 435-484. Blackwell.
21. Tamelan, T. and Arka, I. W. (2021). Adjuncts at the syntax-prosody interface in nominal structures in In Butt, M., Findlay, J. Y., \& Toivonen, I. (Eds.), Proceedings of the LFG21 Conference, 264-284. CSLI Publications.

Thank you!

Acknowledgement: Many thanks to my supervisor, Dr Louise Mycock, and attendees of the conference previews from our faculty, for their comments. I am also grateful to the Comité International Permanent des Linguistes (CIPL) for the travel grant to attend LFG23.

Chen Xie (DPhil student)
chen.xie@ling-phil.ox.ac.uk
https://users.ox.ac.uk/~kell5077/

