Gradience at the syntax-phonology interface Evidence from Mandarin and Wenzhounese

Chen Xie (DPhil student)

Faculty of Linguistics, Philology and Phonetics

Hertford College, University of Oxford

chen.xie@ling-phil.ox.ac.uk

https://users.ox.ac.uk/~kell5077/

Roadmap

1

1. Introduction

- 2. The syllabicity constraint
 - In Mandarin
 - In Wenzhounese
- 3. Theoretical implications for LFG
- 4. Conclusion

Roadmap

1. Introduction

2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG

4. Conclusion

Target languages

- Mandarin Chinese (based on previous work)
- Wenzhounese: a southern Wu dialect (my field work)

Shared properties

- Canonical word order: SVO
- Topic prominence (Li & Thompson 1976)
- Many words have monosyllabic and disyllabic variants

- For example, in Mandarin, 'to plant' *zhong* or *zhong.zhi*
 - shu or shu.mu • 'tree'

Four logically possible combinations for the VP 'to plant trees'

	Syllabicity	Verb	Object
a.	2+2	zhong.zhi	shu.mu
b.	1+2	zhong	shu.mu
C.	1+1	zhong	shu
d.	2+1	zhong.zhi	shu

All of them are syntactically well-formed, but (d) is far less acceptable

	Syllabicity	Verb	Object
a.	2+2	zhong.zhi	shu.mu
b.	1+2	zhong	shu.mu
C.	1+1	zhong	shu
d.	2+1	zhong.zhi	shu

The syllabicity constraint:

2+1 VPs (disyllabic verb + monosyllabic object) are prosodically ill-formed¹

¹There is a similar constraint on nominal compounds (see, e.g., Feng 1997).

Research questions

- 1. How much less acceptable are 2+1 VPs in Mandarin?
- 2. How much less acceptable are 2+1 VPs in Wenzhounese?
- 3. Implications for modularity
 - Does phonology have (direct) access to syntactic information?
 - How should the syllabicity constraint be formalised in LFG?
- 4. Implications for grammaticality
 - Binary or gradient?
 - How can LFG incorporate gradient grammaticality?

Roadmap

1. Introduction

- 2. The syllabicity constraint
 - In Mandarin
 - In Wenzhounese

3. Theoretical implications for LFG

4. Conclusion

2. The syllabicity constraint in Mandarin

Duanmu's (2012) corpus study:

The token count of 2+1 VPs is exceptionally low, which would be unexpected if

monosyllabic and disyllabic objects are freely variable.

Pattern	Token	Percentage
2+2	711	16.2%
1+2	838	19.91%
1+1	2,749	62.8%
2+1	81	1.8%

2. The syllabicity constraint in Mandarin

Duanmu's (2012) corpus study:

The token count of 2+1 VPs is exceptionally low, which would be unexpected if

monosyllabic and disyllabic objects are freely variable.

Pattern	Token	Percentage
2+2	711	16.2%
1+2	838	19.91%
1+1	2,749	62.8%
2+1	81	1.8%

2. The syllabicity constraint in Mandarin

Judgment study (adapted from Duanmu et al. 2018):

Roadmap

1. Introduction

2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG

4. Conclusion

Experiment 1

- Production test: Is a disyllabic verb more likely to induce a disyllabic object (i.e. 2+2) than a monosyllabic verb is (i.e. 1+2)?
- Judgment test: Are 2+1 VPs considered less acceptable than 2+2 VPs?

Experiment 1: Procedure

- 32 native speakers of Wenzhounese (note: they also speak Mandarin)
- Production test: Wenzhounese sentences elicited
- Judgment test: listened to and rated audio stimuli

Production test: Results

	Pattern	Percentage
	2+2	71%
Manaayillahiayarh	1+2	46%
wonosyllabic verb	1+1	54%
	2+1	29%

Production test: Results

	Pattern	Percentage
٦	2+2	71%
	1+2	46%
Disyllabic verb	1+1	54%
	2+1	29%

Production test: Results

Pattern	Percentage	Likelihood ratio test
2+2	71%	$\chi^2(1) = 20.90,$
1+2	46%	<i>p</i> < 0.0001
1+1	54%	
2+1	29%	

- Compared to a monosyllabic verb, a disyllabic verb is significantly more likely to induce a disyllabic object
- 2+1 VPs are disfavoured in production

Production test: Compare with 2+1 and 2+2 VPs in Mandarin

Production test: Compare with 2+1 and 2+2 VPs in Mandarin

- Similarity: 2+1 VPs are disfavoured in both varieties
- Difference: 2+1 VPs are more disfavoured in Mandarin than in Wenzhounese
- Implication: Strong vs. weaker constraint

Judgment test: Results

Pattern	Rating	Z-score	SD	Likelihood ratio test
2+2	6.26	0.68	0.40	$\chi^2(1) = 16.37,$
2+1	5.96	0.52	0.61	<i>p</i> < 0.0001

- Both 2+1 and 2+2 VPs are acceptable (rated above 4)
- But 2+1 VPs are significantly less acceptable than 2+2 VPs

Judgment test: Linking hypothesis

Grammaticality vs. Acceptability

- The relation is indirect (Lau et al. 2017; Phillips et al. 2021)
- There can be mismatches (Haider 2019)
 - a. The rat the cat the dog chased killed ate the malt.
 - b. *The key to the cabinets are rusty.

Judgment test: Linking hypothesis

- The stimuli in this experiment are simple SVO sentences, so the lower acceptability of 2+1 VPs is unlikely to result from processing difficulties.
- The results of the judgment test are corroborated by the results of the production test, according to which the preference for 2+2 over 2+1 VPs is high but not absolute.
- Therefore, at least in this experiment, acceptability is a reliable indicator of grammaticality (see also Almeida 2014 and Featherston 2005)

Judgment test: Interpretation

Pattern	Rating	Z-score	SD	Likelihood ratio test
2+2	6.26	0.68	0.40	$\chi^2(1) = 16.37,$
2+1	5.96	0.52	0.61	<i>p</i> < 0.0001

- Both 2+1 and 2+2 VPs are grammatical if grammaticality is binary.
- But 2+1 VPs are less grammatical than 2+2 VPs.
- Binary grammaticality misses the generalisation.

Judgment test: Compare with the judgement test in Mandarin

Pattern	Rating	Z-score	SD	Likelihood ratio test
2+2	6.26	0.68	0.40	$\chi^2(1) = 16.37,$
2+1	5.96	0.52	0.61	<i>p</i> < 0.0001

In Mandarin

- median of rating ≈ 6 for 2+2 VPs
- median of rating ≈ 2 for 2+1 VPs

The syllabicity constraint

• Strong in Mandarin but weaker in Wenzhounese

Experiment 2

- Topic prominence may affect word order
- What if the object is displaced?
- What is the target of the syllabicity constraint?
 - A local domain [V NP], or
 - The head-dependent relation regardless of word order

Experiment 2

A sample stimulus

Object	- Verb				
ts ^h o/tɕi-ts ^h o	sei.tci	hε	ba	mei	а
car/petrol-car	design	PFV	SFP	NEG	Q

'Have you finished designing the car?'

Experiment 2

- 30 participants, Wenzhounese-Mandarin bilinguals
- Listened to audio stimuli and asked to rate against a seven-point scale
- No significant difference ($\chi^2(1) = 0.66$, p = 0.42)

2. The syllabicity constraint

Summary:

- 2+1 VPs are dispreferred in production and acceptability judgment.
- Wenzhounese is more tolerant of 2+1 VPs than Mandarin is.
- The syllabicity constraint is strong in Mandarin but weaker in Wenzhounese, which challenges binary grammaticality.
- The syllabicity constraint only applies locally to the object governed by the verb.

Roadmap

1. Introduction

2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG

4. Conclusion

Q1: Is there a more general principle that subsumes the syllabicity constraint?

Non-head stress (Duanmu 2007: 146)

- In the syntactic structure [X XP] (or [XP X]), where X is the syntactic head and XP the syntactic nonhead, XP should be stressed.
- Asymmetrical tonal neutralisation cross-linguistically (Hyman 2019: 22)

Non-head stress + Metrical requirements (Duanmu 2012: 106)

- a. Foot binary: A foot needs two syllables, i.e. $(\sigma\sigma)$
- b. Every stress represents a foot.

Pattern	Metrical structure ¹
2+2	(<u>oo</u>)(<u>oo</u>)
*2+1	(oo)(o)
1+2	σ(σσ)
1+1	(oo)

Q2: How do we formalise non-head stress in a modular way, given that phonology should not know the difference between head and non-head (or, relatedly, the head-adjunct distinction; Tamelan & Arka 2021)?

Step 1: The metrical structure is stored in the lexicon (Levelt 1999; Bögel 2015)

e.g.,	'to	repair	cars'	in	Wenzhounese
-------	-----	--------	-------	----	-------------

	Monosyllabic	Disyllabic
repair	[sou]	[sou.lei]
car	[tsʰo]	[tɕʰi.tsʰo]

Lexical entries for 'repair' in Wenzhounese			
s-form	$(\bullet FM) = sou$	$(\bullet FM) = soulei$	
	$\lambda(\pi(ullet)) = \mathrm{V}$	$\lambda(\pi(ullet)) = \mathrm{V}$	
p-form	/s o u/	/s o u l e i/	
	σ	$(\sigma\sigma)_{ m Ft}$	

Lexical entries for 'car' in Wenzhounese

s-form	$(\bullet FM) = ts^{h}o$	$(\bullet FM) = tc^{h}its^{h}o$
	$\lambda(\pi(ullet)) = \mathrm{N}$	$\lambda(\pi(ullet)) = \mathrm{N}$
p-form	$/ts^{h} o/$	$/tc^{h} i ts^{h} o/$
	σ	$(\sigma\sigma)_{ m Ft}$

Step 2: Prosodic phrasing (Selkirk 2011; Interface Harmony)

Step 3: Phrasal stress is assigned to the right edge of a Φ (cf. Dalrymple et al. 2019: 422), which must be realised on a binary foot (Duanmu 2012)

Modularity

Q3: How do we capture the difference between Mandarin and Wenzhounese?

- Mandarin: 2+1 VPs are strongly dispreferred
- Wenzhounese: 2+1 VPs are grammatical but less acceptable

Step 1: Assume OT-LFG (e.g. Bresnan 2000; Lowe 2016) Step 2: Assume Stochastic OT (SOT), where constraints are weighted and there is a noise component that temporarily impacts the grammar (Boersma 1999)

(adapted from Boersma & Hayes 2001: 47, 49)

- C₁ ≫ C₂ ≫ C₃
 C₁ − C₂ > C₂ − C₃

(adapted from Boersma & Hayes 2001: 47, 49)

• The ranking between C_2 and C_3 is more prone to the impact of noise.

(adapted from Boersma & Hayes 2001: 47, 49)

• Occasionally, $C_3 \gg C_2$

Two hypothetical constraints for the syllabicity constraint

- C₁: penalises 2+1 VPs
- C_2 : an economy constraint that penalises longer forms, e.g. 2+2 VPs

 $C_1 \gg C_2$ in both Mandarin and Wenzhounese

Mandarin	$C_1 = 53.5$	$C_2 = 50$
☞ 2+2 VP		*
2+1 VP	*!	

100-trial simulation in R: $C_1 \gg C_2 = 90\%$, $C_2 \gg C_1 = 10\%$ Result of the corpus study: 2+2 VP = 89.8%, 2+1 VP = 10.2%

Wenzhounese	$C_1 = 50.8$	$C_2 = 50$
☞ 2+2 VP		*
2+1 VP	*	

100-trial simulation in R: $C_1 \gg C_2 = 70\%$, $C_2 \gg C_1 = 30\%$ Result of the production test: 2+2 VP = 71%, 2+1 VP = 29%

Q4: Does OT's domain-general computation undermine LFG's modularity?

One of the input-output relations in OT-LFG (Mohanan & Mohanan 2003: 313) $\alpha \rightarrow \alpha, \beta, \gamma, ...$

Constraints from different modules are present in a single computation

Category-specific effects in Panoan languages: verbs and non-verbs have

different phonological realisations (Elias-Ulloa 2021)

Hypothetical examples (where /C/ stands for an underspecified consonant)

Category	UR	SR
Verb	/saCa/	[sa <mark>t</mark> a]
Noun	/saCa/	[saka]
Adjective	/saCa/	[saka]

***t_{VERB}**: assign a violation mark to a verb whose /C/ is realised as [t] (adapted from Elias-Ulloa 2021)

Are category-specific effects real?

Assume that every markedness constraint is domain-specific, for example:

- 1. *t: Assign a violation mark to a word whose /C/ is realised as [t]
- 2. *NEG-V: Assign a violation mark to expressions like *I eat not*, as opposed to *I don't eat* (adapted from Bresnan 2001: 28)

However these constraints are ranked, there is no interaction between syntax and phonology.

Q4: Does OT's domain-general computation undermine LFG's modularity?

No, as long as markedness constraints are domain-specific.

Roadmap

1. Introduction

2. The syllabicity constraint

- In Mandarin
- In Wenzhounese

3. Theoretical implications for LFG

4. Conclusion

4. Conclusion

- 1. 2+1 VPs are less acceptable than 2+2 VPs in Mandarin and Wenzhounese.
- 2. This syllabicity constraint can be formalised in a modular fashion.
- 3. The difference between Mandarin and Wenzhounese results from different constraint strength, which challenges binary grammaticality.
- 4. SOT-LFG can model gradient grammaticality without violating modularity.

References

- 1. Almeida, Diogo. 2014. Subliminal wh-islands in Brazilian Portuguese and the consequences for syntactic theory. *Revista da ABRALIN* 13(2). 55–93.
- 2. Bögel, T. (2015). The syntax-prosody interface in Lexical Functional Grammar (PhD thesis). Universität Konstanz.
- 3. Bresnan, J. (2000). Optimal Syntax. In Dekkers et al. (eds.)., Optimality Theory: Phonology, syntax and acquisition: 334-385. OUP.
- 4. Bresnan, J. (2001). Explaining morphosyntactic competition. In M. Baltin & C. Collins (Eds.), Handbook of contemporary syntactic theory, 11-44. Blackwell.
- 5. Boersma, P. 1997. How we learn variation, optionality, and probability. In *IFA proceedings* 21. 43–58. Institute of Phonetic Sciences, University of Amsterdam.
- 6. Boersma, Paul & Hayes, Bruce. 2001. Empirical tests of the Gradual Learning Algorithm. Linguistic inquiry 32(1). 45-86.
- 7. Dalrymple, M., Lowe, J. J., & Mycock, L. (2019). The Oxford reference guide to Lexical Functional Grammar. OUP.
- 8. Duanmu, San. 2007. The phonology of Standard Chinese. Oxford University Press.
- 9. Duanmu, San. 2012. Word-length preferences in Chinese: A corpus study. Journal of East Asian Linguistics 21(1). 89–114.
- 10. Duanmu, San & Feng, Shengli & Dong, Yan & Zhang, Yingyue. 2018. A judgment study of length patterns in Chinese: Prosody, last resort, and other factors. *Journal of Chinese Linguistics* 46(1). 42–68.
- 11. Elias-Ulloa, J. (2021). Lexical category-governed neutralization to coronal and non-coronal place of articulation in latent consonants: The case of Shipibo-Konibo and Capanahua (Pano). *Languages*, 6, 158.
- 12. Feng, Shengli. 1997. Prosodically determined word-formation in Mandarin Chinese. Social Sciences in China 4. 120–137.
- 13. Featherston, Sam. 2005. Magnitude estimation and what it can do for your syntax: Some wh-constraints in German. Lingua 115(11). 1525–1550.
- 14. Haider, Hubert. 2019. Grammatical rules are discrete, not weighted, and not vulnerable. In Christensen, Ken Ramshøj & Jørgensen, Henrik & Wood, Johanna L. (eds.), *The sign of the V: Papers in honour of Sten Vikner*, 205–226. Aarhus University.
- 15. Hyman, Larry M. 2019. Towards a topology of postlexical tonal neutralizations. In Kubozono, Haruo & Giriko, Mikio (eds.), *Tonal change and neutralization*, 7–26. De Gruyter Mouton.
- 16. Lau, Jey Han & Clark, Alexander & Lappin, Shalom. 2017. Grammaticality, acceptability, and probability: A probabilistic view of linguistic knowledge. *Cognitive science* 41. 1202–1241.
- 17. Li, C., & Thompson, S. (1976). Subject and topic: A new typology of language. In C. Li (Ed.), Subject and topic (pp. 457–489). Academic Press.
- 18. Levelt, W. J. (1999). Models of word production. Trends in cognitive sciences, 3(6), 223-232.
- 19. Lowe, J. J. (2016). Clitics: Separating syntax and prosody. *Journal of Linguistics*, 52(2), 375–419.
- 20. Mohanan, T., & Mohanan, K. P. (2003). Input, output candidates, markedness constraints, and ineffability in OT-LFG. In M. Butt & T. H. King (Eds.), *Proceedings of the LFG03 conference*, 307–327. CSLI Publications.
- 21. Phillips, Colin & Gaston, Phoebe & Huang, Nick & Muller, Hanna. 2021. Theories all the way down: Remarks on "theoretical" and "experimental" linguistics. In Goodall, Grant (ed.), *The Cambridge handbook of experimental syntax*, 587–616. Cambridge University Press.
- 22. Selkirk, E. (2011). The syntax-phonology interface. In J. Goldsmith, J. Riggle, & A. C. L. Yu (Eds.), The handbook of phonological theory: 435-484. Blackwell.
- 23. Tamelan, T. and Arka, I. W. (2021). Adjuncts at the syntax-prosody interface in nominal structures in In Butt, M., Findlay, J. Y., & Toivonen, I. (Eds.), *Proceedings* of the LFG21 Conference, 264–284. CSLI Publications.

Thank you!

Acknowledgement: Many thanks to my supervisor, Dr Louise Mycock, and attendees of the conference previews from our faculty, for their comments. I am also grateful to the Comité International Permanent des Linguistes (CIPL) for the travel grant to attend LFG23.

Chen Xie (DPhil student) <u>chen.xie@ling-phil.ox.ac.uk</u> https://users.ox.ac.uk/~kell5077/