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Consider a simple gapping example:

e Marge saw Lisa and Homer — Bart.

Assume a simple desired meaning representation:
o see(m,l) A see(h,b), or (better):
o [Je.see(e) A agent(e, m) A theme(e, )] A
[Je. see(e) A agent(e, h) A theme(e, b)]
Problem:
@ how to derive such representations compositionally...

@ ...without empty constituents?

In particular:
@ one verb introducing the representation “see”,

@ two occurrences of “see” in the complete desired representation.
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We propose two solutions:

(1) standard Glue approach,

@ but assumes Champollion’s (2015) approach to event semantics;

(2) XLE+Glue implementation of Glue,

with meaning constructors collected in values of GLUE attributes,
compatible with various meaning representations,

but assumes that GLUE can be made “deeply distributive” (cf. PRED);
however, this assumption is currently not implemented in XLE.

In either case, we assume the syntactic analysis of gapping proposed in
Patejuk and Przepidrkowski 2017.
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o [Je.walk(e) A agent(e, b)] A [Je. whistle(e) A agent(e, b)]

A resource “problem” analogous to that in gapping:
@ one occurrence of “Bart’,

@ two occurrences of “b".

Standard solution:

@ represent coordination sans Bart:
Ax.[Je. walk(e) n agent(e, x)] A [Je. whistle(e) n agent(e, x)],

@ supply and distribute Bart:
[Ax.[Je. walk(e) A agent(e, x)] A [Te. whistle(e) n agent(e, x)]](b)
TS [Je. walk(e) A agent(e, b)] A [Je. whistle(e) A agent(e, b)]



Solution 1

oe

Similarly in the running example of gapping:

e Marge saw Lisa and Homer — Bart.

o [Je.see(e) A agent(e, m) A theme(e, )] A
[Je.see(e) A agent(e, h) A theme(e, b)]



Solution 1

oe

Similarly in the running example of gapping:

e Marge saw Lisa and Homer — Bart.

o [Je.see(e) A agent(e, m) A theme(e, )] A
[Je.see(e) A agent(e, h) A theme(e, b)]

The above representation may be obtained thus:

o [M.[Je.f(e) A agent(e, m) A theme(e,])] A
[Je.f(e) n agent(e, h) A theme(e, b)]](\e. see(e))



Solution 1

oe

Similarly in the running example of gapping:
e Marge saw Lisa and Homer — Bart.
o [Je.see(e) A agent(e, m) A theme(e, )] A
[Je.see(e) A agent(e, h) A theme(e, b)]
The above representation may be obtained thus:
o [Af.[Je.f(e) A agent(e, m) A theme(e, )] A
[Je.f(e) n agent(e, h) A theme(e, b)]](\e. see(e))

The actual solution is based on Champollion’s (2015) approach to event
semantics.



Solution 1

oe

Similarly in the running example of gapping:
e Marge saw Lisa and Homer — Bart.
e [Je.see(e) A agent(e,m) A theme(e, )] A
[Je.see(e) A agent(e, h) A theme(e, b)]
The above representation may be obtained thus:
o [Af.[Je.f(e) A agent(e, m) A theme(e, )] A
[Je.f(e) n agent(e, h) A theme(e, b)]](\e. see(e))

The actual solution is based on Champollion’s (2015) approach to event
semantics. Technically, it is a little more complex:
o SEE(Mf.[Je.f(e) A agent(e, m) A theme(e,[)] A

[Je.f(e) n agent(e, h) A theme(e, b)])



Solution 1

oe

Similarly in the running example of gapping:
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e [Je.see(e) A agent(e,m) A theme(e, )] A
[Je.see(e) A agent(e, h) A theme(e, b)]
The above representation may be obtained thus:
o [Af.[Je.f(e) A agent(e, m) A theme(e, )] A
[Je.f(e) n agent(e, h) A theme(e, b)]](\e. see(e))

The actual solution is based on Champollion’s (2015) approach to event
semantics. Technically, it is a little more complex:
o SEE(Mf.[Je.f(e) A agent(e, m) A theme(e,[)] A
[Je.f(e) n agent(e, h) A theme(e, b)]), where
o SEE = \V.)\f.V()\e.see(e) A f(e))
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Crucial assumption: verbs do not directly refer to their arguments.
Would not work:

e Marge saw Lisa and Homer — Bart.

@ saw ~~ Ax.)\y.see(x,y)

Let us try:
e saw ~ (1) Ax.\y.see(x,y)
° (2) A Ay Af.f(x,y)

@ gapped clause ~» (2) Ax. Ay Af.f(x,y)
As before: ((2) + arguments: m, /, etc.) x 2 + coordination:
e A.f(m,I) A f(h,b), apply this to (1):
o see(m,l) A see(h,b)
Problem: relevant meaning constructors need to assume the number of
dependents and their grammatical functions, e.q.:
o (2) M Ay Af.f(x,y):
(1 susy) — (1 081) — ((1 susy) — (1 08)) — 1) — 1
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Limitations

Because of this assumption, this solution relies on Champollion’s (2015)
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Limitations

Because of this assumption, this solution relies on Champollion’s (2015)
approach to event semantics.

See the draft paper for the full syntax—semantics interface (and all
relevant meaning constructors).

This solution has been computationally verified as an XLE+Glue
(Dalrymple et al. 2020) implementation.

@ Tracy gave Lisa to Marge and Bart to Homer.

o [Je.give(e) A agent(e,t) A theme(e,!) A beneficiary(e, m)] A
[Je. give(e) A agent(e, t) A theme(e, b) A beneficiary (e, h)]

‘Tracy gave Lisa to Marge and Tracy gave Bart to Homer.

o [Je.give(e) A agent(e,t) A theme(e,l) A beneficiary(e, m)] A
[Je. give(e) A agent(e, b) A theme(e, ) A beneficiary (e, h)]

‘Tracy gave Lisa to Marge and Bart gave Lisa to Homer'
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This solution is based on the XLE+Glue (Dalrymple et al. 2020)
approach to Glue Semantics:

@ typical f-structures have the set-valued attribute GLUE,

@ containing (f-structure encoding of) meaning constructors.

For example:

@ Marge N (1 PRED) = ‘MARGE’
‘m: 1 € (] GLUE)

@ saw V (1 Prep) = ‘see{(? susi), (1 oBI))
‘Ax.Ay.see(x,y) : (1 suBl)e —o (1 0Bl)e — T+ € (T GLUE)

) [ PrED ‘sEe<(f suB)), (f oB))>’

PRED 'MARGE’
SUB] S , ,
GLUE { m:se }

PRED ‘LisA’
osl ° GLUE {‘I : oe'}

GLUE {‘/\x.)\y‘see(x,y) : (f suBJ)e —o (f 0BJ)e —o ft'}

-
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For example:
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@ when combined with specifications amounting to:
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[e]e]e] )

Given an appropriate treatment of conjunctions, this would lead to the
following (fuller) structure:

@ Marge saw Lisa and Homer — Bart.

PRED ‘SEE<[TI][2]>'
PRED ‘MARGE’ }

GLUE {‘m : e’}

PRED ‘LisA’
0BJ
GLUE {‘l : e’}

SUBJ [

GLUE {‘)\x)\y. see(x,y) : [Me —o 2 wf'}

FORM  AND
CONJ , )
GLUE {/\p./\q.pAqit—O@t—o@t }

PRED
suBl [3]

GLUE

PRED
oBl  [4]

GLUE
GLUE {‘Ax:Ay.

PRED ‘SEE<[3][A]>’'

‘HoMEeR’
{‘h : e}]

e

see(x, y) : Bl —o[4. w@r'}

e leading to the desired representation: see(m, /) A see(h, b).
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Solution 2
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Problem:
@ GLUE does not behave like PReD in XLE,

@ not even when it is declared as distributive.

Apparently,
o the “deep distributivity” of PRED is hardcoded in XLE,

@ without the possibility of declaring other attributes as “deeply
distributive”.
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o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:

o elegant solution (in the words of a Reviewer),
o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue;

o XLE+Glue + “deep distributivity” of GLUE:

o does not (need to) assume Champollion’s (2015) event semantics,
e multiplication of meaning constructors via distributivity,
e does not work because there is no way to make GLUE behave like PRED.

Currently a proof of concept, limited empirically:
@ to coordination (cf. Park 2019 and Bilblie et al. 2023),
o to simple clauses.

Thank you for your attention!
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