Filling gaps with Glue

Adam Przepiérkowskil? and Agnieszka Patejuk!s

!Institute of Computer Science, Polish Academy of Sciences
?Institute of Philosophy, University of Warsaw

3Centre for Linguistics and Philology, University of Oxford

28th Annual Lexical-Functional Grammar Conference
22 July 2023

Consider a simple gapping example:

e Marge saw Lisa and Homer — Bart.

Consider a simple gapping example:

e Marge saw Lisa and Homer — Bart.

Assume a simple desired meaning representation:

o see(m,l) A see(h, b)

Consider a simple gapping example:

e Marge saw Lisa and Homer — Bart.

Assume a simple desired meaning representation:
e see(m,l) A see(h,b), or (better):
o [Je.see(e) A agent(e, m) A theme(e,)] A

[Je. see(e) A agent(e, h) A theme(e, b)]

Consider a simple gapping example:

e Marge saw Lisa and Homer — Bart.

Assume a simple desired meaning representation:
e see(m,l) A see(h,b), or (better):
o [Je.see(e) A agent(e, m) A theme(e,)] A

[Je. see(e) A agent(e, h) A theme(e, b)]
Problem:

@ how to derive such representations compositionally...

Consider a simple gapping example:

e Marge saw Lisa and Homer — Bart.

Assume a simple desired meaning representation:
e see(m,l) A see(h,b), or (better):
o [Je.see(e) A agent(e, m) A theme(e,)] A
[Je. see(e) A agent(e, h) A theme(e, b)]
Problem:
@ how to derive such representations compositionally...

@ ...without empty constituents?

Consider a simple gapping example:

e Marge saw Lisa and Homer — Bart.

Assume a simple desired meaning representation:
e see(m,l) A see(h,b), or (better):
o [Je.see(e) A agent(e, m) A theme(e,)] A
[Je. see(e) A agent(e, h) A theme(e, b)]
Problem:
@ how to derive such representations compositionally...

@ ...without empty constituents?

In particular:

@ one verb introducing the representation “see”

Consider a simple gapping example:

e Marge saw Lisa and Homer — Bart.

Assume a simple desired meaning representation:
o see(m,l) A see(h,b), or (better):
o [Je.see(e) A agent(e, m) A theme(e,)] A
[Je. see(e) A agent(e, h) A theme(e, b)]
Problem:
@ how to derive such representations compositionally...

@ ...without empty constituents?

In particular:
@ one verb introducing the representation “see”,

@ two occurrences of “see” in the complete desired representation.

Intro
oe

Solutions

We propose two solutions:

(1) standard Glue approach

Intro
oe

Solutions

We propose two solutions:

(1) standard Glue approach,
@ but assumes Champollion’s (2015) approach to event semantics

Intro
oe

Solutions

We propose two solutions:

(1) standard Glue approach,
@ but assumes Champollion’s (2015) approach to event semantics;

(2) XLE+Glue implementation of Glue

Intro
oe

Solutions

We propose two solutions:
(1) standard Glue approach,
@ but assumes Champollion’s (2015) approach to event semantics;

(2) XLE+Glue implementation of Glue,

@ with meaning constructors collected in values of GLUE attributes

Intro
oe

Solutions

We propose two solutions:

(1) standard Glue approach,

@ but assumes Champollion’s (2015) approach to event semantics;

(2) XLE+Glue implementation of Glue,
@ with meaning constructors collected in values of GLUE attributes,

@ compatible with various meaning representations

Intro
oe

Solutions

We propose two solutions:

(1) standard Glue approach,

@ but assumes Champollion’s (2015) approach to event semantics;

(2) XLE+Glue implementation of Glue,
@ with meaning constructors collected in values of GLUE attributes,
@ compatible with various meaning representations,

@ but assumes that GLUE can be made “deeply distributive” (cf. PRED)

Intro
oe

Solutions

We propose two solutions:

(1) standard Glue approach,

@ but assumes Champollion’s (2015) approach to event semantics;

(2) XLE+Glue implementation of Glue,

with meaning constructors collected in values of GLUE attributes,
compatible with various meaning representations,

but assumes that GLUE can be made “deeply distributive” (cf. PRED);

however, this assumption is currently not implemented in XLE.

Intro
oe

Solutions

We propose two solutions:

(1) standard Glue approach,

@ but assumes Champollion’s (2015) approach to event semantics;

(2) XLE+Glue implementation of Glue,

with meaning constructors collected in values of GLUE attributes,
compatible with various meaning representations,

but assumes that GLUE can be made “deeply distributive” (cf. PRED);
however, this assumption is currently not implemented in XLE.

In either case, we assume the syntactic analysis of gapping proposed in
Patejuk and Przepidrkowski 2017.

Solution 1

[Je]

Consider the following sentence and its intended representation:
o Bart walked and whistled.
o [Je.walk(e) A agent(e, b)] A [Je. whistle(e) A agent(e, b)]

Solution 1

[Je]

Consider the following sentence and its intended representation:
e Bart walked and whistled.
o [Je.walk(e) A agent(e,b)] A [Je. whistle(e) A agent(e, b)]

A resource “problem” analogous to that in gapping:
@ one occurrence of “Bart’,

@ two occurrences of “b".

Solution 1
[o]

Consider the following sentence and its intended representation:
o Bart walked and whistled.
o [Je.walk(e) A agent(e, b)] A [Je. whistle(e) A agent(e, b)]

A resource “problem” analogous to that in gapping:
@ one occurrence of “Bart’,

@ two occurrences of “b".

Standard solution:

@ represent coordination sans Bart:
Ax.[Je. walk(e) n agent(e, x)] A [Je. whistle(e) n agent(e, x)]

Solution 1
[o]

Consider the following sentence and its intended representation:
o Bart walked and whistled.
o [Je.walk(e) A agent(e, b)] A [Je. whistle(e) A agent(e, b)]

A resource “problem” analogous to that in gapping:
@ one occurrence of “Bart’,

@ two occurrences of “b".

Standard solution:

@ represent coordination sans Bart:
Ax.[Je. walk(e) n agent(e, x)] A [Je. whistle(e) n agent(e, x)],

@ supply and distribute Bart:
[Ax.[Je. walk(e) A agent(e, x)] A [Te. whistle(e) n agent(e, x)]](b)
TS [Je. walk(e) A agent(e, b)] A [Je. whistle(e) A agent(e, b)]

Solution 1

oe

Similarly in the running example of gapping:

e Marge saw Lisa and Homer — Bart.

o [Je.see(e) A agent(e, m) A theme(e,)] A
[Je.see(e) A agent(e, h) A theme(e, b)]

Solution 1

oe

Similarly in the running example of gapping:

e Marge saw Lisa and Homer — Bart.

o [Je.see(e) A agent(e, m) A theme(e,)] A
[Je.see(e) A agent(e, h) A theme(e, b)]

The above representation may be obtained thus:

o [M.[Je.f(e) A agent(e, m) A theme(e,])] A
[Je.f(e) n agent(e, h) A theme(e, b)]](\e. see(e))

Solution 1

oe

Similarly in the running example of gapping:
e Marge saw Lisa and Homer — Bart.
o [Je.see(e) A agent(e, m) A theme(e,)] A
[Je.see(e) A agent(e, h) A theme(e, b)]
The above representation may be obtained thus:
o [Af.[Je.f(e) A agent(e, m) A theme(e,)] A
[Je.f(e) n agent(e, h) A theme(e, b)]](\e. see(e))

The actual solution is based on Champollion’s (2015) approach to event
semantics.

Solution 1

oe

Similarly in the running example of gapping:
e Marge saw Lisa and Homer — Bart.
e [Je.see(e) A agent(e,m) A theme(e,)] A
[Je.see(e) A agent(e, h) A theme(e, b)]
The above representation may be obtained thus:
o [Af.[Je.f(e) A agent(e, m) A theme(e,)] A
[Je.f(e) n agent(e, h) A theme(e, b)]](\e. see(e))

The actual solution is based on Champollion’s (2015) approach to event
semantics. Technically, it is a little more complex:
o SEE(Mf.[Je.f(e) A agent(e, m) A theme(e,[)] A

[Je.f(e) n agent(e, h) A theme(e, b)])

Solution 1

oe

Similarly in the running example of gapping:
e Marge saw Lisa and Homer — Bart.
e [Je.see(e) A agent(e,m) A theme(e,)] A
[Je.see(e) A agent(e, h) A theme(e, b)]
The above representation may be obtained thus:
o [Af.[Je.f(e) A agent(e, m) A theme(e,)] A
[Je.f(e) n agent(e, h) A theme(e, b)]](\e. see(e))

The actual solution is based on Champollion’s (2015) approach to event
semantics. Technically, it is a little more complex:
o SEE(Mf.[Je.f(e) A agent(e, m) A theme(e,[)] A
[Je.f(e) n agent(e, h) A theme(e, b)]), where
o SEE = \V.)\f.V()\e.see(e) A f(e))

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:
e saw ~» Af.Jde.see(e) A f(e)

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa
e saw ~» Af.Jde.see(e) A f(e)
o [closure] ~» Ae.true(e)

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:
e saw ~» Af.Jde.see(e) A f(e)

o [closure] ~» Ae.true(e)

Hence, for the “sentence” Saw.

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:
e saw ~» Af.Jde.see(e) A f(e)

o [closure] ~» Ae.true(e)

Hence, for the “sentence” Saw.:

o saw([closure]) ™" Je.see(e) A true(e)

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:
e saw ~» Af.Jde.see(e) A f(e)

o [closure] ~» Ae.true(e)

Hence, for the “sentence” Saw.:

o saw(closure]) ™ Je.see(e) A true(e) = 3e.see(e)

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:

e saw ~» Af.Jde.see(e) A f(e)

o [closure] ~» Ae.true(e)

Hence, for the “sentence” Saw.:

o saw(closure]) ™ Je.see(e) A true(e) = 3e.see(e)
Dependents are semantic modifiers of verbs, e.g.:

o Lisatheme ~» AV.AF.V()Xe.theme(e,l) A f(e))

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:

e saw ~» Af.Jde.see(e) A f(e)

o [closure] ~» Ae.true(e)

Hence, for the “sentence” Saw.:

o saw(closure]) ™ Je.see(e) A true(e) = 3e.see(e)
Dependents are semantic modifiers of verbs, e.g.:

o Lisatheme ~» AV.AF.V()Xe.theme(e,l) A f(e))

Hence, for the “sentence” Saw Lisa. (before closure)

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:
e saw ~» Af.Jde.see(e) A f(e)
o [closure] ~» Ae.true(e)
Hence, for the “sentence” Saw.:
o saw(closure]) ™ Je.see(e) A true(e) = 3e.see(e)
Dependents are semantic modifiers of verbs, e.g.:
o Lisatheme ~» AV.AF.V()Xe.theme(e,l) A f(e))
Hence, for the “sentence” Saw Lisa. (before closure):

o Lisa(saw) "5 Af.3e.see(e) A theme(e,l) A f(e)

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:

e saw ~» Af.Jde.see(e) A f(e)

o [closure] ~» Ae.true(e)

Hence, for the “sentence” Saw.:

o saw(closure]) ™ Je.see(e) A true(e) = 3e.see(e)
Dependents are semantic modifiers of verbs, e.g.:

o Lisatheme ~» AV.AF.V()Xe.theme(e,l) A f(e))

Hence, for the “sentence” Saw Lisa. (before closure):

o Lisa(saw) "5 Af.3e.see(e) A theme(e,l) A f(e)

And for the sentence Marge saw Lisa. (before closure)

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:

e saw ~» Af.Jde.see(e) A f(e)

o [closure] ~» Ae.true(e)

Hence, for the “sentence” Saw.:

o saw(closure]) ™ Je.see(e) A true(e) = 3e.see(e)
Dependents are semantic modifiers of verbs, e.g.:

o Lisatheme ~» AV.AF.V()Xe.theme(e,l) A f(e))

Hence, for the “sentence” Saw Lisa. (before closure):

o Lisa(saw) "5 Af.3e.see(e) A theme(e,l) A f(e)

And for the sentence Marge saw Lisa. (before closure):

o Margeagent ~+ AV.AFf.V()e.agent(e,m) A f(e))

e Marge(Lisa(saw)) prreggtion

Af.3e.see(e) A theme(e,l) A agent(e, m) A f(e)

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:
e saw ~» Af.Jde.see(e) A f(e)
o [closure] ~» Ae.true(e)
Hence, for the “sentence” Saw.:
o saw(closure]) ™ Je.see(e) A true(e) = 3e.see(e)
Dependents are semantic modifiers of verbs, e.g.:
o Lisatheme ~» AV.AF.V()Xe.theme(e,l) A f(e))
Hence, for the “sentence” Saw Lisa. (before closure):
o Lisa(saw) "5 Af.3e.see(e) A theme(e,l) A f(e)
And for the sentence Marge saw Lisa. (before closure):
o Margeagent ~+ AV.AFf.V()e.agent(e,m) A f(e))
e Marge(Lisa(saw)) prreggtion
Af.3e.see(e) A theme(e,l) A agent(e, m) A f(e)
After closure:
e Marge saw Lisa. ~» Je.see(e) A theme(e,l) n agent(e, m)Atrue(e)

Solution 1
@00

Champollion 2015

An illustration of Champollion 2015 with Marge saw Lisa:
e saw ~» Af.Jde.see(e) A f(e)
o [closure] ~» Ae.true(e)
Hence, for the “sentence” Saw.:
o saw(closure]) ™ Je.see(e) A true(e) = 3e.see(e)
Dependents are semantic modifiers of verbs, e.g.:
o Lisatheme ~» AV.AF.V()Xe.theme(e,l) A f(e))
Hence, for the “sentence” Saw Lisa. (before closure):
o Lisa(saw) "5 Af.3e.see(e) A theme(e,l) A f(e)
And for the sentence Marge saw Lisa. (before closure):
o Margeagent ~+ AV.AFf.V()e.agent(e,m) A f(e))
e Marge(Lisa(saw)) prreggtion
Af.3e.see(e) A theme(e,l) A agent(e, m) A f(e)
After closure:
e Marge saw Lisa. ~» 3Je.see(e) A theme(e,l) A agent(e, m)

Solution 1
(o] Jo}

Champollion 2015 and Gapping

Champollion 2015:
e saw ~» Af.Jde.see(e) A f(e)

Solution 1
(o] Jo}

Champollion 2015 and Gapping

Champollion 2015:
e saw ~» Af.Jde.see(e) A f(e)

Here:

@ Marge saw Lisa and Homer — Bart.

Solution 1
(o] Jo}

Champollion 2015 and Gapping

Champollion 2015:
e saw ~» Af.Jde.see(e) A f(e)

Here:

e Marge saw Lisa and Homer — Bart.

o saw ~» (1) AV.Af.V(Xe.see(e) A f(e))
° (2) AMf.Je.f(e)

Solution 1
(o] Jo}

Champollion 2015 and Gapping

Champollion 2015:
e saw ~» Af.Jde.see(e) A f(e)

Here:

@ Marge saw Lisa and Homer — Bart.

o saw ~» (1) AV.Af.V(Xe.see(e) A f(e))
° (2) AMf.Je.f(e)

gapped clause ~~» (2) A\f.Je.f(e)

Solution 1
(o] Jo}

Champollion 2015 and Gapping

Champollion 2015:
e saw ~» Af.Jde.see(e) A f(e)

Here:

e Marge saw Lisa and Homer — Bart.

o saw ~» (1) AV.Af.V(Xe.see(e) A f(e))
° (2) AMf.Je.f(e)

gapped clause ~~ (2) A\f.Je.f(e)

Recall Marge,gent, Lisatpeme, etc., €.g.:
o Margeagent ~+ AV.Af.V(Xe.agent(e,m) A f(e))

Solution 1
(o] Jo}

Champollion 2015 and Gapping

Champollion 2015:
e saw ~» Af.Jde.see(e) A f(e)

Here:

e Marge saw Lisa and Homer — Bart.

o saw ~» (1) AV.Af.V(Xe.see(e) A f(e))
° (2) Af.3e.f(e)

gapped clause ~~ (2) A\f.Je.f(e)

Recall Marge,gent, Lisatpeme, etc., €.g.:
o Margeagent ~+ AV.AFf.V(Xe.agent(e,m) A f(e))

Then:
e (2) + Lisa + Marge ~» Xf.3Je.theme(e,l) A agent(e, m) A f(e)

Solution 1
(o] Jo}

Champollion 2015 and Gapping

Champollion 2015:
e saw ~» Af.Jde.see(e) A f(e)

Here:

@ Marge saw Lisa and Homer — Bart.

o saw ~» (1) AV.Af.V(Xe.see(e) A f(e))
° (2) AMf.Je.f(e)

gapped clause ~» (2) A\f.Je.f(e)

Recall Marge,gent, Lisatpeme, etc., €.g.:
o Margeagent ~+ AV.AFf.V(Xe.agent(e,m) A f(e))

Then:
e (2) + Lisa + Marge ~» \f.3Je.theme(e,l) A agent(e,m) A f(e)
o (2) + Bart + Homer ~-» \f.3Je.theme(e, b) A agent(e, h) A f(e)

Solution 1
ooe

Champollion 2015 and Gapping

From the previous slide:
o saw ~» (1) AV.Af.V()Xe.see(e) A f(e))
(2) M. 3e. f(e)
gapped clause ~~ (2) Af.de.f(e)
(2) + Lisa + Marge ~- \f.3Je.theme(e,l) A agent(e,m) A f(e)
(2) + Bart + Homer ~» \f.3Je.theme(e, b) A agent(e, h) A f(e)

Solution 1
ooe

Champollion 2015 and Gapping

From the previous slide:
saw ~ (1) AV.Af. V(Xe.see(e) A f(e))
(2) Af.Je.f(e)

gapped clause ~~ (2) A\f.Je.f(e)
(2) + Lisa + Marge ~- \f.3Je.theme(e,l) A agent(e,m) A f(e)
(2) + Bart + Homer ~» \f.3Je.theme(e,b) A agent(e, h) A f(e)
Coordinate the two representations above (Partee and Rooth 1983):
e M\f.[Je.theme(e,l) n agent(e,m) A f(e)] A

[Je. theme(e, b) A agent(e, h) A f(e)]

Solution 1
ooe

Champollion 2015 and Gapping

From the previous slide:
saw ~ (1) AV.Af. V(e see(e) A f(e))
(2) Af.Je.f(e)

gapped clause ~~ (2) A\f.Je.f(e)
(2) + Lisa + Marge ~- \f.3Je.theme(e,l) A agent(e,m) A f(e)
(2) + Bart + Homer ~» \f.3Je.theme(e,b) A agent(e, h) A f(e)
Coordinate the two representations above (Partee and Rooth 1983):
e M\f.[Je.theme(e,l) n agent(e,m) A f(e)] A

[Je. theme(e, b) A agent(e, h) A f(e)]
Add the idiosyncratic contribution of the verb (1):
o \f.[de.theme(e,l) n agent(e, m) A see(e) A f(e)] A

[Je. theme(e, b) A agent(e, h) A see(e) A f(e)]

Solution 1
ooe

Champollion 2015 and Gapping

From the previous slide:
saw ~ (1) AV.Af. V(Xe.see(e) A f(e))
(2) Af.Je.f(e)

gapped clause ~~ (2) A\f.Je.f(e)
(2) + Lisa + Marge ~- \f.3Je.theme(e,l) A agent(e,m) A f(e)
(2) + Bart + Homer ~» \f.3Je.theme(e,b) A agent(e, h) A f(e)
Coordinate the two representations above (Partee and Rooth 1983):
e M\f.[Je.theme(e,l) n agent(e,m) A f(e)] A

[Je. theme(e, b) A agent(e, h) A f(e)]
Add the idiosyncratic contribution of the verb (1):
e \f.[Je.theme(e,l) n agent(e, m) A see(e) A f(e)] A

[Je. theme(e, b) A agent(e, h) A see(e) A f(e)]
Closure:
o [Je.theme(e,l) A agent(e, m) A see(e)true(e)] A

[Je. theme(e, b) A agent(e, h) A see(e)Atrue(e)]

Solution 1
ooe

Champollion 2015 and Gapping

From the previous slide:
saw ~ (1) AV.Af. V(Xe.see(e) A f(e))
(2) Af.Je.f(e)

gapped clause ~~ (2) A\f.Je.f(e)
(2) + Lisa + Marge ~- \f.3Je.theme(e,l) A agent(e,m) A f(e)
(2) + Bart + Homer ~» \f.3Je.theme(e,b) A agent(e, h) A f(e)
Coordinate the two representations above (Partee and Rooth 1983):
e M\f.[Je.theme(e,l) n agent(e,m) A f(e)] A

[Je. theme(e, b) A agent(e, h) A f(e)]
Add the idiosyncratic contribution of the verb (1):
e \f.[Je.theme(e,l) n agent(e, m) A see(e) A f(e)] A

[Je. theme(e, b) A agent(e, h) A see(e) A f(e)]
Closure:
o [Je.theme(e,l) A agent(e, m) A see(e)] A

[Je. theme(e, b) A agent(e, h) A see(e)

Solution 1
[]

Limitations

Crucial assumption: verbs do not directly refer to their arguments.

Solution 1
[]

Limitations

Crucial assumption: verbs do not directly refer to their arguments.
Would not work:

e Marge saw Lisa and Homer — Bart.

@ saw ~~ Ax.)\y.see(x,y)

Solution 1
[]

Limitations

Crucial assumption: verbs do not directly refer to their arguments.
Would not work:

e Marge saw Lisa and Homer — Bart.

@ saw ~~ Ax.)\y.see(x,y)

Let us try:
e saw ~ (1) Ax.\y.see(x,y)
° (2) A Ay Af.f(x,y)

o gapped clause ~» (2) Ax. Ay Af.f(x,y)

Solution 1
[]

Limitations

Crucial assumption: verbs do not directly refer to their arguments.
Would not work:

e Marge saw Lisa and Homer — Bart.
@ saw ~~ Ax.)\y.see(x,y)

Let us try:
e saw ~ (1) Ax.\y.see(x,y)
° (2) A Ay Af. f(x,y)

@ gapped clause ~» (2) Ax. Ay Af.f(x,y)

As before: ((2) + arguments: m, /, etc.) x 2 + coordination:
o M.f(m,I) A f(h,b)

Solution 1
[]

Limitations

Crucial assumption: verbs do not directly refer to their arguments.
Would not work:

e Marge saw Lisa and Homer — Bart.
@ saw ~~ Ax.)\y.see(x,y)

Let us try:
e saw ~» (1) Ax.\y.see(x,y)
° (2) A Ay Af.f(x,y)

o gapped clause ~» (2) Ax. Ay Af.f(x,y)

As before: ((2) + arguments: m, /, etc.) x 2 + coordination:
o M.f(m,I) A f(h,b), apply this to (1):
e see(m,l) A see(h,b)

Solution 1
[]

Limitations

Crucial assumption: verbs do not directly refer to their arguments.
Would not work:

e Marge saw Lisa and Homer — Bart.

@ saw ~~ Ax.)\y.see(x,y)

Let us try:
e saw ~ (1) Ax.\y.see(x,y)
° (2) A Ay Af.f(x,y)

@ gapped clause ~» (2) Ax. Ay Af.f(x,y)
As before: ((2) + arguments: m, /, etc.) x 2 + coordination:
e A.f(m,I) A f(h,b), apply this to (1):
o see(m,l) A see(h,b)
Problem: relevant meaning constructors need to assume the number of
dependents and their grammatical functions, e.q.:
o (2) M Ay Af.f(x,y):
(1 susy) — (1 081) — ((1 susy) — (1 08)) — 1) — 1

Solution 1
L]

Limitations

Because of this assumption, this solution relies on Champollion’s (2015)
approach to event semantics.

Solution 1
L]

Limitations

Because of this assumption, this solution relies on Champollion’s (2015)
approach to event semantics.

See the draft paper for the full syntax—semantics interface (and all
relevant meaning constructors).

Solution 1
L]

Limitations

Because of this assumption, this solution relies on Champollion’s (2015)
approach to event semantics.

See the draft paper for the full syntax—semantics interface (and all
relevant meaning constructors).

This solution has been computationally verified as an XLE+Glue
(Dalrymple et al. 2020) implementation.

Solution 1
L]

Limitations

Because of this assumption, this solution relies on Champollion’s (2015)
approach to event semantics.

See the draft paper for the full syntax—semantics interface (and all
relevant meaning constructors).

This solution has been computationally verified as an XLE+Glue
(Dalrymple et al. 2020) implementation.

@ Jel[agent(el,Homer) A theme(el,Bart) A see(el) A true(el)] A
Je2[agent(e2,Marge) A theme(e2,Lisa) A see(e2) A true(e2)]

@ Jel[agent(el,Homer) A theme(el,Bart) A see(el) A true(el)] A
Je2[theme(e2,Lisa) A agent(e2,Marge) A see(e2) A true(e2)]

@ del[theme(el,Bart) A agent(el,Homer) A see(el) A true(el)] A
Je2[agent (e2,Marge) A theme(e2,Lisa) A see(e2) A true(e2)]

@ Jel[theme(el,Bart) A agent(el,Homer) A see(el) A true(el)] A
Je2[theme(e2,Lisa) A agent(e2,Marge) A see(e2) A true(e2)]

Solution 1
L]

Limitations

Because of this assumption, this solution relies on Champollion’s (2015)
approach to event semantics.

See the draft paper for the full syntax—semantics interface (and all
relevant meaning constructors).

This solution has been computationally verified as an XLE+Glue
(Dalrymple et al. 2020) implementation.

@ Jel[agent(el,Homer) A theme(el,Bart) A see(el) A true(el)] A
Je2[agent(e2,Marge) A theme(e2,Lisa) A see(e2) A true(e2)]

@ Jel[agent(el,Homer) A theme(el,Bart) A see(el) A true(el)] A
Je2[theme(e2,Lisa) A agent(e2,Marge) A see(e2) A true(e2)]

@ del[theme(el,Bart) A agent(el,Homer) A see(el) A true(el)] A
Je2[agent (e2,Marge) A theme(e2,Lisa) A see(e2) A true(e2)]

@ Jel[theme(el,Bart) A agent(el,Homer) A see(el) A true(el)] A
Je2[theme(e2,Lisa) A agent(e2,Marge) A see(e2) A true(e2)]

@ [Je.see(e) A agent(e,m) A theme(e,)] A [Je.see(e) n agent(e, h) A theme(e, b)]

Solution 1
L]

Limitations

Because of this assumption, this solution relies on Champollion’s (2015)
approach to event semantics.

See the draft paper for the full syntax—semantics interface (and all
relevant meaning constructors).

This solution has been computationally verified as an XLE+Glue
(Dalrymple et al. 2020) implementation.

@ Tracy gave Lisa to Marge and Bart to Homer.

o [Je.give(e) A agent(e,t) A theme(e,!) A beneficiary(e, m)] A
[Je. give(e) A agent(e, t) A theme(e, b) A beneficiary (e, h)]

‘Tracy gave Lisa to Marge and Tracy gave Bart to Homer.

o [Je.give(e) A agent(e,t) A theme(e,l) A beneficiary(e, m)] A
[Je. give(e) A agent(e, b) A theme(e,) A beneficiary (e, h)]

‘Tracy gave Lisa to Marge and Bart gave Lisa to Homer'

Solution 2

@000

This solution is based on the XLE+Glue (Dalrymple et al. 2020)
approach to Glue Semantics

Solution 2
[leJe]e]

This solution is based on the XLE+Glue (Dalrymple et al. 2020)
approach to Glue Semantics:
@ typical f-structures have the set-valued attribute GLUE

Solution 2
[leJe]e]

This solution is based on the XLE+Glue (Dalrymple et al. 2020)
approach to Glue Semantics:

@ typical f-structures have the set-valued attribute GLUE,
@ containing (f-structure encoding of) meaning constructors.

Solution 2
[leJe]e]

This solution is based on the XLE+Glue (Dalrymple et al. 2020)
approach to Glue Semantics:

@ typical f-structures have the set-valued attribute GLUE,
@ containing (f-structure encoding of) meaning constructors.
For example:

@ Marge N (1 PRED) = ‘MARGE’
‘m: 1 € (] GLUE)

Solution 2
[leJe]e]

This solution is based on the XLE+Glue (Dalrymple et al. 2020)
approach to Glue Semantics:
@ typical f-structures have the set-valued attribute GLUE,
@ containing (f-structure encoding of) meaning constructors.
For example:
@ Marge N (1 PRED) = ‘MARGE’

‘m: 1 € (] GLUE)

@ saw V (1 Prep) = ‘see{(? susi), (1 oBI))
‘Ax.Ay.see(x,y) : (1 suBl)e —o (1 0Bl)e — T+ € (T GLUE)

Solution 2

@000

This solution is based on the XLE+Glue (Dalrymple et al. 2020)
approach to Glue Semantics:

@ typical f-structures have the set-valued attribute GLUE,

@ containing (f-structure encoding of) meaning constructors.

For example:

@ Marge N (1 PRED) = ‘MARGE’
‘m: 1 € (] GLUE)

@ saw V (1 Prep) = ‘see{(? susi), (1 oBI))
‘Ax.Ay.see(x,y) : (1 suBl)e —o (1 0Bl)e — T+ € (T GLUE)

) [PrED ‘sEe<(f suB)), (f oB))>’

PRED 'MARGE’
SUB] S , ,
GLUE { m:se }

PRED ‘LisA’
osl ° GLUE {‘I : oe'}

GLUE {‘/\x.)\y‘see(x,y) : (f suBJ)e —o (f 0BJ)e —o ft'}

-

Solution 2
[e] Te]e]

Key observation of the syntactic analysis of gapping of Patejuk and
Przepidrkowski 2017

Solution 2
[e] Te]e]

Key observation of the syntactic analysis of gapping of Patejuk and
Przepidrkowski 2017:

@ PRED is “deeply distributive”.

Solution 2

0Oe00

Key observation of the syntactic analysis of gapping of Patejuk and
Przepidrkowski 2017:

@ PRED is “deeply distributive”.

For example:
e (f PreD) = ‘see{(f sul), (f oB}))’

Solution 2
[e] Te]e]

Key observation of the syntactic analysis of gapping of Patejuk and
Przepidrkowski 2017:

@ PRED is “deeply distributive”.

For example:
e (f PreD) = ‘see{(f sul), (f oB}))’
@ when combined with specifications amounting to:

SUBJ [PRED ‘MARGE'] SUBI [PRED ‘HOMER']
f= ,
0B [PRED ‘L|SA'] 0B) [PRED 'BART']

Solution 2
[e] Te]e]

Key observation of the syntactic analysis of gapping of Patejuk and
Przepidrkowski 2017:

@ PRED is “deeply distributive”.

For example:
e (f PreD) = ‘see{(f sul), (f oB}))’

@ when combined with specifications amounting to:

SUBJ [PRED ‘MARGE'] SUBJ [PRED ‘HOMER']
f =

’

0B [PRED ‘L|SA'] 0BJ [PRED 'BART']

@ results in:
[PRED ‘sEE<[@Z]>’ PRED ‘SEE<[3|[@]>’'
f= SUBJ [PRED 'MARGE'] SUBJ [PRED 'HOMER']

0B [PRED ‘L|5A’] 0B [PRED ‘BART'}

Solution 2
[e] Te]e]

Key observation of the syntactic analysis of gapping of Patejuk and
Przepidrkowski 2017:

@ PRED is “deeply distributive”.

For example:
e (f PreD) = ‘see{(f suBl), (f oB)))’

@ when combined with specifications amounting to:

SUBJ [PRED ‘MARGE'] SUBJ [PRED ‘HOMER']
f =

’

0B [PRED ‘L|SA'] 0BJ [PRED 'BART']

@ results in:
[PRED ‘sEE<[Z]>’ PRED ‘SEE<[3][@]>’

f= SUBJ [PRED 'MARGE'] SUBJ @[PRED 'HOMER']

0B [PRED ‘L|SA’] 0B [PRED ‘BART'}

Solution 2
[e]e] o]

We would like GLUE to behave like PRED:

o ‘Ax.\y.see(x,y) : (f suBl)e —o (f OBl)e —o f' € (f GLUE)

Solution 2
[e]e] o]

We would like GLUE to behave like PRED:
o ‘Ax.\y.see(x,y) : (f suBl)e —o (f OBl)e —o f' € (f GLUE)
@ when combined with specifications amounting to:

PRED ‘SEE<[I][2]>' PRED ‘SEE<[3][a]>’
F—1{|susl [PRED ‘MARGE’] SuBJ [PRED 'HOMER']

OBJ [PRED ‘L|SA'] 0BJ [PRED ’BART']

Solution 2
[e]e] o]

We would like GLUE to behave like PRED:
o ‘Ax.\y.see(x,y) : (f suBl)e —o (f OBl)e —o f' € (f GLUE)

@ when combined with specifications amounting to:

PRED ‘SEE<[I][2]>’ PRED ‘SEE<[3][4]>'
F—1{|susl [PRED ‘MARGE’] SuBJ [PRED 'HOMER']
OBJ [PRED ‘L|SA'] 0BJ [PRED ’BART']

@ should result in:

PRED ‘SEE<[I][2]>’ PRED ‘SEE<[3][4]>’

SUBJ [PRED ‘MARGE’] SUBJ [PRED ‘HOMER’]

f =<0 , (6]

0BJ [PRED ‘L|SA’] 0BJ [PRED ‘BART’]

GLUE {'Ax.)\y.see(x,y):e—oe—ot'} GLUE {'Ax.)\y.see(x,y):e—oe—o@t’}

Solution 2
[e]e] o]

We would like GLUE to behave like PRED:
o ‘Ax.\y.see(x,y) : (f suBl)e —o (f 0BJ)e —o f' € (f GLUE)
@ when combined with specifications amounting to:

PRED ‘SEE<[I][2]>' PRED ‘SEE<[3][a]>’
F—1{|susl [PRED ‘MARGE’] SuBJ [PRED 'HOMER']

OBJ [PRED ‘L|SA'] 0BJ [PRED ’BART']

@ should result in:

PRED ‘SEE<[I][2]>’ PRED ‘SEE<[3][4]>’

SUBJ @[PRED ‘MARGE’] SUBJ @[PRED ‘HOMER’]
f=<{[. I . [6] - P

0BJ U[PRED LISA] 0BJ U[PRED BART]

GLUE {'Ax.)\y. see(x,y) : [te —[2le —o@t'} GLUE {'Ax.)\y. see(x,y) :[Ble —[4le —o@t’}

Solution 2
[e]e]e]]

Given an appropriate treatment of conjunctions, this would lead to the

following (fuller) structure:

@ Marge saw Lisa and Homer — Bart.

PRED ‘SEE<[TI][2]>'
PRED ‘MARGE’

SUBJ , ,
GLUE { m: (1, }

PRED ‘LisA’

GLUE {‘l : e’}

0BJ

Sl

PRED

SUBJ

0BJ

GLUE {‘)\x)\y. see(x,y) : [Me —o 2 wf'}

FORM AND
CONJ

GLUE {'/\p.)\q p A q : [l —ol6l; %@t’}

GLUE

'SEe<[B][4>’

PRED ‘HOMER
. .
GLUE { h: Bl }
PRED ‘BART

GLUE {‘b:e'}

{‘/\x./\y. see(x,y) : Ble — [, w@:'}

Solution 2
[e]e]e]]

Given an appropriate treatment of conjunctions, this would lead to the

following (fuller) structure:

@ Marge saw Lisa and Homer — Bart.

[PrRED ‘sEE<TIE>' [PRED ‘sEE<EIE’
PRED ‘MARGE’ PRED ‘HOMER
SUBJ [GLUE {‘m : e}] SuBl |:GLUE {‘h : e}:|
PRED ‘LisA’ ad PRED ‘BART’
o 0Bl [GLUE {‘l : e}} 08) |:GLUE {‘b : e}]
oue {AxAy-see(x,y) (e —oBe B’} | | awe {Axdy.see(xy) : Bl —ok < |

FORM AND

CONJ ,)
GLUE { Ap.AG.p A q : [Bl; —o[6]; —[0] }

o leading to the desired representation

Solution 2

[e]e]e])

Given an appropriate treatment of conjunctions, this would lead to the
following (fuller) structure:

@ Marge saw Lisa and Homer — Bart.

PRED ‘SEE<[TI][2]>'
PRED ‘MARGE’ }

GLUE {‘m : e’}

PRED ‘LisA’
0BJ
GLUE {‘l : e’}

SUBJ [

GLUE {‘)\x)\y. see(x,y) : [Me —o 2 wf'}

FORM AND
CONJ ,)
GLUE {/\p./\q.pAqit—O@t—o@t }

PRED
suBl [3]

GLUE

PRED
oBl [4]

GLUE
GLUE {‘Ax:Ay.

PRED ‘SEE<[3][A]>’'

‘HoMEeR’
{‘h : e}]

e

see(x, y) : Bl —o[4. w@r'}

e leading to the desired representation: see(m, /) A see(h, b).

Solution 2
[]

Problem:

@ GLUE does not behave like PReD in XLE

Solution 2
[]

Problem:
@ GLUE does not behave like PReD in XLE,

@ not even when it is declared as distributive.

Solution 2
[]

Problem:
@ GLUE does not behave like PReD in XLE,

@ not even when it is declared as distributive.

Apparently,
o the “deep distributivity” of PRED is hardcoded in XLE

Solution 2
[]

Problem:
@ GLUE does not behave like PReD in XLE,

@ not even when it is declared as distributive.

Apparently,
o the “deep distributivity” of PRED is hardcoded in XLE,

@ without the possibility of declaring other attributes as “deeply
distributive”.

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:
o elegant solution (in the words of a Reviewer)

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:

o elegant solution (in the words of a Reviewer),
o standard Glue mechanism of multiple use of resources

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:
o elegant solution (in the words of a Reviewer),

o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:
o elegant solution (in the words of a Reviewer),

o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue;

o XLE+Glue + “deep distributivity” of GLUE

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:
o elegant solution (in the words of a Reviewer),
o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue;

o XLE+Glue + “deep distributivity” of GLUE:

o does not (need to) assume Champollion’s (2015) event semantics

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:
o elegant solution (in the words of a Reviewer),

o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue;

o XLE+Glue + “deep distributivity” of GLUE:

o does not (need to) assume Champollion’s (2015) event semantics,
o multiplication of meaning constructors via distributivity

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:
o elegant solution (in the words of a Reviewer),

o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue;

o XLE+Glue + “deep distributivity” of GLUE:

o does not (need to) assume Champollion’s (2015) event semantics,
o multiplication of meaning constructors via distributivity,
o does not work because there is no way to make cLUE behave like PRED.

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:

o elegant solution (in the words of a Reviewer),
o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue;

o XLE+Glue + “deep distributivity” of GLUE:

o does not (need to) assume Champollion’s (2015) event semantics,
o multiplication of meaning constructors via distributivity,
o does not work because there is no way to make cLUE behave like PRED.

Currently a proof of concept, limited empirically

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:
o elegant solution (in the words of a Reviewer),
o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue;

o XLE+Glue + “deep distributivity” of GLUE:

o does not (need to) assume Champollion’s (2015) event semantics,
o multiplication of meaning constructors via distributivity,
o does not work because there is no way to make cLUE behave like PRED.

Currently a proof of concept, limited empirically:
@ to coordination (cf. Park 2019 and Bllblie et al. 2023)

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:
o elegant solution (in the words of a Reviewer),
o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue;

o XLE+Glue + “deep distributivity” of GLUE:

o does not (need to) assume Champollion’s (2015) event semantics,
e multiplication of meaning constructors via distributivity,
e does not work because there is no way to make GLUE behave like PRED.

Currently a proof of concept, limited empirically:
@ to coordination (cf. Park 2019 and Bilblie et al. 2023),
o to simple clauses.

Outro
o

Summary

Two approaches to gapping at the syntax—semantics interface:

o standard Glue + Champollion’s (2015) event semantics:

o elegant solution (in the words of a Reviewer),
o standard Glue mechanism of multiple use of resources,
o implemented in XLE+Glue;

o XLE+Glue + “deep distributivity” of GLUE:

o does not (need to) assume Champollion’s (2015) event semantics,
e multiplication of meaning constructors via distributivity,
e does not work because there is no way to make GLUE behave like PRED.

Currently a proof of concept, limited empirically:
@ to coordination (cf. Park 2019 and Bilblie et al. 2023),
o to simple clauses.

Thank you for your attention!

References

Bilblie, G., de la Fuente, |, and Abeillé, A. (2023). Factivity and
complementizer omission in English embedded gapping. Journal of
Linguistics, 59, 389-426.

Champollion, L. (2015). The interaction of compositional semantics and
event semantics. Linguistics and Philosophy, 38(1), 31-66.

Dalrymple, M., Patejuk, A., and Zymla, M.-M. (2020). XLE+Glue — A
new tool for integrating semantic analysis in XLE. In M. Butt and T. H.
King, eds., The Proceedings of the LFG’20 Conference, pp. 89-108.
CSLI Publications.

Park, S--H. (2019). Gapping: A Constraint-Based Syntax-Semantics
Interface. Ph.D. dissertation, State University of New York at Buffalo.

Partee, B. H. and Rooth, M. (1983). Generalized conjunction and type
ambiguity. In R. Béuerle, C. Schwarze, and A. von Stechow, eds.,
Meaning, Use and Interpretation of Language, pp. 361-383. Walter de
Gruyter.

Patejuk, A. and Przepidrkowski, A. (2017). Filling the gap. In M. Butt

and T. H. King, eds., The Proceedings of the LFG'17 Conference, pp.
327-347. CSLI Publications.

	Intro
	

	Solution 1
	Idea
	Champollion
	
	

	Solution 2
	Idea
	

	Outro
	

	Appendix
	References

