Persian Perception Verbs
Ash Asudeh (Rochester) & Siavash Rafiee Rad (Leiden)

The syntax, semantics, and syntax–semantics interface of sensory perception verbs has been an ongoing topic of research in linguistics. In terms of syntax, defining what types of grammatical arguments these verbs take and how and why the types of these arguments vary among perception verbs have been the main topics of discussion while, in terms of semantics, one of the main questions has been to determine the thematic roles of the arguments of perception verbs and, relatedly, to determine what relationship they have to the event that they predicate of.

This paper makes three contributions. 1. We present a novel analysis of perception verbs in Persian, many of which involve complex predicates. There are two main challenges: a. It requires a general syntax/semantics for complex predicates that works in both perceptual and non-perceptual contexts; and b. The generalized analysis must account for semantic entailments (which we here discuss only in the context of perception verbs). 2. In meeting challenge 1, we provide a novel account of Persian complex predicates using Glue Semantics. 3. We discuss how the structure of Persian perceptual complex predicates give important clues to the conceptual/argument structure of perception constructions more generally, especially with regards to languages, like English, where this is hidden by fuller lexicalization.

Background. Sensory perception verbs (e.g., hear, listen, sound) have been an ongoing topic of research in linguistics and philosophy of language (see Dretske 1969, Akmajian 1977, Barwise 1981, Viberg 1984, Evans and Wilkins 2000, Jackendoff 2007, Gisborne 2010, Asudeh and Toivonen 2012, Poortvliet 2018, among others). In terms of syntax, one of the central issues has been defining what types of complements these verbs take and how and why these complements vary among perception verbs. In terms of semantics, one of the key questions is to determine the sorts of macro-roles (e.g., ACTOR; Foley and Van Valin 1984) and thematic roles (e.g., EXPERIENCER, AGENT, STIMULUS) to assign the subjects and complements of perception verbs and to determine what relationship they have to the event or situation described by the clause that the perception verb heads.

Consider (1):

(1) a. Max listened to the music.
 b. Max heard the music.
 c. Context: Max is heard coughing badly.

In (1), the subjects of the perception verbs play different roles. In (1a), Max is the ACTOR in the predication, whereas in (1b), Max is the EXPERIENCER. Indeed, in (1a) Max is both the ACTOR and EXPERIENCER. In (1c), Max is a STIMULUS.

Table (2) categorizes English perception verbs based on the thematic roles of their arguments (following Viberg 1984):

<table>
<thead>
<tr>
<th>Active</th>
<th>Experiencer</th>
<th>Percept</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ACTOR,STIMULUS)</td>
<td>(EXPERIENCER,STIMULUS)</td>
<td>(STIMULUS,EXPERIMENTER)</td>
</tr>
<tr>
<td>listen → X listen to Y</td>
<td>hear → X hear Y</td>
<td>sound → Y sound P to X</td>
</tr>
<tr>
<td>look → X look at Y</td>
<td>see → X see Y</td>
<td>look → Y look P to X</td>
</tr>
<tr>
<td>smell → X smell Y</td>
<td>smell → X smell Y</td>
<td>smell → Y smell P to X</td>
</tr>
<tr>
<td>taste → X taste Y</td>
<td>taste → X taste Y</td>
<td>taste → Y taste P to X</td>
</tr>
<tr>
<td>touch/feel → X touch/feel Y</td>
<td>feel → X feel Y</td>
<td>feel → Y feel P to X</td>
</tr>
</tbody>
</table>

This table illustrates that paradigm cells can be filled by the same form. Take the verb smell, whose form is three-ways ambiguous between Active, Experiencer and Percept, which have distinctive conceptual/argument structures. Similarly, a verb may be distinguished in a single cell, but not be distinguished in two others, such as look, whose form is ambiguous between Active and Percept, but cannot correspond to an Experiencer argument structure, since there is a dedicated verb, see, in that cell. It is therefore useful to refer not to particular verbs but rather to the underlying sensory modalities: respectively, aural, visual, olfactory, gustatory, tactile (following Asudeh and Toivonen 2012); this will also be a feature in our analysis, in order to capture semantic entailments.

Sensory perception verbs in Persian, to our knowledge, have not received any formal linguistic analysis. Persian verbal constructions in general are of two main kinds: simplex/fully lexicalized verbs and complex predicates (CPREDS) as shown in (3) and (4) respectively.³

(3) Max mādār-aš-rā mi-bin-ad
 Max mother-POSS.3S-OM DUR-see.PRES-3S
 ‘Max sees her/his/its mother.’

(4) Max be mādār-aš [negāh mi-kon-ad]PCRED
 Max to mother-POSS.3S look DUR-do.PRES-3S
 ‘Max looks at her/his/its mother.’

The sentence in (3) illustrates the use of a simplex verb, whereas (4) contains a CPRED, consisting of a noun, negāh, as its Preverbal Element (PVE) and a Light Verb (LV), kard-an (‘do’), which can also be a main verb in some cases).⁴

Persian CPREDS can be made of various PVEs of bare predicative category, including nouns, adjectives, and verbal stems, or oblique-marked nouns in the form of prepositional nouns. The verbal element, LV, in CPREDS can vary, since several lexical verbs contribute to forming CPREDS, making such constructions very productive (for sample accounts of Persian CPREDS, see Barjasteh 1983, Khanlari 1986, Bateni 1989, Mohammad and Karimi 1992, Ghomeshi and Mas-Jami 1994, Goldberg 1996, Karimi-Doostan 1997, Müller 2010, Megerdoomian 2012, Nash and Samvelian 2016, and

³We use this term only descriptively/pre-theoretically.

⁴We treat this as an ACTOR not an AGENT, because the verb that introduces the role in Persian, kardan (‘do’), is compatible with predications that are non-agentive, e.g. Max gerye kardan (‘Max cried.’)

⁵Notes on the transliteration: a is a low front vowel, IPA [a] (similar to the first vowel in father); a is the IPA vowel [æ] (similar to cap); ˇs is the voiceless postalveolar fricative, IPA [ʃ]; and ˇc is its affricate counterpart, IPA [tʃ].

⁶In this paper, we gloss infinitives in Persian with the suffix -an as all full infinitives in Persian end in this suffix. We also show Persian complex predicates in the examples as [...]PCRED throughout the paper to differentiate them from simplex verbs.
Rafiee Rad 2019, among others). The particular simplex verbs that contribute to the formation of the principal CPRED perception verbs, with informal glosses of their meanings, are presented in (5):

(5) a. kardan: to do/cause c. zadan: to hit
b. dādan: to give d. āmadan: to come

Table (6) presents a somewhat simplified list of Persian perception verbs (both simplex and CPREDs).

<table>
<thead>
<tr>
<th>Active</th>
<th>Experiencer</th>
<th>Percept</th>
</tr>
</thead>
<tbody>
<tr>
<td>guš kard-an</td>
<td>senid-an</td>
<td>sedāh dād-an</td>
</tr>
<tr>
<td>ear do.INF</td>
<td>X hear Y</td>
<td>sound give.INF</td>
</tr>
<tr>
<td>X listen to Y</td>
<td></td>
<td>Y emitted a sound to X</td>
</tr>
<tr>
<td>negāh kard-an</td>
<td>did-an</td>
<td>be češm āmad-an</td>
</tr>
<tr>
<td>look do.INF</td>
<td>see.INF</td>
<td>to eye come.INF</td>
</tr>
<tr>
<td>X looked at Y</td>
<td>X see Y</td>
<td>Y was seen by X</td>
</tr>
<tr>
<td>ba kard-an</td>
<td>(bs) hes kard-an</td>
<td>bu dād-an</td>
</tr>
<tr>
<td>smell do.INF</td>
<td>(smell) sense do.INF</td>
<td>smell give.INF</td>
</tr>
<tr>
<td>X smell Y</td>
<td>X smell Y</td>
<td>Y emitted a smell to X</td>
</tr>
<tr>
<td>maze kard-an</td>
<td>maze hes kard-an</td>
<td>maze dād-an</td>
</tr>
<tr>
<td>tase do.INF</td>
<td>sense do.INF</td>
<td>taste give.INF</td>
</tr>
<tr>
<td>X taste Y</td>
<td>X taste Y</td>
<td>Y emitted a taste to X</td>
</tr>
<tr>
<td>lams kard-an</td>
<td>ehsās kard-an</td>
<td>hes dād-an</td>
</tr>
<tr>
<td>touch do.INF</td>
<td>sense do.INF</td>
<td>sense give.INF</td>
</tr>
<tr>
<td>X touch Y</td>
<td>X feel Y</td>
<td>Y emitted a (physical) feel to X</td>
</tr>
<tr>
<td>(♀ inadvertently)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table shows that the use of complex predicates is prevalent in Persian perception constructions.

Analysis. Space restrictions preclude inclusion of our full compositional analysis. However, the Glue meaning constructors for the five LVs in (6) are show in (9). The main intuition to keep in mind is that each LV has a meaning constructor that has been factored out of its physical and perceptual guises, such that it applies to either as a modifier. The resulting interpretations for corresponding sample physical light verb constructions and perceptual light verb constructions involving these LVs are shown in (10).

Before turning to these, we also specify the following entailment relations between thematic roles and macro-roles, in (7), and between different perceptual predicates, in (8).

(7) a. AGENT, EXPERIENCER, SOURCE ⊆ ACTOR & AGENT ∩ EXPERIENCER ∩ SOURCE = ∅ SUBJ roles
b. THEME, STIMULUS ⊆ UNDERGOER & THEME ∩ STIMULUS = ∅ OBJ roles
c. GOAL, EXPERIENCER ⊆ LOCATIONAL & GOAL ∩ EXPERIENCER = ∅ OBL roles

(8) $P_{(a)ural}^{(v)visual}, P_{(a)factory}^{(v)gesturaty}, P_{(a)active}^{(v)sense} = P_{(a)sense}$ (P)

A consequence of the entailments in (7) is that something can be, e.g., an AGENT and an ACTOR or an EXPERIENCER and an ACTOR without inconsistency. Similarly, the entailments in (8) allow particular verbs to control which perceptual verbs they are compatible; combinations that don’t support the modality in question are blocked pragmatically.

(9) a. kardan (↑ PRED) = ‘do’

$\lambda R: \lambda x: \lambda v: R(y)(x)(v) \land UNDERGOER(v) = y \land ACTOR(v) = x$

$[(↑ OBJ)_{α} \rightarrow (↑ SUBJ)_{α} \rightarrow ((↑ EVENT) \rightarrow ↑α)] \rightarrow (↑ OBJ)_{α} \rightarrow (↑ SUBJ)_{α} \rightarrow ((↑ EVENT) \rightarrow ↑α)$

$\lambda y: \lambda x: \lambda v: \lambda P: (v) \land STIMULUS(v) = y \land EXPERIENCER(v) = x$

$[(↑ OBJ)_{α} \rightarrow (↑ SUBJ)_{α} \rightarrow ((↑ EVENT) \rightarrow ↑α)] \rightarrow (↑ OBJ)_{α} \rightarrow (↑ SUBJ)_{α} \rightarrow ((↑ EVENT) \rightarrow ↑α)$

b. dādan (↑ PRED) = ‘give’

$\lambda R: \lambda x: \lambda y: \lambda z: R(\lambda z)(x)(y)(z) \land LOCATION(v) = z \land UNDERGOER(v) = y \land ACTOR(v) = x$

$[(↑ OBJ)_{α} \rightarrow (↑ OBJ)_{α} \rightarrow (↑ SUBJ)_{α} \rightarrow ((↑ EVENT) \rightarrow ↑α)] \rightarrow (↑ OBJ)_{α} \rightarrow (↑ OBJ)_{α} \rightarrow (↑ SUBJ)_{α} \rightarrow ((↑ EVENT) \rightarrow ↑α)$

$\lambda z: \lambda y: \lambda x: \lambda P: (v) \land EXPERIENCER(v) = z \land STIMULUS(v) = y \land SOURCE(v) = x$

$[(↑ OBJ)_{α} \rightarrow (↑ OBJ)_{α}] \rightarrow (↑ OBJ)_{α} \rightarrow (↑ OBJ)_{α} \rightarrow (↑ EVENT) \rightarrow ↑α)$

5 See footnote 6.
6 There are many other verbal constructions used to express perception in Persian, such as be guš āmad-an ‘sound’, be guš resid-an ‘sound’, be mašūm resid-an ‘smell’, among others.
7 This table is based on the one provided by (Viberg 1984: 131, table 6). Note that Viberg uses be nazar resid-fan in the cell for visual percept, but this is actually closer to the English verb seem.
c. zadān (HttpHeaders: 'hit' \[\lambda y.\lambda x.\lambda v. R(x)(y)(x)(v) \wedge \text{UNDERGOER}(v) = y \wedge \text{ACTOR}(v) = x \]: \\
\begin{align*}
&\{\{\text{OBJ}\}_\sigma \rightarrow \{\{\text{SUBJ}\}_\sigma \rightarrow (\{\text{EVENT}\}_\sigma \rightarrow \tau_\sigma}\} \rightarrow (\{\text{EVENT}\}_\sigma \rightarrow \tau_\sigma)\}
&\{\{\text{OBJ}\}_\sigma \rightarrow \{\{\text{SUBJ}\}_\sigma \rightarrow (\{\text{EVENT}\}_\sigma \rightarrow \tau_\sigma)\} \rightarrow (\{\text{EVENT}\}_\sigma \rightarrow \tau_\sigma)\}
&\{\lambda y.\lambda x.\lambda v. \text{hit}(v) \wedge \text{PATIENT}(v) = y \wedge \text{AGENT} = x : \\
&\{\{\text{OBJ}\}_\sigma \rightarrow \{\{\text{SUBJ}\}_\sigma \rightarrow (\{\text{EVENT}\}_\sigma \rightarrow \tau_\sigma)\} \rightarrow (\{\text{EVENT}\}_\sigma \rightarrow \tau_\sigma)\}
&\{\lambda y.\lambda x.\lambda v. P(v) \wedge \text{STIMULUS}(v) = y \wedge \text{EXPERIENCER}(v) = x : \\
&\{\{\text{OBJ}\}_\sigma \rightarrow \{\{\text{SUBJ}\}_\sigma \rightarrow (\{\text{EVENT}\}_\sigma \rightarrow \tau_\sigma)\} \rightarrow (\{\text{EVENT}\}_\sigma \rightarrow \tau_\sigma)\} \}
\end{align*}
\]

(10) a. i. Max in kār-rā kard.
Max this work-OM do.PAST.3SG
'Max did this work.'

ii. Max ghazā bu kard.
Max food smell do.PAST.3SG
'Max smelled food.'

b. i. Max be Sam kelāb-rā dād.
Max to Sam book-OM give.PAST.3SG
'Max gave Sam the book.'

ii. Max bu-ye xub mi-dād.
Max smell-IZ good dur-give.PAST.3SG
'Max smelled good.'

c. i. Max Sam-rā zad.
Max Sam-hit.PAST.3SG
'Max hit Sam.'

ii. Max lebās-dār dast zad.
Max clothes-OM touch hit.PAST.3SG
'Max felt the clothes.'

d. i. Max be madrese āmdād.
Max to school come.PAST.3SG
'Max came to school.'

ii. nu-r-i az dur be češān āmdād.
light-INDEF from dark to eye come.PAST.3SG
'A light was seen from afar.'

e. i. Max be madrese resīdān.
Max to school arrive.PAST.3SG
'Max arrived at school.'

ii. Sedā-yē ajib-i az ānja be guš résidān.
sound-IZ strange-INDEF from there to ear arrive.PAST.3SG
'A strange sound was heard from there.'

Summary. We provided a novel analysis of complex (PVE+LV) perception verbs in Persian. This presents a challenge due to the overlap of physical and perceptual uses of the same LVs. This requires a general syntax/semantics for complex predicates that works in both contexts. We factored out the common information as macro-roles in a modifier that can compose either with the physical or perceptual meaning constructor; these meaning constructors then fix the thematic roles such that they are consistent with the macro-roles. This also captures entailments. The reader can observe that members of the active class entail corresponding members (row-mates) of the experiencer class, which in turn entail corresponding members of the percept class. Moreover, we capture the entailment from āmdān to resīdān, since the former has a PROXIMAL conjunct that the latter does not. The upshot is that lexicalized perception verbs (also in English) should yield to an equivalent analysis, using the relevant CPRED analysis as a guide.

References: Available [here](#)