

Hartwig Freiesleben Institute for Nuclear and Particle Physics

www.frauenkirche-dresden .org

On Pentaquarks

Introduction: Mesons, Baryons, Pentaquarks

Experimental Evidence for the T⁺ Pentaquark

Lack of Evidence

2. Generation Experiments

Conclusion and Final Remarks

Dedicated to John R. Huizenga on the occasion of the 85th recurrence of his birthday

Mesons

Quantum-Chromo-Dynamics (QCD) predicts mesons to be composed of pairs of quarks and antiquarks of three flavors: up, down, strange.
Mesons can be grouped as octets in a representation of strangeness (S) vs.
3-component of isospin (I₃)

Octet

Baryons

QCD predicts baryons to be composed of three quarks with flavor: up, down, strange. Baryons can be grouped as octet and decuplet in a representation of strangeness (S) vs. 3-component of isospin (I_3)

Pentaquarks

Anti-decuplet

Missing mass, e. g. M₁, can be calculated if M₂ and M₃ have been identified

Experimental evidence for T⁺ from electromagnetic probes (I)

Experimental evidence for T⁺ from electromagnetic probes (II)

SAPHIR/ELSA

Phys. Rev. Lett 92(2004)032001

Phys. Lett. B572(2003)127

Experimental evidence for T⁺ from neutrino interactions

ITEP

- Analysis of bubble chamber data:
 - FNL: 15-feet chamber
 - CERN: BEBC
 - filled with H_2 , D_2 , Ne
 - 120000 v_{μ} and \overline{v}_{μ} CC events
- Results of combined D₂ and Ne data

Phys.A.Nucl. 67(2004)682

Experimental evidence for T^+ from hadronic probes (I)

Phys.A.Nucl. 66 (2004)500

Experimental evidence for T⁺ from hadronic probes (II)

COSY-TOF

Phys. Lett. B 595(2004)27

M. Fritsch, Ch. Hess, H.Koch, W. Meyer, E. Radke, G. Reicherz, A.Wilms Institut für Experimentalphysik, Peler H. Heleitä Pechum, D-44780 Bochum, Germany H. Dutz, A. Raccanelli A. Na mer Phys. Institut der Undersität Bonn, D-53115 Bonn

K.-Th.Brinkmann, S.Donemuchadse, H.Freiesleben, R.Jäkel, L.Karsch, E.Kubimarin, M.Schulte-Wissermann, G.Y.Sun, W. Ullrich

Institut für Kern- und dei cher mysik, Technische Ustrersität Dresdüh, D-01062 Dresden, Germany

W.Eyrich, D.Georg, K. Lehmann, M.Mörte, L.Pinna, C.Fitzolotto, W.Schroeder, Stinzing, A.Teufel, M.Wagner, St.V. rth

Physicalisches Institut, Universität Edangen Nähling, D. 94656 Enangen, Germany

- M.Abdel-Bary, S.Audel-Sunge, V.Drochner, A.Gillitzer, K.Kilian, S.Marwinski, H.P.Morsch, N.Paul, J. Kithan, E.Roonrburg, S. Schadmand, T.Sefzick, A.Ucar, P.Wintz, P.Wüstner
- Institut für Komphysik, Fré-Fren, D-52425 Jülich, Germany and Zentral Labor für Elektronik, FZ

A.Finipi, S.Marcello

- Dipartimento di Fisita Sperimentale, University of Torino, I-10125 Torino, Italiand INFN, Sezio e di Lorino, I-1, 125 Torino, Italy
- H.Clement, E. Dordstikevich, K. Ehrhardt, A. Erhardt, P. Gonser, G.J.Wagner Physikalisches institut, Universität 1 üpingen, D-12, 76 Tübingen, Bermany

F.Michel, K.Meller, L. M.lumann

Institut für Kern- und Hadronenpuysik, FZ Recentidorf, 20131 Dresden, Germany

P. Zupranski, Coltan Institut for Nuclear Studies - L-00681 Warsaw

supported by BMBF Verbundforschung; FZ Jülich (FFE), EU-LIFE Programme

Forschungszentrum Jülich

• 184 *m* circumference

- 10¹¹ protons per filling
 @ 620 *MeV* (25 *mA*, T ~ 600 *ns*)
- $Pc_{MAX} = 3,65 \ GeV$
- $\Delta p/p \cong 10^{-4}$, $\varepsilon = \pi \ mm \ mrad$
 - (1 mm Ø · 0,18°) beam cooling
- up to 80% polarization

Extracted beam:

- $10^5...10^9$ protons /s in spill
- 1 s...>2 min spill, 5 s inter-spill
 OR 2.10⁹ p in 200 ns
- Quasi-DC, polarized

The COSY-TOF experiment

COSY-TOF designed to identify strangeness (pp \rightarrow pK⁺ Λ , pK⁰S⁺, pK⁺S⁰, nK⁺S⁺)

reaction identification:

- primary track \rightarrow proton
- delayed decay "V" of $K_S^{} \! \to \! \pi^+ \pi^-$ without start scintillators / Si
- decay of Σ^+ , kink
- time-of-flight of proton

 $pp \rightarrow pK_SS^+$: search for the T^+

$pp \rightarrow pK_SS^+$: reaction identification

using geometry only

and using ToF

p and $K \rightarrow S^+$

$pp \rightarrow pK_sS^+$: Results

COSY-TOF collaboration PLB595 (2004) 27

Sum of two experiments (2000 and 2002) yields about 1000 events of $pp \rightarrow pK_SS^+$

Excursion in $K_s p$ spectrum at mass = (1530 ± 5) MeV/c² width < 18 MeV/c² (FWHM) compatible with detector resolution statistical significance of 4-6 s cross section (0.4±0.1_{stat}±0.1_{sys}) µb

Summary of Evidences

	Reaction	Mass / MeV	Width/MeV	s *	
LEPS	$\gamma C \rightarrow K^+ K^- X$	1540 ± 10		Zhao,	Close hep-ph0404075
CLAS-1	$\gamma d \rightarrow K^+ K^- p(n)$	1542 ± 5	SPring-8 —	•	- O _×
SAPHIR	$\gamma p \rightarrow K^+ K_s(n)$	1540 ± 6	CLAS-1		
CLAS-2	$\gamma p \rightarrow p^+ K^- K^+(n)$	1555 ± 10	CLAS-2	_	• • • • • • • • • • • • • • • • • • •
HERMES	$e^+d \rightarrow K_s p X$	1528 ± 3	DIANA	★ K ⁺ n	$\rightarrow T^+ \rightarrow K_s p$ HERMES
ZEUS	$e^+p \rightarrow e^*K_sp X$	1522 ± 3	₩°		SVD
ITEP	$vA, \bar{v}A \Box K_{s}pX$	1533 ± 5		<u> </u>	Asratyan <i>et al.</i> COSY-TOF
DIANA	$K^+Xe \rightarrow K_sp X$	1539 ± 2		-	ZEUS
SVD/ITEP	$pA \rightarrow K_{s}p X$	1526 ± 3 1	510 1520 1530) 1540 1	550 1560 1570
COSY	$pp \rightarrow K_{s}pS^{+}$	1530 ± 5	n	nass (MeV)	

*Gaussian statistical significance: estimated background fluctuation

Lack of experimental evidence

BaBaR, Delphi, BES, CDF, HyperCP, E690, HERA-B, Aleph, Phenix

Common features:

- large data samples
- excellent resolution
- high energy
- inclusive
- e⁺e⁻ or hadronic probes

Problems and (possible) solutions in pentaquark searches

Most of the positive experiments performed so far suffer from

- small data samples \rightarrow limited statistical significance
- limited acceptance \rightarrow only certain region of phase space probed
- poorly understood competing reactions (background!) → cuts tailored to enhance signal to background ratio
- cuts which may produce artificial structures if signal and background deviate from pure phase space in different way

• Needed: 2. generation experiments with

- large data samples
- experiments with nearly 4π acceptance (COSY-TOF)
- Dalitz plots to reveal the full dynamics: partial wave analyses
- detailed Monte Carlo simulation of competing reactions (physics simulations) and their analyses with the same program used for data analysis
- If pentaquarks, e. g. the T⁺, exist, mass, width and parity need to be determined

2. Generation experiments

- CLAS γd, γp
- CB@ELSA (Saphir follow up) γp
- BELLE e^+e^- , K^+A
- COSY-TOF pp

2. Generation experiments CLAS: Upper limit on the T⁺ yield

From: DeVita for the CLAS–Collaboration APS Meeting April 2005

Pentaquark Exp'ts Timeline Reinhard Schumacher (PANIC05)

Photoproduction on Nuclei Θ^+		LEP	s-c			CLA	S-d1					LEF	PS-d		LE	PS-c	12		LAS-	d2
Photoproduction on Proton pK _s ⁰							SAP	HIR) CL/	AS gi	11	
Photoproduction on Proton $nK^+K^-\pi^+$									CLA:	5-р										
Exclusive K + (N) $\rightarrow pK_s^0$					DI/	ANA													BELL	Ë.
HEP Electromagnetic: $\Theta^+ \rightarrow p K_s^0$							Herr	nes (ZEUS	; FC	ICUS			BaB	ar1			
Neutrinos									ν	вс€		SPH	IINX					E	BaBar	2
$\mathbf{p} + \mathbf{A} \rightarrow \mathbf{p} \mathbf{K}_{s}^{0} + \mathbf{X}$; $\mathbf{p} + \mathbf{p} \rightarrow \mathbf{p} \mathbf{K}_{s}^{0} \Sigma^{*}$						CO	GY-TI S'	DF VD2		P	INR			Нур	erCP		3	VD2		
Other O ⁺ Upper Limits							BES	J,Ψ		HER.	^{A-B} (M) ALI	ÐН				WA8	•	
											CD	F								
											α)F								
$p + p$ (or A) $\rightarrow \Xi^{} + X$; etc.				1	IA 49	/CEF	N€)	W	A89	\mathbf{D}		ALE	А-В PH	BaE	ar1			E69	þ
HEP Electromagnetic prod. \Xi 🗖												FC	rme CUS	° ¶		Do	6MP	ASS		
Inclusive $\Theta^+ \to p K^+$							Herr	nes (ZEL	ß		Z	EUS		STA	R/RI	HIC	
Inclusive $\Theta^{0}_{c} \rightarrow D^{(*)}$ p							F	11/H	FRA							ZEU	6			
											A	LEPH	ΗF	bcu	S					
months	9 10	11 12	1 2	3 4	5 6	7 8	9 10	11 12	1 2	3 4	5 6	7 8	9 10	11 12	1 2	3 4	5 6	7 8	9 10	11 12

Conclusion

- Several experiments have shown evidence for a manifestly exotic (S = +1) pentaquark T⁺(1530)
- Several experiments lack evidence for $T^+(1530)$
- The pentaquark T⁺(1530) has not been convincingly proven to be alive or dead
- If it exists, it likely is an isoscalar, spin ½ baryon of unknown parity
- "Should the T⁺ pentaquark not survive the next few years of intense scrutiny we will have to examine why so many experiments observed the signal in the first place"

(Volker D. Burkert, CLAS collaboration at JLab)