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ABSTRACT

This paper extends the previously reported theory of dissipation pathways [C. W. Kim and I. Franco, J. Chem. Phys. 160, 214111 (2024)]
to incorporate off-diagonal subsystem-bath coupling, which is often required to model molecular systems where the environment directly
influences transitions and couplings between subsystem states. We systematically derive master equations for both population transfer and
dissipation into individual bath components, for which we also rigorously prove energy conservation and detailed balance. The approach is
based on second-order perturbation theory with respect to the subsystem-bath couplings, whose form is not limited to any specific model.
The accuracy of the developed method is tested by applying it to diverse model Hamiltonians involving linearly coupled harmonic oscillator
baths and comparing the outcomes against the hierarchical equations of motion (HEOM) method. Overall, our method accurately quantifies
the contributions of specific bath components to the overall dissipation while significantly reducing the computational cost compared to
numerically exact methods such as HEOM, thus offering a path to examine how vibronic interactions steer non-adiabatic processes in realistic
chemical systems.
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I. INTRODUCTION

A wide range of quantum chemical phenomena are non-
equilibrium processes where the excess energy is dissipated from
the central subsystem to the surrounding environment. Naturally,
examining this energy flow in detail can provide fundamental
insights to understand chemical reactions, material properties, and
essential biological processes. For instance, elucidating the major
dissipation pathways is crucial for grasping how photosynthetic
complexes transfer energy' ~ and designing physical systems that
enhance or suppress dissipation.’

While the basic principles of energy transfer are well-
established, elucidating the precise pathways of energy flow remains
challenging, as it amounts to resolving the energy transport within
complex molecular environments at a microscopic level. Addressing
this challenge requires a method capable of effectively decomposing
the overall dissipation into the contributions of individual environ-
mental components. To accomplish this task, it is necessary to fully
capture the dynamical information regarding individual vibronic
quantum states, which is often computationally prohibitive even
with state-of-the-art simulation methods for quantum dynamics.
For example, explicit approaches such as the multi-configurational
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time-dependent Hartree (MCTDH)’ method, which accu-
rately track the dynamics via direct wavefunction propagation,
become computationally intractable for macroscopic thermal
environments. By contrast, quantum master equations (QMEs) and
related techniques'’ "’ can cope with complex chemical environ-
ments by focusing on their implicit effect on the dynamics within
the subsystem. However, this ability comes at the cost of losing
information regarding the quantum states of the environment.

To address this challenge, we recently introduced QME-D,'* a
general theoretical framework for quantifying and resolving dissipa-
tion pathways in complex quantum systems involving highly struc-
tured thermal environments. The theoretical framework utilizes
the Nakajima-Zwanzig projection operator technique, ' which is
combined with second-order perturbation theory with respect to
the coupling between the subsystem states.'"'” The framework was
proven to be useful in unraveling the detailed dissipation pathways
in the realistic model of the Fenna—-Matthews—Olson photosynthetic
complex.'®

Despite the success of the QME-D in studying the quantum
dynamics of molecular systems, its applicability is still limited by
the assumption that the bath couples only to the diagonal part of
the subsystem Hamiltonian matrix. Under such settings, the bath
only modulates the energies of the subsystem states and, therefore,
does not directly mediate population transfer. In molecular sys-
tems, this is equivalent to the Condon approximation, under which
couplings between molecular electronic states are unaffected by the
nuclei. However, there are various situations where intramolecular
vibrations or solvent can actively modulate the electronic couplings
to induce non-adiabatic transitions. These considerations motivate
us to generalize the previously reported framework for quanti-
fying dissipation pathways to handle both on- and off-diagonal
subsystem-bath coupling. As a result, the bath is allowed to directly
mediate transitions between subsystem states, which better describes
the dynamics occurring in a broad range of quantum transport
processes involving molecules.

The structure of this paper is as follows: In Secs. IT A-II C,
we provide an overview of the theoretical background required
to understand the main findings of our work and introduce the
extended framework for quantifying dissipation pathways. Subse-
quently, Sec. IT D applies the newly developed approach to specific
model Hamiltonians and connects the outcomes with previously
established results. In Sec. II1, we extensively test the accuracy of our
framework against a numerically exact dissipation calculation based
on hierarchical equations of motion (HEOM), while also compar-
ing the performance with QME-D'*" to highlight the utility of the
new approach. Section I'V concludes by summarizing the principal
findings and discussing conceivable future research directions.

Il. THEORY
A. Population transfer

We take the standard viewpoint for open quantum system
dynamics and divide the system Hamiltonian H as

H:Hs +HB+HSB, (1)

where Hs, Hg, and Hsg are the Hamiltonian components for
the subsystem, the bath, and the subsystem-bath interaction,
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respectively. The subsystem Hamiltonian Hs generally takes the
form

Hs = > > HaslA)(B, (2)
B

A

where uppercase Roman alphabets are used to label the individ-
ual subsystem states, which will be referred to as the diabatic
basis throughout the rest of this paper. The elements of Hs satisfy
Hugp = Hg, due to the Hermicity.

Having specified the subsystem, we assume that the rest of the
Hamiltonian can be split into contributions from independent bath
components. This is formally expressed as

Hp+Hsp =), i, (3)
J

where {hJ} arises from the jth bath component and can take a
general form of

hy = § ; (|A)(B| ® ). (4)

The Hermicity requires that the operators in the bath subspace sat-
isfy 7,5 = (#,5)". The individual bath components only interact
through the subsystem and do not directly affect each other, estab-
lishing the commutativity between operators with different j’s. We
note that Eq. (4) is in contrast to the work presented in Ref. 14, where
we only allowed the bath to couple to the subsystem through the
diagonal component of Hs.

We now diagonalize Hs and compute its eigenenergies and
eigenstates,

Hs =) Eola){al, (5)

where each eigenstate |a) is a linear superposition of the diabatic
states,

o) = Z canlA). (6)

0%

The basis {|a)} is often called the exciton basis and will be labeled
with the Greek alphabet from now on. Recasting Eq. (4) using Eq. (6)
yields

hy = Z/; () (Bl ® 7., @)

where the bath-related operators are transformed as
ﬁfxﬁ = EA: ZB: c;Acl;BWAB. (8)

It should be noted that there is a freedom of choice for the boundary
between the subsystem and the bath, on which the elements of Hy
[Eq. (2)] depend. Hence, the exciton basis {|«)} and the transforma-
tion coefficients {ca4 } are not uniquely determined. We will revisit
this point in Sec. II D, where we apply our theory to specific model
systems.

The density operator p for the system evolves according to
the Liouville-von Neumann equation dp(t) /dt = —i.Zp(t) /h, where
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< is the Liouvillian super-operator whose action is defined as
20 = [H, 0] for an arbitrary operator O. We apply the perturba-
tion theory in the exciton basis by dividing H into the diagonal
component Hy and off-diagonal component Hi, namely,

Ho =) [la)(a] ® (Ea + Vaa)], (%a)
1, = Z /;Z (Je){pl ® V:!ﬁ) + H.c, (9b)

and treat H, as the perturbation. In the above, H.c. is the abbrevia-
tion for the Hermitian conjugate, and the collective bath operators
{Vip} are defined as

= (a|Hp + HsslB) = 3 ¥ (10)
J

The Liouvillian is also accordingly divided into .¥ = % + %1, where
.,%O = [Ho, O] and .ZIO = [Hl,O]

We now apply the projection operator technique ~ " to derive
the quantum master equation for the evolution of p(t). We begin
by splitting the identity super-operator in the Liouville space into
S =P + 2, where & and 2 project p onto the dynamically rele-
vant part & p and the remaining 2 p, respectively. Because &7 and
2 are projection operators, they should satisfy 2 = 2 and also
P22 =22 =0. At this point, we specify the form of & as

Pp= Pala)(a| ® Ra, (11)

15,16

where Py = Trp(a|p|a) is the population of the state |a), Trp, indi-
cates the trace over the bath, and R, is the equilibrium bath density
associated with Vyq,

exp (=B Via)
" Tryfexp (BVa)]’

The inverse temperature 5 = 1/kgT should not be confused with the
exciton index f3, which is only used as a subscript.

At the initial time, we assume that the system density is
confined in the dynamically relevant part, that is, 22p(0) = p(0)
and 2p(0) =0. The evolution of #p(t) under second-order

. 14,20,21
perturbation theory follows,

>:J>

(12)

b0 [ 721 LD

fo]fl,@p(r) dr,
(13)
to which we make a substitution t— 7=t and apply Markov
approximation by replacing p(t—t') with p(t) and extending
the upper limit of the integration to infinity. After calculating
Trb[(oc|%{33 p(#) }a)] from the resulting expression, we obtain a
time-local equation-of-motion for the exciton populations,

. 1 had ’ A
Pa(t) = —?Trb[f (a2 21 exp (=it ZoR).A2p(1)|a) dt
0
(14)
Expanding the exponential in Eq. (14) leads to a first-order rate
equation,

Po(t) =}

B*a

[~KpaPa(t) + KepPp(1)], (15)

where the rate constants are expressed as
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77Re/°° (71t (E’,; Ea))ﬁa(t,)dt,’ (16)

Sga(t') = Tro [ UL(#") VigUp (1) VioRa ] (17)

with the time-dependent unitary operators { U, (')} defined by

Ua(t) :exp(flt :m) (18)
The condition that the integral in Eq. (16) is well-defined,

lim Sg,(1') =0, (19)
t'—o0

will play a crucial role in the proof of energy conservation in
Sec. IT C 1. Integrating Eq. (16) requires us to accurately determine
Sga(t") up to an arbitrary time point. For this, we factorize the uni-
tary operator [Eq. (18)] and equilibrium bath density [Eq. (12)] into
contributions from individual bath components,

Ou(r) = [T i), () = exp(—%) 20)
j
and

=TT 7., 7 = exp (~B V%) . )1
Il Try[exp ()] v

Here, Tr; indicates the trace over the subspace spanned by the jth
bath component. For succinctness, the dependence on t' of the
scalars and operators will be omitted hereafter, unless required for
clarity.

We now define the abbreviation for the traces,

Tr0}, = Trj[(a{;)m;f{;], (22a)
Trth, = Try[ ()9 insi% ], (22b)
Tr2), = Tr][( L)T%%ar’] (220)

Tr3), = Tr][(ua) arfx] (22d)

By adopting this notation, the trace in Eq. (17) can be expressed as

Sﬁa(tl) = Z |:Tr3j I1 TrOl;,x + Z (Trl TrZﬂa I TrOéga):|.
j k=j k+j L= (jik)

Because we did not adopt any specific model of the bath up to this
point, Eq. (23) is valid for arbitrary bath and subsystem-bath inter-
action, as long as they can be decomposed into the form of Eq. (3).
Importantly, Eq. (23) disentangles the trace for the full bath subspace
[Eq. (17)] into the traces for individual bath components [Eq. (22)].
To numerically evaluate Eq. (22) for all bath components, we can
convert Eq. (23) to a more practical expression by defining
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Z ;3a Z TrZJﬂa
Wha = » Xpa = B
7 Ti0g, 7 Tr0,
rSga
Y[;a = Z 0} s Hﬁa = H TrO;;a, (24)
j Tr P j
Trl), Tr2/
_ Ba ﬁ“
A _ pa he
>
j (TI‘ ﬁa)
such that
S/;a(t,) = (W/SaXﬁzx + Y/;,x - Z,;a)H,;a. (25)

Equations (24) and (25) evaluate Sg,(¢") at a computational cost pro-
portional to ¢ (n), instead of the naive implementation of Eq. (23),
which scales as & (n*) due to the existence of the double summation.

As we will demonstrate in Sec. II D 1, for relatively simple bath
models such as harmonic oscillators with linear subsystem-bath
coupling, it is even possible to condense Eq. (25) into a single ana-
Iytical expression. However, there may also be situations where
this simplification is not feasible. In such cases, we can utilize an
incremental formula,

Spat') = [Tr3}, + (Tr2p YW + (Tr1 )X |1
+ (Tr0, )Sh (1), (26)

where the quantities with the subscript j— are similarly defined as

in Eq. (25), but they exclude the contribution from the jth bath
component,
k
ij B Z Trlﬁa ]7 B} Z TrZﬂa’
pa = k=j TrOﬁa kj TrOﬁa
; Tr3k
Vi =X 5 T =T Trof, 27)
k#j Troﬁa k#j
Trlga Trzﬁa

>

k=) (TrO/Iga)z

By using Eq. (26), we can efficiently calculate Sg,(t") by successively
incorporating the effect of problematic components into the ana-
Iytical expression already representing most of the bath, rather than
immediately retreating to the direct application of Eqs. (24) and (25).

B. Dissipation

To quantify the dissipation into individual bath components
[Eq. (3)], we need to evaluate the rate of dissipation for the jth bath
component as'’

£ = oIy £ 1201 (28)

Equation (28) features a new projection operator &;— that satisfies
2 = p;jP;_, where

pip =Y (Trl{alpla) o) (af @ 7). (29)
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Zrp=3 (1)

o

[(afplo) |} (o] © RL). (30)

Here, TI{; denotes the trace over the subspace of all bath compo-

nents except the jth bath component, and R isthe equilibrium bath
density in this subspace,

RO =TT (31)
k#j

Employing &, [Eq. (30)] in Eq. (28) removes the projection for the
jth bath component, which is crucial for quantifying the dissipation
by this component after an infinitesimal amount of time.'* After
calculating the dissipation, the system density returns to the fully
projected form & p by applying the remaining part of the projection
operator p; [Eq. (29)], achieving consistency with the population
dynamics governed by Eq. (15).

We aim to develop a practical method for evaluating Eq. (28).
We start by observing that the time-evolution of #7;_p(t) under the
second-order perturbation theory follows the equation of motion
similar to Eq. (13) except & is replaced by #7;_,"*

[ P4 exp[ %2’0]
x jflgzj_p(r) dr. (32)

2 175p(0)] = -

Applying the Markov approximation gives

—h—lz /0 Pi- A exp (it L [h).L2-p(t) dt’.
(33)
Because we are focusing on the evolution of &p(t), it is valid to
assume that p(t) = 22p(t) is satisfied at every instance. Under this
circumstance, the integrand of Eq. (33) can be expanded as

-5 5 [ow (-2 E Yoy

a Bra

L] -

Pi_ A exp (=it L [h)A Pj-

® R ® (Pu(t)Tel [VigUp ViU
7pﬁ(t)n{;[\z,ﬁ0ﬁﬁﬂvﬁ,,ﬁg])] fHe,  (34)

where the traces on the right-hand side are now operators related to
the jth bath component, rather than scalars as in Eq. (16). We now
switch & and 8 for the two terms involving Pg(t) on the right-hand
side of Eq. (33), which is justified by the fact that the summation
is over all ordered pairs of « and f. The resulting expression can
then be used with Eq. (7) to evaluate the right-hand side of Eq. (28),
leading to a first-order rate equation for the dissipation,

E(1) =22 %

o Pra

P (1), (35)

with the rate constants given by

e E EOL j ! !
A= Ref (”(ﬁh )) L)t (36)
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%Ja(t,) = Trb[%ﬁU/;‘A//;dRaUlVo[ﬁ] - Tl‘b[%a%ﬁl}ﬁ%aﬁaﬁi].
(37)
As for the population transfer rate constants {Kg,} [Eq. (16)],
explicit evaluation of Eq. (36) requires disassembling 5’[5{1 ()
[Eq. (37)] into contributions arising from individual bath com-
ponents. For this purpose, we extend the shorthand notation
introduced in Eq. (22) by additionally defining

i NNIT RN dTrOf
Tr4ﬁa:Trj[(ua) ( pp ~ Vaa o)l 0!] = d’ > (38a)
Trlj
Tr5), = Ty (0h) (Vg — Vha )] = ih—,  (38)
R YIS P dTr2g,
Tr6p, = Tr[(u,x) ( 48 ,m)uﬁ i 0,] ik P (38¢)
dTr3
Tr7, = T () (V590 = Vha )ity 73 ] = ih— 7%, (38d)

and express Vﬂja(t') in terms of the traces for individual bath

components [Eqgs. (22) and (38)]. The resulting expression can be
simplified using the abbreviated notation in Eq. (24),

S (1) = [(Te6L ) Wi + (Trs), )X |
+ Tr7;;lx +(Trd, S, (1), (39)

C. Proof of thermodynamic principles
1. Energy conservation
To prove energy conservation, we need to show that the rate of

energy loss from the subsystem is equal to the rate of energy gain by
the bath,

%Tr[ﬁsyp(t)] +2 B0 Lo, (40)
J

within our scope, which focuses on & p(t).

We eliminate the time-derivatives in Eq. (40) by invoking
Egs. (5), (11), (15), and (35), and then rearrange the resulting
expression to get

>3 ((E/; Ea)Kpa + Z b7 )Pa(t) 0. (41)
« Pra

The requirement for Eq. (41) to be satisfied for an arbitrary set of
populations {Pa(#)} is

(B — Ea)Kpo+ ) H3, 2 0, (42)
]

for any pair of & and f. Replacing the population transfer and dissi-
pation rate constants with their explicit expressions [Egs. (16), (17),
(36), and (37)] gives
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(Eg = Ea)Kpo + Z K

= Re/ < (o[ (B + Vi) Up ViaRa UL Vig
- Trb[(Ea + Vaa) VapUp ViaRa Ui])

X exp (—lt(Eﬁ%E&)) dr’, (43)

where we used Eq. (10) to condense the sum of the operators for
individual bath components. Then, we invoke Egs. (17) and (18) to
express the integrand on the right-hand side of Eq. (43) as a time-
derivative,

; L d it' (Eg - Ea)
Ep—Ea)Kpu + 3 . = f _
(Eg )ﬁ+j/i/a hz Re zhdt,exp( 5

x Spa(t) dt’. (49)

We can now carry out the integration and simplify the result with
Ua(0) = 1and Eq. (19) to obtain

f (zh d Trb[Ul Aal;Ul;Vﬂaﬁa]) dt’ =ih Trb[ ,xﬁVl;aRa] (45)
0

whose value is purely imaginary as Try[VisVsaRa] = Trp
[(VusVpaRa)T] is real. As a result, the right-hand side of Eq. (44)
vanishes and assures the validity of Eq. (41) and, in turn, Eq. (40).
Therefore, we can conclude that the dissipation calculated by
Eqgs. (35)-(37) satisfies the energy conservation and achieves
consistency with the population dynamics.

2. Detailed balance

For the dynamics of population and dissipation governed by
Egs. (15) and (35), the detailed balance condition is represented as
g Kap _ Pa(o0)

Ay Kga Pp(o0)’

(46)

which makes the net dissipation by any bath component vanish at
the steady state. To prove Eq. (46), we start by applying the Wick
rotation ' — ¢’ — ifB to S/;a(t') [Eq. (17)],

Sga(t' = ihB) = Ty exp (BVaa) ULVig U exp (~BVip) Vpolla |, (47)
and rearrange the right-hand side to get

Try[exp (~BVgs)]
Tty [exp (~BVae)]

which can be readily validated by using the cyclic invariance of
the trace and the definition of the thermal bath density [Eq. (12)].
If we define the Fourier transform of Sg,(#') as Sg(w), it can be
shown with Eq. (48) that the population transfer rates in the opposite
directions can be expressed as

2 . (Es-E
Kﬁa:?sﬂa(ih "‘),

Spa(t' — iHB) = [Sus(t)]" (48)

(49a)
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o oo Ea
PO RLICICCRL B P A R
1 Tryexp {~B(Es + Vip) 1 7\ 1
Hence, the ratio between the two rate constants becomes
le -, o AOC(X
Kap _ Trofexp {-B(Ee + Veo))] 0

Kgo  Try[exp {-B(Es + Vps)}]’

We then move on to the dissipation and apply a similar

procedure to Y;a(t') [Eq. (37)] to deduce

Try [exp (=BVp) ]

Trb[exp(_ﬁ\‘/aa)][yaﬁ(t’)]*» (51)

Fpa(t — i) = -
which leads to

Hip __ Taolexp (-B(Ea + Via)}] )

g Trlesp (B(E + Vi)

Equation (46) is now instantly validated by combining Egs. (50)
and (52).

D. Application to linearly coupled harmonic
oscillator bath

As a concrete example, we apply the framework developed in
Secs. II A and II B to analyze the dissipation by a bath of quantum
harmonic oscillators. In this case, the bath Hamiltonian takes the
form

A2 2 A2
Hy=Y (& + 23 ) (53)
j

where p; and %; are the mass-weighted momentum and posi-
tion operators for the jth bath mode, and w; is the characteris-
tic frequency. We assume that the coupling between the subsys-
tem and individual bath modes linearly depends on the positional
coordinates, such that

Hsg=-) > (|A><B| ® ), (w]deBaéj + wa))’ (54)
A B J

where &, determines the strength of the subsystem-bath interac-
tion and y,; accounts for the possible energy shift that arises from
the freedom of setting the boundary between the subsystem and
the bath [Egs. (1) and (2)]. The profile of the subsystem-bath cou-
pling in the frequency domain is contained in the spectral densities
(SPDs),

3
Jcn(@) =3 dABdCDa( — ). (55)

which can take into account both independent (A = C and B = D)
and correlated (A # C or B # D) quantum fluctuations induced by
the subsystem-bath interaction.

ARTICLE pubs.aip.org/aipl/jcp

By converting Egs. (53) and (54) to the exciton basis according
to Eq. (6), we can specify the form of the bath-related operators in
Eq. (8) as

A2 2 a2
g (P W s
VL,B = (?] + ]2 7 )(Saﬂ—wjdiﬁxj+ygﬁ, (56)

where 8,4 is the Kronecker delta and

d{xﬁ = EA: EB: C;AC[SBdQB»

(57a)

B = 22 CaACHEYhp (57b)
A B

are the coupling strengths and energy shifts in the exciton basis,

respectively.

1. Population transfer

Based on Eq. (56), the rate constants for population trans-
fer rate [Eq. (23)] and dissipation [Eq. (36)] can be computed by
following the procedure illustrated in Secs. I A and II B, respectively.

To simplify the expressions that will appear in the derivations,
we take an exciton state |«) as a reference and redefine the posi-
tional coordinate according to jj = &j — db, so that the origin j; = 0
coincides with the minimum of the PES #,,. In this new coordinate,
Eq. (56) transforms into four different forms depending on which
part of the subsystem the bath-related operators couple to

A2 242

1;Z;toc = & + M 7A{;ux,owt + y{m: (583)
2 2
) 132 w? .

yo =8 Ty (4 j
=5+ 5 D= (g = )T = Ky + v (58b)
%ﬁ J aﬁyJ 2/1043 oo ap’ (58¢)
1/,5 = -wfd;;ayj - u;’w + ;/ﬁ (58d)

where a #  and /\W . wzdfwdéx/Z.

To obtain the rate constants for exciton population transfer
[Eq. (16)], we need to compute Sg.(t') [Eq. (23)], which requires
evaluating the traces in Eq. (22) using the bath-related operators
defined in Eq. (58). To evaluate these traces, we begin with Tr0/ "
[Eq. (22a)], whose analytical expression,

, it (N, +G,) G,
TrO;m = exp (_hﬂ - %f(wj, 1, (59)

was obtamed using the generalized cumulant expansion

technlque" * or the small polaron transformation.”"* Here,
Gﬁ A - and f(w,t") are defined as
Y j

Gg, = Moo — 2Xups + Aﬁﬁﬁﬁ’ (60)

B = Voo = Ky g = Vo + Vi (61)

J. Chem. Phys. 164, 034105 (2026); doi: 10.1063/5.0305296
Published under an exclusive license by AIP Publishing

164, 034105-6



The Journal

of Chemical Physics

- cos (wt’ ) sm (wt') - wt

flwt') = coth(ﬂzw) (62)

As shown in Appendix A, the analytical expression for the rest of the
traces in Eq. (22) can be obtained as

w w

Trléa = _[i(/\{xﬁ,ﬁﬂ - A{;tﬁ,zxtx)f (wj 1) + z’lirﬂ,aa - Yf,,,;] TrO{?a’ (63a)
Tr2}, = =[N g = My oo (@3 1) + 20, = 3, ] Tr0) . (63b)
Tr3), = [ {i Ww ;M)f(wj,t) w2~ Yl
X { ( ﬂaﬁﬁ ﬁzx oca)f(w]’ + Zk;?a oo y;?:x
+ Mg, @ t)] Tr0j, (63¢)

Equations (59) and (63) allow us to construct the building blocks for
Sga(t") [Eq. (25)] as

Wia(t') = —it{gapps(t) = Sapaa(t’)} — 2Aapaa + Taps  (64a)
Xpa(t') = =i {8paps(t) ~ Zpaaa(t')} = 2Apaga + Tpar  (64D)
Yoalt') = Zpa(t') = W gappa(t'), (64¢)

g, (t') = exp (—%(21\““,“0, — 2Aqapp — Taa + Tgp)
— Soaaa(t') + 28aaps(t) - gﬁﬁ,ﬁﬂ(t,))» (64d)

where we have defined the sum of A/
components as

iy and y,iw over all bath

AI“')EX = Z ALV,Ex’ r.‘” = Z yj’”” (65)
J J

respectively, and the exciton line-broadening function,

n_1 ]yv fx(w)
gyv,ix(t )= gz]: [ 'ngf(wj’t ) [ fla, )
(66)
where we have introduced the SPD in the exciton basis,
3 fwd]
Tungy (@) = z % 5w — w;). (67)

The rate constants for population transfer can now be evaluated by
plugging Sga(t") [Egs. (25) and (64)] in Eq. (15) and integrating
numerically.

To further check the validity of the above expressions, we show
that they correctly reproduce the already known results from modi-
fied Redfield theory””® (MRT) when applied to a system of inter-
acting chromophore molecules. For each chromophore, we only
consider the ground and the first electronic excited states, whose
energy difference (“site energy”) undergoes fluctuations induced by
interactions with the harmonic vibrational modes. We then take
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the diabatic state |A) to describe the situation in which only the
chromophore A is electronically excited, while the rest remain in
their ground state. The MRT assumes the Condon approximation,”’
which declares that the electronic couplings between the diabatic
states are not affected by the vibrational degrees of freedom. This

is equivalent to setting d{AB =0 when A # B, with which Eq. (57)
reduces to

d, = ; cancpad (68)

The MRT also sets the diagonal elements of the subsystem Hamil-
tonian [Eq. (2)] as the vertical excitation energies at the minimum

of the ground state PES, which makes y{w =0 for all the bath
modes and, subsequently, I';, = 0 for all exciton state pairs y and v.
Applying these conditions to Ses(t") by using Eq. (64), the result is

! ! Zit’ ! 7
Spa(t') = Apa(t') exp (‘7Aw,mx — Gaaaa(t') — gappp(t ))> (69)

where we have defined .43,(t") as
, 2it’ '
:/ﬂga(t ) = exp 7/\%, 5 + Zgaa,ﬁﬁ(t )
X (_[h{gaﬁ,ﬁﬁ(t,) _gaﬁ,aa(t’)} - ZiAali,aoc]
x [h{gﬁa,ﬁﬁ(t,) - gﬁa,aa(t,)} - ZiAﬁot,zm]
+ Flzgaﬁ,ﬁa(tl)). (70)

Inserting Eq. (69) into Eq. (16) gives

Kpo = % Re/om Fa() Mpa(t)p(t") at’, (71)
where
Fu(t') = exp [7M fg;a,m(t')], (72a)
it'(Egy + A
(1) = exp [—M —gﬁﬁ,ﬁﬁ(t')], (72b)

2it" .
Ma(t') = exp (71\%@ * 2gm/313(t,)) x (=[P{gaps(t))
- gaﬁ,(xa(t’)} - ZiAaﬁ,(m] X [h{gﬁa,ﬁ/}(t’) - gﬁa,aa(t/) }
- 2iA/3a,w] + hzgaﬂﬁa(t,)), (72¢)
which are in accord with the expressions for MRT reported in

Ref. 20. Note that we have defined the zero-phonon exciton energies
as

Euo = By = Aoy (73)
2. Dissipation

Our next objective is to calculate the dissipation rate constants
[Eq. (36)], for which the most crucial quantity is .7 (t') [Eq. (37)].
We first insert Egs. (59) and (63) in Eq. (38) to derlve concrete
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expressions for the traces that are additionally required to calculate
the dissipation,

Tr4;;‘x [A;ja + GJ + zGﬁaf(w],t )] Tr (74a)
TrS;ﬁa = [A;hx + G’ + zGJ f(w,,t )] TrlJ

+ B (X g = Mg o) (@3 ) TrOG, (74b)
Tr6}, = (A}, + Gl +iGh, f(w;,t)] Tr2,

+ AW s = Moo f (@1 t) TrOL,, (74c)
Tr7;3a [A’ﬁa + Gf + zGJ Fw )] Tr3]

(K5~ Mg o) (0, t) T2,
WV eip ~ Moo (@ ) Try,

+ i dogpof P (wj, ') Tr0!

. (74d)

where the traces in the right-hand sides of the equations are kept in
their abbreviated form for compactness. If we substitute the traces
in Eq. (39) with the corresponding expressions in Eq. (74), it can be
noticed that some simplifications can be made by utilizing Eq. (26)
and

(‘TrOp, Xp, + Trlp )Ty, = XaoTlge, (752)

(Tr0, Wi, + Tr2g )ITp = Weallga, (75b)
which can be deduced from Eqs. (24) and (27). As a result, we get
S (') = [ D, + Gl = iGl, f (@), 1) ]Spa(t)
[h(Aﬁaﬁg 5aaa)f(w1’t )Wﬁa(t )
+ h("aﬁlgﬁ aﬁm)f(wj’t )Xﬂa(t )
il N5 f D (01, t) [ Tga(), (76)

in which the concrete expressions for the time profiles on the right-
hand side are given by Eqs. (24) and (64).

If all individual bath modes locally couple to a specific site, we
can obtain a continuous expression for the rate of dissipation at each
site within the frequency window [w, w + dw] at a certain time. This
is achieved by introducing the substitution,

A
/v ]ﬁa,yﬁ(w) dw

hays = 2 77)

for the bath modes associated with site A. After this procedure, the
rate of dissipation at site A becomes

Ia(w,t)dw=>">" /ﬂ‘;(w)Pa(t) dw, (78)

a Bra

where jlﬁ(w) is analogously defined as the expression in Eq. (36)
but should be calculated by incorporating the aforementioned
substitution [Eq. (77)].
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This formalism shares a structural similarity with the pre-
viously developed QME-D method [see Egs. (18) and (19) in
Ref. 14], but also features some fundamental distinctions. In particu-
lar, the present formalism is developed in the exciton basis using the
subsystem-bath coupling as the perturbation, while QME-D oper-
ates in the diabatic basis and treats the inter-site coupling within
the subsystem as the perturbation. A further distinction lies in the
complexity of the final dissipation rate expressions. The current
approach, by construction, generates additional terms dependent
on higher-order time derivatives of the bath response function [the
final three terms in Eq. (76)]. These terms, which do not have a
counterpart in QME-D, allow for a more detailed description of
the dissipative dynamics at the cost of a more computationally
demanding implementation.

The accumulated site dissipation at a given time, &1 (w, t), can
then be obtained as

Ea(w,t) = fot@A(w, tdt'. (79)

In turn, the total time-dependent dissipation can be obtained as

N
E(w,t) =Y Ea(wt), (80)
where N is the number of sites.

I1l. RESULTS AND DISCUSSION

To evaluate the numerical accuracy of the proposed theoreti-
cal framework to capture dissipation, we will present results from a
comprehensive set of simulations and compare them against bench-
mark data obtained using the HEOM,”* " specifically through the
HEOM-D’! approach that enables computing dissipation by indi-
vidual components of the bath. We focus on dissipation dynamics
within representative open quantum system models that feature har-
monic bath modes, as detailed in Sec. IT D. However, it is important
to reiterate that the developed framework maintains its applica-
bility to a broader range of environments, whether harmonic or
anharmonic, provided they consist of independent bath degrees of
freedom.

The subsystem-bath interactions in these simulations are pri-
marily characterized by the widely used Drude-Lorentz (DL) and
Brownian oscillator (BO) SPDs, defined in the diabatic basis.
The DL SPD, which is often employed to describe the collective
low-frequency motions of a solvent environment, is expressed as

A »
Jou(w) = 220 (81)

T W+ w?

where A is the total reorganization energy, which measures the over-
all strength of the subsystem-bath coupling, and w. is the cutoff
frequency, which dictates the characteristic relaxation timescale of
these bath modes. In turn, the BO SPD is typically used for model-
ing intramolecular vibrational modes of the molecule with a certain
characteristic frequency. Its mathematical form is

2A 2wh
Jeo(w) = Ay cee (82)

T (0 - W) + 497w’
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where wy is the frequency of the intramolecular vibration and y is
the damping strength.

The section is structured around four distinct sets of sim-
ulations, each designed to probe different aspects and parameter
dependencies of the open quantum system dynamics. For the rest of
this paper, all simulation parameters will be represented in Planck
atomic units where 1 = kg = 1.

e Simulation set A focuses on a molecular dimer (N =2)
where each site interacts with its own low-frequency bath
components, as described by the DL SPD detailed above.
In this case, the explicit expressions for the Hamiltonian
components are

. (AE)2 V
Hs = , (83a)
V. -AE2
N A2 2 2
- S (& . %) (83b)
aTN\2 2
A N 2
Hsp = —Z |A)(A| ® Z wAjdAjaéAj . (83¢)
A=l 7

Here, the extra index A of the bath-related quantities and
operators reflects that each bath mode is exclusively cou-
pled to a single subsystem state. Key parameters such as
the inter-site coupling (V = 0.25), temperature (T = 1.0),
and the DL cutoff frequency (w. = 0.5) are held constant.
Meanwhile, we vary the reorganization energy A across val-
ues of {0.05,0.2,1.0,2.0} and the energy gap AE among
{0.5,1.0,2.0}. For all 12 conditions within this set, the ini-
tial excitation is placed at the upper exciton state. Here,
“upper exciton state” refers to the highest-energy eigen-
state of Eq. (5), so that the initial exciton populations are
P, (0) = 0 and Pg(0) = 1, given that E, < Eg.

o Simulation set B utilizes the same molecular dimer model
as simulation set A [Eq. (83)], but investigates the effects
of varying temperature instead. Key parameters such as
the inter-site coupling (V =0.25), reorganization energy
(A =0.2), and the DL cutoff frequency (w, = 0.5) are held
constant, while we vary the temperature T across values of
{0.25, 0.5, 1.0} and the energy gap AE among {0.5, 1.0, 2.0}.
For all nine conditions within this set, the initial excitation
is placed at the upper exciton state.

e Simulation set C examines a spin-boson model that repre-
sents a two-level subsystem (N = 2) coupled to a single bath.
In this case, the Hamiltonian components Hs and Hp are
given by Egs. (83a) and (53), respectively, while Hsp takes
the form of

HSB = (1 0 ) ® (Z w]?djaéj). (84)
0 -1 7

The subsystem-bath interaction is characterized by the BO
SPD detailed above. Key parameters such as the inter-
site coupling (V =0.25), temperature (T =1.0), energy
gap (AE=2.0), and the BO characteristic frequency
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(wo = 2.062) are held constant. In contrast, we vary the reor-
ganization energy A across values of {0.05, 0.25, 1.0} and the
BO damping strength y among {0.05, 0.25, 1.0}. For all nine
conditions within this set, the initial excitation is placed at
the upper exciton state.

¢ Simulation set D extends the analysis to a molecular trimer
(N = 3) where each site interacts with low-frequency com-
ponents of the bath, described by the model Hamiltonian
of Eq. (83) with the DL SPD detailed above. The matrix
representation of the subsystem Hamiltonian Hs is

20 Vi 025
Hs=| Vv 10 00|, (85)
025 00 0.0

where the inter-site coupling V), is varied among
{0.25,0.5,1.0}, and the reorganization energy A among
{0.1,0.5}. The temperature T is maintained at 1.0, and the
DL cutoff frequency w, is 0.5. The reorganization energy A
is also varied across {0.1, 0.5}. Furthermore, three distinct
initial excitation schemes are employed. The first scheme
involves placing the initial excitation at site 2. This setup
compares QME-D'*"” results against HEOM benchmarks
to demonstrate the regime of applicability of QME-D. The
second scheme utilizes an incoherent mixture of exciton
states corresponding to the initial excitation localized at
site 2, which is chosen to show how our framework can
overcome certain limitations inherent in QME-D. The
third scheme places the initial excitation directly into the
middle exciton state. This corresponds to Py—>(0) =1
and Pu-1(0) = P4—3(0) = 0 given that the exciton energies
satisfy Eq=1 < Ea=> < Eq=3. There are a total of 18 distinct
simulation conditions for this set.

A schematic of the model systems and SPDs used in this section
is presented in Fig. 1.

To incorporate non-Markovian effects, we implemented the
time scale separation (TSS) method.””* This method separates the
SPD into slow and fast components and only lets the fast com-
ponent directly influence the subsystem dynamics, while the slow
component is treated as a source of static disorder. The separation is
formally achieved by defining

]slow(w) = S(w’ w* )](w)’

. (86)
]fast(w) = [1 - S(w’w )]](w)’
where S(w, w™) is the splitting function given by
1- *42 2’ *’
S(@0") - {n[ (wfa" YT, w<o’ 7
0, w2w,

and w” is the cutoff frequency.

As the simulation sets described here are consistent with the
modified Redfield theory, we will now refer to our method for com-
puting dissipation as MRT-D. In Secs. I1I A-III C, the dissipation
calculated by QME-D, MRT-D, and HEOM-D will be compared to
investigate their regime of validity and limitations. In particular, for
simulation set D, the direct contrast between QME-D and MRT-D
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FIG. 1. Schematic representation of the
model systems. (a) Molecular dimer
@ model where each subsystem state
(whose energies are labeled by E4 and
E,) is connected to its own set of har-
monic oscillator baths (represented by
green circles). Vi, is the inter-state
coupling between the two subsystem
states. (b) Spin-boson model where both
subsystem states are simultaneously

°
°
Spectral Density

connected to a single set of harmonic
oscillator baths (represented by blue cir-
cles). (c) Same as in (a) but for a
molecular trimer model. (d) Plots of the
Drude-Lorentz SPD [Eq. (81), green
line] used for simulations of the molec-
ular dimer/trimer and the Brownian oscil-
lator SPD [Eq. (82), blue line] used for
simulations of the spin-boson model.

=== Jpo(w)

m— JpL(w)

will highlight the ability of MRT-D to handle delocalized exciton
states that is absent in QME-D. In every set of simulations, for fair
comparison, the initial conditions for the simulation methods are
chosen as close as possible. However, it should be noted that the
deviations between the bath densities cannot be eliminated due to
the different projection operators used in QME-D and MRT-D, as
well as the factorized initial condition assumed in HEOM-D.

A. Molecular dimer
1. Simulation details

For the MRT-D calculations involving simulation sets A and
B, each DL SPD associated with the dimer sites was discretized into
2000 harmonic oscillator modes by following the scheme detailed
in Appendix B. The upper limit of the frequency was set to be
Wmax = 15, which recovered 97.9% of the analytical reorganization
energy of the SPD. Time integrals for determining the rate constants
for the population transfer [Eq. (71)] and dissipation [Eq. (36)] were
evaluated using the trapezoidal method with an integration grid
size of 0.02 and an upper integration limit of 5 x 10°. The coupled

wo
L4 Frequency

rate equations for exciton populations [Eq. (15)] were then propa-
gated using a fourth-order Runge-Kutta algorithm with a time step
of 0.02.

As noted previously, TSS was incorporated into MRT-D calcu-
lations to explore the influence of non-Markovian memory effects
on the dynamics. For simulation sets A and B, the splitting func-
tion [Eq. (87)] was defined by setting # = 0.99 and w* = 0.05. The
final results were obtained by averaging over a number of trajecto-
ries that are enough to achieve numerical convergence. In particular,
10* trajectories were used for the conditions involving a reorgani-
zation energy A = 0.05 (part of simulation set A), while 10° trajec-
tories were used for all other conditions within simulation sets A
and B.

For comparison, numerically exact benchmarks for the dissipa-
tion dynamics were established using the HEOM. This was imple-
mented using the HEOM-D strategy for monitoring bath compo-
nents developed by Kim,’! along with an efficient low-temperature
correction scheme recently reported.”* Key HEOM parameters for
each simulation condition, including the hierarchy depth Npjer, the
number of Matsubara terms Nasu, and the Huang-Rhys (H-R)
factor for the probe mode sy, are detailed in Table I.

TABLE I. Parameters for simulation sets A and B (molecular dimer). The reorganization energy A and temperature T define the subsystem—bath interaction, while the remaining
entries specify the HEOM procedure. Each of the six conditions listed was combined with three different values of energy gap AE = {0.5, 1.0, 2.0}, resulting in 18 distinct sets of
simulation parameters.

Simulation condition (i) (ii) (iii) (iv) ) (vi)
Reorganization energy (A) 0.05 0.2 1.0 2.0 0.2 0.2
Temperature (T) 1.0 1.0 1.0 1.0 0.5 0.25
Maximum time step (Afmax) 0.02 0.1 0.05 0.05 0.1 0.1
Number of hierarchy tiers (Nhjer ) 4 7 10 13 7 7
Number of Matsubara terms (Nuatsu ) 30 30 30 30 100 100
H-R factor of the probe mode (spp) 2x107° 1x107 1x107 1x107 1x107 1x107
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The frequency of the HEOM-D probe mode was scanned from
0.2 to 3.0 in steps of 0.05. For probe frequencies w > 0.3, the num-
ber of vibrational quantum states describing the probe was chosen
to ensure the initial bath density to represent 99.9% of the total
Boltzmann population. This threshold was relaxed to 99.0% for
w < 0.3 to mitigate the rapidly increasing computational burden at
lower frequencies. The approach to steady-state (+ — co) was prac-
tically handled by defining a finite simulation time tin for each
condition. This time was determined by visually inspecting the con-
vergence of exciton population dynamics. The subsystem reduced
density matrix (RDM) and the associated auxiliary density matri-
ces (ADMs) were propagated using an adaptive RKF45 integrator.”
The time step was dynamically adjusted based on the deviation of
the trace of the RDM from unity. To further ensure numerical sta-
bility, especially near the steady state, the integration time step was
not permitted to exceed a predefined maximum Afmay.

2. Electronic dynamics

Accurate exciton populations are a fundamental prerequisite to
reliably capturing energy dissipation dynamics. For this reason, we
first examine the fidelity of the population dynamics predicted by
MRT. We evaluate this accuracy by describing the time evolution
of exciton populations within the molecular dimer and benchmark-
ing the predictions of MRT against numerically exact HEOM results.
This comparison is illustrated in Figs. 2 and 3 for simulation sets
A and B, respectively, by displaying the time-dependent population
inversion (6.(t)) = Pg(t) — Pa(t). Here, P, and Pg are the popu-
lations for the lower and higher exciton states, respectively. Both
figures compare MRT (cyan line) with HEOM (pink dashed line).

Figure 2 shows that MRT performs well across a wide range
of conditions covered by simulation set A, yielding good agreement
with HEOM. While MRT provides good predictions in general,
some deviations from HEOM benchmarks emerge under specific
conditions, notably highlighted in panels Figs. 2(b)-2(d) and 2(h).
These cases exemplify situations with the reorganization energy
A >0.2 and the energy gap AE < 1.0, under which MRT overesti-
mates the rate of population transfer. The challenge for MRT is most

ARTICLE pubs.aip.org/aipljcp
MRT =— HEOM ==
) T=1 T=05 T =025

@ |, (b) © | >
o\ taim =100 200 |1, 250 iﬁ
N N e e e e ot

-1 T v -
~ |\ (d) (e " >
= I\ 250 |\, 400 550 | &
w01\ 1\ 1 I
< Sag \s —_
e < S

-1 v -
(9) (h) M >
3 1300} 2000 2100 ?1
b
o

_1 . 4 - =
0 0.2 0 0.2 0 0.2 0.4

t/tshn

FIG. 3. Time-dependent population inversion for simulation set B (molecular
dimer), with details specified in Sec. Il A 1.

apparent when strong subsystem-bath coupling (A = 1.0) combines
with a small energy gap of AE = 0.5 [Fig. 2(d)], where the accuracy
falls short in precisely capturing the steady state and transfer rate.
This behavior is attributed to the assumption underlying MRT that
the subsystem-bath coupling strength is relatively small compared
to AE.

Conversely, the accuracy of MRT significantly improves as
AE increases. This enhanced performance arises because a larger
energy gap promotes more localized exciton states. Consequently,
the dynamics becomes predominantly diffusive and is more ade-
quately described by an incoherent exponential decay. This charac-
teristic behavior becomes clearer by solving the coupled differential
equations for state populations, Eq. (14), which leads to an analytical
expression for the population inversion given by

(0:2(0)) = (62(00)) + [{(62(0)) = (62(0))] exp (Kpa = Kop)t. (88)
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FIG. 2. Time-dependent population inversion for simulation set A (molecular dimer), with details specified in Sec. Il A 1.

J. Chem. Phys. 164, 034105 (2026); doi: 10.1063/5.0305296
Published under an exclusive license by AIP Publishing

164, 034105-11



The Journal

of Chemical Physics

Figure 3 presents the results for simulation set B, whose
trends are similar to those in Fig. 2. That is, the accuracy of MRT
improves with increasing AE, while the population transfer rates are
slightly overestimated as the energy gap is reduced and the temper-
ature is increased. Such deviations are attributed to greater thermal
fluctuations induced by the subsystem-bath interaction.

3. Dissipation dynamics

Having addressed the performance of MRT for population
dynamics in Sec. I1I A 2, we now consider evaluating the dissipation
predicted by MRT-D. We will compare these predictions against
HEOM-D benchmarks for simulation sets A and B. We will focus
on total dissipation to maintain visual clarity in the analysis. A more
detailed examination of site-specific dissipation contributions will
be explored in the subsequent discussion of the molecular trimer
system (Sec. 111 C).

The frequency-resolved dissipation can be accessed through
the accumulated dissipation density, &(w, t), as defined in Eq. (80).
Figure 4 illustrates the steady-state cumulative dissipation, & (w, c0),
for simulation set A, comparing the results obtained from MRT-D
(cyan line) and HEOM-D (pink dashed line). The accuracy of MRT-
D in predicting dissipation improves with decreasing reorganization
energy A and increasing energy gap AE, which is consistent with the
trends observed for population dynamics presented in Fig. 2. It is
particularly noteworthy that even for the challenging condition of
A =1.0 and AE = 0.5 [Fig. 4(d)], where MRT showed quantitative
deviations in population dynamics, MRT-D still yields a qualitatively
good description of the dissipation spectrum.

By examining the dissipation mechanisms revealed in Fig. 4, we
observe distinct behaviors dependent on the subsystem-bath cou-
pling strength. When the reorganization energy takes a relatively
small value of A =0.05, a substantial portion of the energy dissi-
pation occurs through a channel centered around #Aw = AE. This
feature can be attributed to vibronic resonance, where energy is
efficiently transferred to quasi-resonant bath modes with the exci-
ton energy difference. As the reorganization energy A is increased,
the contribution of this vibronic resonance channel gradually
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diminishes, and the dissipation becomes increasingly concentrated
at lower frequencies close to w =0. This shift indicates that
stronger coupling promotes dissipation into slower, collective bath
motions.

In turn, Fig. 5 shows the influence of temperature on the total
accumulated dissipation at the steady-state, & (w, c0), for simulation
set B, comparing MRT-D and HEOM-D calculations. The accuracy
of MRT-D generally increases with a larger energy gap AE, and it
successfully captures the correct qualitative trends across the tem-
perature series. Notably, lowering the temperature from T = 1.0 to
T = 0.25 enhances the prominence of the vibronic resonance chan-
nel in the dissipation spectrum. This enhancement results from the
reduction in thermal fluctuations induced by the subsystem-bath
interaction at lower temperatures, which allows the resonant energy
transfer processes to become more dominant.
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FIG. 5. Total steady-state dissipation density for simulation set B (molecular dimer),
with details specified in Sec. Il A 1.
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FIG. 4. Total steady-state dissipation density for simulation set A (molecular dimer), with details specified in Sec. Il A 1.
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B. Spin-boson model with Brownian oscillator bath
1. Simulation details

The spin-boson model (simulation set C) features a two-level
subsystem coupled to a single bath, which is characterized by a
BO SPD [Eq. (82)]. Key parameters such as the inter-site coupling
(V =0.25), temperature (T = 1.0), energy gap (AE = 2.0), and the
BO characteristic frequency (wo = 2.062) were held constant. We
varied the reorganization energy A across values of {0.05,0.25,1.0}
and the BO damping strength y among {0.05,0.25,1.0}. For all nine
conditions within this set, the initial excitation was placed at the
upper exciton state.

The BO SPD was discretized into 10000 harmonic oscillator
modes for the MRT-D computations. The discretization scheme
follows the procedure described in Appendix B. In turn, we set
wp = 2.062 as the center of the BO SPD. Time integrals for deter-
mining the rate constants for population transfer [Eq. (71)] and
dissipation [Eq. (36)] were evaluated using the trapezoidal method
with an integration grid size of 0.02 and an upper integration
limit of 5 x 10°. The coupled rate equations for exciton popula-
tions [Eq. (15)] were propagated using a fourth-order Runge-Kutta
algorithm with a time step of 0.02.

For TSS, the splitting function [Eq. (87)] was defined by setting
the cutoff frequency w* = 0.05, and the parameter 1 was reduced
from 0.99 (as used for simulation sets A and B) to 0.6. This reduction
was necessary due to the increased difficulty of achieving detailed
balance conditions with the BO SPD. To ensure numerical conver-
gence, the number of individual trajectories averaged to obtain final
results was kept at 10%,

For the HEOM and HEOM-D simulations, we implemented
the BO SPD based on Ref. 36 and applied the strategy for monitoring
bath components developed by Kim,’' along with an efficient low-
temperature correction scheme recently reported.”* The HEOM-D
parameters used for each simulation condition can be found in
Table L.

2. Electronic and dissipation dynamics

Figure 6 presents the time evolution of the population inversion
(62(t)) for nine different simulation conditions in Table 11, reveal-
ing the accuracy of MRT when benchmarked against HEOM results.
For a small damping strength such as y = 0.05, Figs. 6(a)-6(c) show
that MRT faces challenges in describing the highly non-Markovian
character of the bath dynamics. This difficulty arises from the
underdamped nature of the bath, which leads to persistent memory
effects. However, as the damping strength y increases, the agreement
between MRT and HEOM benchmarks improves significantly. MRT
provides a nearly quantitative match to the benchmark electronic
dynamics for larger values of y (e.g., 0.25 and 1.0), showing its utility
when the bath becomes more dissipative and its memory effects are
shortened.

In Fig. 7, we present the steady-state accumulated dissipation
density &(w,c0) in MRT-D and HEOM-D. The results in Fig. 7
show that for small (y = 0.05) and intermediate (y = 0.25) damping
strengths, most of the energy dissipation occurs through a reso-
nant channel around w ~ 2.0. This frequency corresponds closely
to both the subsystem energy gap (AE = 2.0) and the characteristic
frequency of the Brownian oscillator (wo = 2.062). An interesting
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FIG. 6. Time-dependent population inversion for simulation set C (spin-boson
model), with details specified in Sec. Il B 1.

TABLE II. Parameters for simulation set C (spin-boson model). The reorganization
energy A defines the subsystem—bath interaction, and the remaining entries spec-
ify the HEOM procedure. Each of the three conditions listed was combined with
three different damping strengths, y = {0.5, 1.0, 2.0}, resulting in nine distinct sets of
simulation parameters.

Simulation condition i) (ii) (iii)
Reorganization energy (A) 0.05 0.25 1.0
Maximum time step (Afmax) 0.01 0.05 0.05
Number of hierarchy tiers (Nhier) 5 7 12
Number of Matsubara terms (Nuatsu) 10 15 25
H-R factor of the probe mode (spp) 2% 10° 1x107° 1x107
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FIG. 7. Total steady-state dissipation density for simulation set C (spin-boson
model), with details specified in Sec. IIl B 1.
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feature observed with a very small damping strength of y = 0.05
[Figs. 7(a)-7(c)] is that the dissipation spectrum in HEOM-D does
not form a single peak, in contrast to the shape of the BO SPD itself.
Instead, the dissipation spectra exhibit a pair of closely lying peaks.
Such a structure arises from the strong coherent interaction between
the upper subsystem state and the first excited state of the under-
damped bath mode, a phenomenon analogous to the formation
of polaritonic states. However, this distinct peak-splitting behav-
ior diminishes and eventually disappears as the resonance effect is
diluted due to increased damping strength.

For all conditions displayed in Fig. 7, MRT-D qualitatively
reproduces the general features of the dissipation spectra obtained
from HEOM-D calculations. The predictive capability of MRT-D
improves with increasing damping strength, which enhances the
accuracy of the Markov approximation. Interestingly, when the reor-
ganization energy is small (A = 0.05), MRT-D deviates from the
HEOM-D calculations. We attribute this behavior to the absence of
low-frequency components in the bath, which leads to a long mem-
ory of the bath and consequently degrades the validity of the Markov
approximation.

C. Molecular trimer
1. Simulation details

The simulations for the molecular trimer model (simulation
set D) were performed using Planck atomic units (h=kg =1). In
this model, each site of the trimer interacts with its own low-
frequency bath components, characterized by a DL SPD. Key fixed
parameters for these simulations include a temperature (T = 1.0)
and a DL cutoff frequency (w. = 0.5). The inter-site energy gaps
were set to AE1» = 1.0, AE13 = 2.0, and AE»3; = 1.0. Specific inter-site
couplings are also set at V3 = 0.25 and V3 = 0.0. The simulations
explored variations in the reorganization energy A = {0.1,0.5} and
the inter-site coupling Vi, = {0.25,0.5,1.0}. A total of 18 distinct
simulation conditions were examined, encompassing three different
initial excitation schemes. The first scheme involved placing the ini-
tial excitation at site 2 to compare QME-D results against HEOM-D
benchmarks. This corresponds to the initial condition P4—,(0) = 1.
The second scheme utilized an incoherent mixture of exciton states,
constructed by converting the initial excitation localized at site 2
to the exciton basis and only extracting the populations. This aims
to show how MRT-D can overcome certain limitations inherent in
QME-D. The third scheme placed the initial excitation directly at
the middle exciton state, such that P,—>(0) = 1. The remaining com-
putational details for QME(-D), MRT(-D), and HEOM(-D) were
identical to those described in Sec. IIT A 1 and Table I.

2. Electronic dynamics

In this section, we investigate the electronic population dynam-
ics of simulation set D. The primary goal is to demonstrate that
MRT can accurately capture dynamics under conditions where
QME becomes unreliable. As QME and MRT are formulated in dif-
ferent bases—the site and exciton bases, respectively—the HEOM
benchmark results are presented in the appropriate basis for each
comparison.

First, to illustrate the limitations of QME, we initialized the
simulation with the excitation localized at site 2. The population
dynamics are presented in Fig. 8, where solid lines represent the
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FIG. 8. Population dynamics for simulation set D (molecular trimer) with initial
excitation localized at site 2. Details of the simulation are presented in Sec. Ill C 1.

QME calculations and dashed lines depict the HEOM benchmarks
(site 1: blue, site 2: green, and site 3: orange). As is evident from
Fig. 8, QME accurately captures the population dynamics only under
particular conditions of small electronic coupling (V12 = 0.25) and
large reorganization energy (A = 0.5), as shown in Fig. 8(d). For the
majority of other conditions tested [Figs. 8(a)-8(c) and 8(f)], QME
fails to reproduce the correct dynamical behavior. Even in cases
such as Fig. 8(e), where QME might eventually reach the correct
steady-state populations, it fails to describe the short-time dynamics
accurately.

To address these limitations, we examine the performance of
MRT against HEOM. For this, we use an incoherent exciton ini-
tial condition that corresponds to an initial excitation localized at
site 2. In Fig. 9, we show that the population dynamics predicted
by MRT show a markedly improved agreement with HEOM across
the simulation set. While some deviations emerge at strong elec-
tronic couplings, MRT consistently yields more accurate steady-state
populations compared to QME.

Finally, motivated by the observation that MRT can effec-
tively handle conditions challenging for QME, we tested an initial
condition where the excitation is localized in the middle exciton
energy state. The population dynamics for this scenario are shown
in Fig. 10. The results again indicate good agreement between MRT
and HEOM. This agreement persists until the electronic coupling
becomes strong (e.g., V12 = 1.0); however, even under such strong
coupling, the steady-state populations are still accurately predicted
by MRT.

3. Dissipation dynamics

For dissipation, we first apply QME-D to the excitation initially
localized at site 2. The resulting steady-state dissipation densities
&(w, 00) are presented in Fig. 11 for individual sites, comparing
QME-D (solid lines) with HEOM-D (dashed lines). The QME-D
results align with the HEOM-D benchmarks only under specific
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MRT: HEOM: structured peak at a higher frequency [Figs. 11(c) and 11(f)], which is

Exc1 == Exc2 = Exc3 Exc1 == Exc2 == Exc3 close to the energy difference between the highest and lowest exciton
Viy = 0.25 Vip = 0.5 Vig = 1.0 states (w »~ 2.7). In contrast, QME-D does not capture this feature.

@ © © To ad(_lress t}}e limitations of .QME—D, we now examine the

L = 1500 150 50 results obtained with MRT-D. In Fig. 12, we show the steady-state

dissipation densities when the initial condition is an incoherent
mixture of excitons corresponding to site 2. The HEOM-D results
in Fig. 12 are very similar to those in Fig. 11. For a broad range
of parameters, each site dissipation density predicted by MRT-
D closely follows the trends observed in the HEOM-D, including
the resonant structure of the peaks previously missed by QME-D
for V1, = 1.0. For A = 0.1, MRT-D provides quantitatively accurate

Populations

MRT-D: HEOM-D:
Site 1 === Sjte 2 === Sijte 3 Site 1 == Site 2 == Site 3
Vig =0.25 Via =0.5 Vi =1.0

0.6

FIG. 10. Population dynamics for simulation set D (molecular trimer) with the ini-
tial excitation localized at the middle exciton state. Details of the simulation are
presented in Sec. Il C 1.

conditions, notably at V1, = 0.25 and A = 0.5 [Fig. 11(d)]. Accord-
ing to Sec. 1, this agreement is expected, as these parameters favor
the perturbative treatment with respect to the electronic coupling V,
increasing the accuracy of QME-D. The electronic coupling V', pri-
marily scales the rate constants by V3,,'* which uniformly affects the
entire frequency range of the dissipation spectrum. Consequently,
while increasing V1, speeds up the overall dissipation process, it
does not significantly alter the qualitative features of the steady- w (a.u.)
state dissipation profiles within QME-D. However, for most other
conditions, QME-D fails to accurately reproduce both the strength
and shape of the site dissipation densities compared to the HEOM-
D benchmarks. Furthermore, when V1, = 1.0, HEOM-D reveals a

FIG. 12. Site-specific steady-state dissipation density for simulation set D (molec-
ular trimer) using an incoherent exciton mixture corresponding to site 2. Details of
the simulation are presented in Sec. Il| C 1.
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results [Figs. 12(a)-12(c)], although some discrepancies emerge as
the reorganization energy increases to A = 0.5 [Figs. 12(d)-12(f)].
Nevertheless, MRT-D still captures the correct qualitative trends for
V12 = 0.25 [Fig. 12(d)] and V12 = 0.5 [Fig. 12(e)]. At strong inter-site
coupling and high reorganization energy with Vi =1 and A=0.5
[Fig. 12(f)], MRT-D struggles to reproduce HEOM-D results.

Finally, we investigated the dissipation dynamics when the ini-
tial excitation is localized in the middle exciton state, with results
shown in Fig. 13. While the specific dissipation profiles differ from
those in Fig. 12 due to the different initial conditions, MRT-D
continues to effectively retrieve the correct trends and structural
features of the dissipation dynamics across most of the simulation
conditions. The only exception is the challenging regime of strong
electronic coupling (Vi2=1) and large reorganization energy
(A=05) [Fig. 13(f)], where deviations from HEOM-D are
noticeable.

In summary, the MRT-D framework can reliably treat situa-
tions where QME-D is not suitable and enables the study of dissi-
pation pathways across a broader range of simulation conditions.
Importantly, while HEOM-D provides numerically exact results, its
computational cost often limits its applicability to relatively small
systems and baths with simple SPDs. By contrast, approximate
methods such as QME-D and MRT-D offer a more scalable route to
investigating dissipation in more complex molecular systems with
highly structured environments.

D. Possible extensions to coherent dynamics

The theories of dissipation developed in the current work and
our previous papers, I and I,'*'? only follow the state populations,
as in the QMEs from which they were derived.”””® However, as
shown in Figs. 8(c) and 8(f), the off-diagonal elements of the den-
sity matrix (coherence) may significantly affect the dynamics when
the inter-site couplings become large. Therefore, it will be meaning-
ful if our theoretical framework could be further extended toward
retaining the coherence during propagation.

MRT-D: HEOM-D:
Site 1 === Sjte 2 === Sijte 3 Site 1 === Sjte 2 === Sjte 3
Vis = 0.25 Vip = 0.5 Vip = 1.0
0.6
@ ®) ©
0.3 1 =
S I
— . “9) N - <
5 01 == +—== 2 -~ 4 =
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FIG. 13. Site-specific steady-state dissipation density for simulation set D (molec-
ular trimer) with the initial excitation localized at the middle exciton state. Details of
the simulation are presented in Sec. Il C 1.
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Recently, there have been studies that successfully incorporated
coherences in QMEs under the Nakajima-Zwanzig projection oper-
ator technique.” ”’ In contrast to focusing only on the dynamics
within &7 p as in this work, these approaches explicitly treat the inter-
action between &2p and 2 to calculate time-dependent memory
kernels or rate constants involving both populations and coherences.
Therefore, it is natural to conceive of these QMEs as adequate start-
ing points for constructing theories of dissipation under coherent
subsystem dynamics. Below, we list some desired requirements for
such theories:

e To calculate the dissipation rate into a single bath mode, it
must be possible to construct an expression equivalent to
Eq. (28) by separating the dynamical evolution of the bath
mode from the rest of the system as in Egs. (29) and (30).

e The consistency between the original QME and the dissi-
pation rate should be rigorously validated, as we did for
Eqgs. (27) and (35) of Ref. 14 in Appendix A and B therein.
It is also straightforward to show that the Hamiltonian
employed in this work [Egs. (1)-(4)] is a specific case of
Egs. (A1)-(A3) of Ref. 14, thereby satisfying the condition
for the desired consistency.

o If additional approximations (e.g., Markov approximation)
were made for the sake of deriving practical expressions,
they need to be checked again for energy conservation and
detailed balance (Sec. II C), especially at the steady-state
limit (+ > o0).

IV. CONCLUSIONS

In this paper, we have presented a significant advance in under-
standing energy dissipation in open quantum systems by introduc-
ing a general theoretical framework that complements our previous
theory of dissipation pathways in open quantum systems, QME-D,
to include off-diagonal subsystem-bath coupling. This generaliza-
tion is essential for a more realistic treatment of molecular systems
where such couplings predominantly affect the quantum dynam-
ics. In particular, we provided a systematic derivation of quantum
master equations that describe population transfer and quantify the
energy dissipated into individual bath components. Our theoreti-
cal formulation is further supported by rigorous proofs of energy
conservation and detailed balance, which establish the physical
integrity.

The robustness and practical utility of the method were vali-
dated through its application to linearly coupled harmonic oscillator
baths, which we referred to as MRT-D, as it is consistent with
the modified Redfield theory. For quantitative assessment of the
accuracy, we tested MRT-D against HEOM-D, a formally exact
method for calculating the dissipation. The model Hamiltonians
used for the analysis included molecular dimers, spin-boson models,
and molecular trimers, with baths described by DL and BO SPDs.
We confirmed that, across a significant parameter range, MRT-D
demonstrated good to excellent agreement with HEOM-D for both
population dynamics and frequency-resolved dissipation spectra.
Importantly, MRT-D successfully reproduced key spectral dissipa-
tion features, such as vibronic resonances in molecular dimers, site-
dependent dissipation, and characteristic peaks in underdamped
Brownian oscillator baths. All of these highlight the theory’s abil-
ity to capture the detailed physics of the dissipation process. The
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advantages of MRT-D were particularly evident in molecular trimer
simulations, where it resolves dissipation pathways in scenarios
where QME-D fails. However, the validation studies of MRT-D also
revealed that its accuracy may be reduced in the parameter regimes
with strong subsystem-bath coupling, small energy gaps, or highly
non-Markovian baths.

We note that, although the simulations presented employ
the Condon approximation, our theoretical framework [Egs. (36)
and (37)] can capture non-Condon contributions. This is because
the mathematical form of the Hamiltonian in the exciton basis,
Egs. (9) and (10), is unaffected by the addition of any off-diagonal
subsystem-bath couplings in the diabatic basis. Non-Condon effects
are often important in realistic models of molecular quantum
dynamics.”” " Applications of our theory to study their conse-
quence in the dissipation pathways will be an interesting direction
for future work.

The application of our method is envisioned to be particularly
powerful when integrated with sophisticated model Hamiltonians
tailored for specific molecular systems. In particular, the method is
well-suited to leveraging realistic, highly structured SPDs, whether
derived from rigorous QM/MM simulations™**™*" or from fitting
linearly coupled harmonic bath models to experimental spectro-
scopic data.”’”” The approach enables pinpointing the regions
within these SPDs that most significantly affect the dynamical evo-
lution of the subsystem. Correlating these influential spectral fea-
tures with molecular vibrational characteristics, in turn, can offer
more comprehensive insights into how vibronic interactions steer
non-adiabatic processes. These insights are helpful, for example, in
accessing energy dissipation pathways through spectroscopic tech-
niques such as 2D electronic spectroscopy.” Ultimately, we envision
a broad application of the framework to deepen our understand-
ing of quantum dynamics across a wide range of complex molec-
ular assemblies, including photosynthetic complexes, " artifi-
cial excitonic’ ** and plasmonic systems,”*" and molecular or
solid-state qubits.”” *’
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APPENDIX A: DERIVATION OF EQ. (63)

This appendix presents the detailed procedure for deriving
Eq. (63), which are the analytical expressions of the traces in
Egs. (22b) and (22d) under a linearly coupled harmonic oscillator

bath. For Tr liglx and TrZ;;lx, we observe that
d TrOﬁm

dt’

=~ T (h) (9 = Vha) 7%

L (COCAE LA TN

by expanding the bracket in the trace and recognizing the commu-
tativity between the operators. We then plug in the expressions for

vém, v]ﬁ, and Tr ., [Eqs. (58a), (58b), and (59)], and rearrange the
resulting equatlons to yield

. o L df /
Trj[(flfx)T?j%rfx] = Trj[ (ira T%ﬁjh’x] = ( 2 [1 + lf(wpt)])
x TrOi;a. (A2)

We can now insert Egs. (58¢) and (58d) into Egs. (22b) and (22¢),
respectively, and use the above results to arrive at Eqs. (63a) and
(63Db).

For Tr3;;a we take the time derivative of Eq. (A1) to get
4 TrOéa ; i \ad
a2 = hz Tr][(”a) (Vﬁﬁ Voux)” (Vlgﬂ Vaa)Fals (A3)

from which we can derive

A'A AJ d{m) h -
Ty (ivh) 9057 = 7[1“)‘(60#)] S (@irt)
]

X Tr%a (A4)

with the help of Eq. (A2). Equation (63¢) then emerges from
Eq. (22d) by taking a similar procedure as we did for Trliga and

j
Tr2 Ba
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APPENDIX B: DISCRETIZATION OF THE BATH
SPECTRAL DENSITIES

For the DL SPD [Eq. (81)], our discretization scheme follows
Ref. 70, which places the individual bath modes along the frequency
axis according to

2

©j = G j=12...,n (B1)

Here, n is the total number of discrete modes representing the SPD,
and wmax is the upper limit of the frequency. This formula results
in a denser distribution of modes at lower frequencies, which is
appropriate because the reorganization energy density, Jp; (w)/w, is
typically larger in this region.

We now define a function fpr(w), which links the discrete and
continuous representations of the SPD as

wjdi  Jou(w))

—— = . B2
2 fou(w) e
The explicit form of this function is given by
n
fou(@) =7 (B3)

V WWmax ’

which allows us to obtain the discrete reorganization energy, A;, as

2 72
wid; _4A 0w

2 jm wf+wf'

3 - (B4)

This value of A; is a good approximation for the reorganization
energy obtained by integrating Jp; (w)/w over a frequency seg-

ment that corresponds to the jth bath mode, [(wj+ wj-1)/2, (w;
+wjr1)/2],

/ Jou (@) do ~ ]DL(wJ)ij = ,—7?5“’] 3. (B5)
segment w wj Jjm wj + Wy

Here, Awj is the length of the segment.

For the BO SPD [Eq. (82)] with the characteristic frequency
wo and damping parameter y, we set wmax > wo and calculate the
frequency Q that maximizes the reorganization energy density

Jeo(w)/w,
Q = \/max[0, wgy - 2y°]. (B6)

If O = 0, we can follow the discretization strategy similar to that for
the DL SPD [Egs. (B1)-(B3)], by substituting Jp; (w) with Jzo(w).
Otherwise, the frequency domain is split into two windows [0, Q)
and (Q, Wmax |, each of which is represented by 7/2 bath modes using
separate discretization schemes. For the [0, Q) window, we have

e [-0- 2

n

fro1(w) = m j

(B7)
=12,...,
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and for the (Q, wmax | window,

.2
w2j=Q+ J—z(a)max -Q),
0l (B8)
w) = , =12, =
froa(@) N CEOICE 2

Equations (B7) and (B8) do not include a bath mode placed exactly
at w = Q, where both fgo1(w) and fo2 (w) diverge. Nevertheless, we
can resolve this issue by assigning this mode a specific reorganization
energy Ay-q, which is determined to match the integral of /o (w) /@
over the frequency interval near w = Q) that is not yet covered by the
bath modes in Eqs. (B7) and (B8). The result is

2
2N Wmaxwy

ot Y@y ®9)

w=0 =

As a result, similar to the discretization of DL SPD, the bath
modes become more concentrated in the region around w = Q,
which makes a dominant contribution to the overall subsystem-bath
coupling.
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