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ABSTRACT

We investigate strategies for simulating open quantum systems coupled to dissipative baths by comparing explicit wave function-based
discretization [via multi-layer multi-configuration time-dependent Hartree (ML-MCTDH)] and the implicit density matrix-based mas-
ter equation method [via tree tensor network hierarchical equations of motion (TTN-HEOM)]. For dissipative baths characterized by
exponentially decaying bath correlation functions, the implicit discretization approach of HEOM—rooted in bath correlation function
decompositions—proves significantly more efficient than explicit discretization of the bath into discrete harmonic modes. Explicit meth-
ods, like ML-MCTDH, require extensive mode discretization to approximate continuum baths, leading to computational bottlenecks. Case
studies for two-level systems and a Fenna-Matthews-Olson complex model highlight TTN-HEOM'’s superiority in capturing dissipative
dynamics with relaxations with a minimal number of auxiliary modes, while the explicit methods are as exact as the HEOM in pure dephasing
regimes. This comparison is enabled by the TENSO package, which has both ML-MCTDH and TTN-HEOM implemented using the same
computational structure and propagation strategy.
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I. INTRODUCTION

The time-dependent Schrédinger equation (TDSE) is one of the
most fundamental equations for quantum dynamics.! However, its
direct application to computationally simulate the quantum dynam-
ics of a system coupled to a macroscopic environment (which is
a common physical situation in molecular, material, and quantum
information science) is challenging because of the large number of
degrees of freedom (DoFs) involved.

In the context of open quantum systems, it is well-known that
any quantum bath can be mapped to a collection of bosons pro-
vided the system-bath interaction can be captured to second order
in perturbation theory.” * This situation is common for a system
in the condensed phase where system-bath interactions are diluted
over a macroscopic number of DoFs.”” It also includes the case of a
bath of independent spins, where a macroscopic spin bath can also

be mapped to a macroscopic bosonic bath in the linear response
limit.”” This feature makes simulations in the presence of a bosonic
bath of particular interest.

Computational simulations of such a situation using the TDSE
invariably require a discretization of such a bosonic bath using
a finite number of modes. This is needed to explicitly represent
the quantum state of the system plus bath as a vector in a finite-
dimensional Hilbert space,’ with each discretized mode represent-
ing one DoF of the bath. The challenge in this strategy is the
curse of dimensionality, where the size of the Hilbert space grows
exponentially with the number of discretized modes in the bath.

One way to mitigate this challenge is to use a tensor network
decomposition of the quantum state in the TDSE, which is a state-
of-the-art strategy in many-body physics and chemistry that can be
used in both stationary'’'* and time-dependent problems."” '* In
these methods, the many-body wave function is decomposed into a
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tensor network based on sequential singular value decompositions
of the quantum mechanical state to reduce the dimensionality of
the quantum simulation while still capturing most of the essential
principal components. In particular, the multi-configuration time-
dependent Hartree (MCTDH) method" and its multi-layer (ML)
extension”””' are based on a hierarchical Tucker decomposition®” of
the wave function, which has a tensor network with a tree-like struc-
ture. This wave function-based method was originally developed
for simulating quantum dynamics at zero temperature. However, it
has also been extended to finite temperature scenarios, "'*** which
require a discretization strategy to simulate a dissipative and contin-
uous bath”**’ that leads to thermalization of the system. Since the
overall dynamics remains unitary, this strategy can struggle to fully
capture the irreversible nature of a truly dissipative bath with infinite
DoFs.”

Another strategy to simulate quantum dynamics in a thermal
bath is that produced by quantum master equations,”” where only
the dynamics of the reduced density matrix of the system is propa-
gated and the influence of the bath is captured implicitly. This avoids
the insurmountable computational cost of explicitly propagating the
quantum dynamics of a macroscopic bath. The hierarchical equa-
tion of motion (HEOM) theory is one of the most advanced and
successful quantum master equations for simulating the open quan-
tum system coupled to a thermal dissipative bath in a numerically
exact manner.”*”® However, the standard HEOM theory has been
mostly limited to simple bath models because the computational
cost for the dynamics grows exponentially with the complexity of
the bath and the number of levels in the system.” " Specifically,
the interaction between the system and the bath can be character-
ized by a spectral density J(w), which quantifies the frequencies
w of the bath and its interaction strength with the system. While
spectral densities of relevance in chemistry are highly structured,
currently the HEOM calculations are typically limited to simple
spectral density models,”>”"* in which the spectral density leads
to a bath correlation function (BCF) that can be decomposed into
a finite number of exponential components. This has prevented
the use of HEOM to understand excited state molecular dynamics
in realistic chemical baths. To address this, many techniques have
been developed. For instance, one can apply the filtering algorithm
based on the fact that most of the auxiliary density matrices in the
HEOM for capturing the influence of the bath are zero or almost
zero matrices,”” which makes it possible to do HEOM with tens
of exponential components in the BCF. This technique, however,
is sensitive to the time step used for the filtering, and it is hard to
suppress the number of non-zero auxiliary density matrices in some
models.”

To overcome this problem, in Ref. 36, we developed a tree ten-
sor network (TTN) HEOM method that can be used to simulate the
open quantum dynamics of a system coupled to a harmonic bath
with arbitrary spectral density discretized by a series with finitely
many terms, where each term corresponds to one DoF for rep-
resenting the system-bath interaction. The TTN-HEOM preserves
a master equation formalism that admits general numerical tech-
niques for solving ordinary differential equations and also allows
specific stepwise propagators developed from the tensor network
and MCTDH communities. Our efforts augment and complement
other strategies for integrating tensor network techniques into the
HEOM.EU 32,37-39
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In this study, we revisit and compare the performance of the
TDSE and the HEOM to describe a system interacting with a bosonic
bath. Specifically, we compare the performance of the direct dis-
cretization strategy in the TDSE for a dissipative bath with the
implicit discretization strategy in the HEOM. For practical simu-
lations, we incorporate the tensor network framework in both the
TDSE and the HEOM, namely ML-MCTDH and TTN-HEOM, to
simulate the quantum dynamics of a system coupled to a harmonic
bath. Our results suggest that for dissipative baths characterized
by exponentially decaying bath correlation functions (BCFs), the
implicit discretization strategy is more efficient than the explicit
strategy when tensor network techniques are employed in both
approaches.

This comparison is enabled by the TENSO package,® which
offers the general implementation of TTN decomposition for gen-
eral ordinary differential equations for high-dimensional tensors
with a generator in a sum-of-product form. Both the ML-MCTDH
and TTN-HEOM are implemented in TENSO using the same prop-
agation strategy and computational structure. Therefore, any differ-
ences between the two arise just because of the computational cost
of the method and not because of differences in implementation or
computational architecture.

This paper is organized as follows. In Sec. II, we briefly intro-
duce the TDSE with an effective thermal bath used for ML-MCTDH
and the HEOM method that can be used with TTN. In Sec. 111,
we introduce strategies for the discretization of a dissipative bath
for the ML-MCTDH. The decomposition of the BCF is also dis-
cussed as an implicit way to discretize the bath. Section I'V demon-
strates examples of these methods for both dephasing and dissipative
dynamics and compares the performance of the ML-MCTDH and
TTN-HEOM. Our conclusions are summarized in Sec. V.

Il. QUANTUM MASTER EQUATION FOR A SYSTEM
IN A HARMONIC BATH

A. Wave function-based methods

For the sake of completeness, in this section, we briefly recall
the basic theory of wave function-based dynamics for a finite-state
quantum system coupled to a harmonic bath. The system-bath
interaction is described by the Hamiltonian

H=Hs(t)+HSB + Hg, (1)

where Hs(t) is the Hamiltonian of the system of interest, Hg is the
formal Hamiltonian for the whole bath, and Hsg is the influence of
the bath. For simplicity in presentation, here we focus on the case
when Hsg is one bilinear coupling between the system plus bath,

Hsp = Qs ® X, (2)

where Qg is an operator of the system and Xp is of the bath. We
further require the bath to be described by a harmonic model with

HB = Z wja;aj, (3)
j
X = Z gj(a; + aj), (4)
)

where a; and a! are the annihilation and creation operators of the
jth mode in the bath, wj is the frequency of the jth mode, and g; is
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the coupling strength between the system and the jth mode in the
bath, which is assumed to be a real number. Throughout this paper,
we use 71 = 1 for simplicity.

The multi-DoF wave function [¥(¢)) is represented by a tensor

J .
¥(1)) = 3 A (DI T i), (5)
ifi j=1

with tensor elements Ajy,...,;, where index i runs over the basis of
the system while the index n; runs over the jth harmonic oscilla-

tor in the bath. Here, |¢,) is the basis of the system, while \)(,SJ]))
is the basis for the jth harmonic oscillator of the bath. The multi-
index 7= (ni,ma,...,n7), nj=0,1,... for j=1,...,], is used to
denote the collection of all indices n; for the J harmonic oscilla-
tors in the bath. The full dynamics of the system plus bath are
completely described by the time-dependent Schrédinger equation
(TDSE), i [¥(t)) = H¥(t)). For the sake of numerical simulation,
this approach requires the bath to be discretized by a finite number J
of DoFs. Nevertheless, increasing the DoFs in the bath part increases
the cost of explicitly tracking the tensor Aj,,...,, exponentially with
respect to J.

To practically simulate the quantum dynamics of the model,
the ML-MCTDH theory””*" represents the wave function |¥(t)) by
a tree tensor network with (J + 1) DoFs in total. Furthermore, the
TDSE for [¥(t)) is decomposed into a set of coupled master equa-
tions for each tensor in the tensor network using the time-dependent
variational principle.

B. Wave function-based methods
at finite temperature

To simulate the quantum dynamics of the system in a thermal
bath, in general, the system needs to be described by a density matrix
p(t) instead of a wave function [¥(¢)). Specifically, if the bath is at
thermal equilibrium and the system can initially be described as a
pure state, then the initial density matrix of the system plus bath can
be written as

p(0) = lys(0)){ys(0)| ® py’, O

where |y5(0)) is the initial state of the system and pg'

= 77l W/ RT) g the equilibrium density matrix of the bath.
Here, T is the temperature, kg is the Boltzmann constant, and Z
= Tr(e /(1)) is the partition function.

Using wave function methods, it is still possible to simu-
late the dynamics of the system in a thermal bosonic bath using
purification'”'® or thermofield theory.”*"* In this strategy, the
density matrix p(#) in the Liouville space is mapped to a wave func-
tion |¥(¢)) in an augmented Hilbert space with auxiliary modes.
That is, the original system at temperature T is replaced by a fic-
titious augmented system at zero temperature, such that the two
dynamics coincide.

Specifically, suppose the interaction between the bosonic bath
and the system is described by Eq. (2). In this case, for a thermal
bath at temperature T, the effective Hamiltonian for the augmented
composite system can be characterized by’

Hegs = Hs + Hyr + Hgpr (7)

where

ARTICLE pubs.aip.org/aipljcp
Hy = Z wjoc;.fzxj - Z (Ujﬁ;ﬁj, (8)
j )
Hoy =Y 87 (o] +og) + X g (B + By), ©)
j ]

and aj, ﬁj (oc}, /3;) are the bosonic annihilation (creation) operators
in the effective bath constructed from the jth modes in the original
bath. Here, the effective coupling strengths g and g are defined as

Ry ‘*’f) )
g —g]\/z(coth(szT +1). (10)

To see the equivalence between the two approaches, consider
the bath correlation function (BCF) C(t) = (X (t)Xs(0)py') which,
together with Hs and Qs, fully determines the dynamics of the sys-
tem interacting with a macroscopic Gaussian bath.”*** Here, O(t)

Crer o\ T N
= (Te_‘fo Ho(#)dt > O(t) Te o Ho)d i the operator in the inter-
action picture with respect to Ho(t) = Hs(¢) + Hg, and T is the
time-ordering operator. The main idea is that the effective bath
described by Eq. (7) at zero temperature will have the same BCF

as the original bath at temperature T. To see this, for the original
bosonic bath, the BCF is determined by*

C(t) = /j(w)(nn(w,T))e*i‘“fdw. (11)

Here, J(w) =%; (gjz(?(w - wj) —gjz(S(w +w;)) is the spectral den-
sity of the bath and n(w, T) = 1/(¢*/®**T) — 1) is the Bose-Einstein
distribution at temperature T. Using the identity 1+ n(w,T)

= %(coth(ﬁ) + 1), we can express C(t) = [ C(w)e ™ dw,
where

Clw) =3 ((g)8(w-w) +(g)d(w+w))),  (12)

J

is the spectral density of the effective bath. The advantage of writing
it like this is that the initial thermal bath is now mapped to the new
bath with all bosonic modes in the vacuum zero-temperature state,
and the system is now coupled with the new effective bath at zero
temperature with the effective Hamiltonian Hgy'.

Notice that the effective Hamiltonian H.gi doubles the DoFs in
the original bath. Suppose that for the original system coupled to a
zero temperature bath, the total wave function |¥(¢)) can be rep-
resented by a ML-MCTDH ansatz as |¥(¢)) with /] DoFs for the
bath. To capture the influence of a thermal bath, the dynamics of
the same system needs to be simulated with a ML-MCTDH ansatz
with 2] DoFs. In both cases, the bath is discretized by a finite num-
ber of DoFs, where each DoF is explicitly represented by a harmonic
oscillator that is Hermitian and, therefore, not dissipative. There-
fore, such discretization cannot strictly describe the irreversibility
and dissipative nature of an open quantum dynamics for an arbi-
trary long time, but with enough number of DoFs, the discretized
model can be used to mimic the dynamics up to a certain time scale.

C. Dissipative density matrix-based method:
Hierarchical equations of motion

In general, using wave function methods and finite discretiza-
tion of the bath, it is not possible to fully describe the open quantum
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dynamics even with purification strategies. This type of physical
process is more naturally described in terms of master equations
satisfied by the reduced density matrix of the system p¢(t), which
includes dissipative terms that do not conserve the unitary evolution
of the system. The hierarchical equations of motion (HEOM) are one
of the most advanced and successful approaches for simulating the
open quantum system coupled to a macroscopic thermal dissipative
bath in a numerically exact manner.”*”* In the HEOM, the BCF is
decomposed into a series of complex exponentials as

K
and C*(t) =Y. &, (13)

K
(1) =Y e,
k=1 k=1

where ¢, &, and y, are complex numbers. This decomposition is
then used to map the open quantum dynamics into the dynamics
of ps(t) and K bexcitons, which are bosonic fictitious quasiparticles
that oscillate and decay to exactly capture the influence of the bath.
Here, we briefly summarize the bexcitonic extended density oper-
ator |o(t)) and its dynamics described by the HEOM, as detailed
in Ref. 50.

Suppose that at the initial time the system is in a separable state
p(0) = ps(0) ® py!, where py(0) is the initial reduced density matrix
of the system. We define the bexcitonic extended density opera-
tor |o(t)), which is a vector of density operators. In |o(t)), each
density operator is of the same dimension as the system’s reduced
density operator pg(1). [0(6)) = Sy oo (Dl 1) is
defined on a K-boson basis {|nin,---nx)} with n; =0,1,... for
k=1,...,K, where |n;) is the nith Fock state of the kth auxil-
iary bosonic bexciton, and each py,n,...n (¢) is an auxiliary density
matrix.

The bexcitonic generalization of the HEOM describes the
dynamics of |o(t)) as™

Slow) = (0 X pJen, a9

k=1
with
ta > —1.t N
Dy = yroy b + Qs (Ckzk oy — ‘xkzk)
P BN A
- Q5 (@8] - ) (15)
and the initial condition

l0(0)) = ps(0) ®[0---0 ). (16)

Here, we have adopted the bosonic annihilation operator & and cre-
ation operator &,T( to represent the kth auxiliary bosonic bexciton
introduced in the HEOM, and z; is a non-zero complex number.
We have also used A”B = AB and A“B = BA for the left and right
multiplication. To obtain the reduced density matrix of the system,
one needs to project |o(#)) onto the basis vector [0- - - 0) as

ps(t) = (0---0lo(t)). (17)

The HEOM thus introduces K additional DoFs to track the
history of the system-bath interaction. Since K is determined by
the number of terms in the BCF decomposition, each of which can
characterize the dissipative nature of the bath, it is possible to use
a small number of auxiliary DoFs to capture the dynamics of the
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system. Similar to the wave function-based methods, the computa-
tional cost of the HEOM also increases exponentially with respect to
K. As in ML-MCTDH, we can develop a tensor network decomposi-
tion of the HEOM to reduce its computational cost.”’ ***** In this
approach, the (K + 2)-order tensor |o(t)) is represented by a tree
tensor network, and the dynamics of the system is decomposed by
a set of master equations for each tensor in the tensor network, as
detailed in Ref. 36.

I1l. DISCRETIZATION STRATEGIES FOR A DISSIPATIVE
BATH

In this section, we discuss discretization strategies employed
in ML-MCTDH and TTN-HEOM to capture the influence of the
dissipative bath.

A. Discretization of the bath for the explicit
wave function-based method

To use the wave function-based simulation method to simulate
the quantum dynamics of a system interacting with a thermal bath
with a continuous spectral density 7 (w) using purification, the bath
needs to be discretized by a set of harmonic oscillators with both
positive and negative frequencies in a bounded range (-wc, wc),
as the effective spectral density C(w) in Eq. (12) defines on both
positive and negative frequencies. Suppose the discretized frequen-
cies wy, k=+1,+2,...,+K are sorted as w_x <--- < w-; <0< w;
<---< wg, and the number of DoFs and the absolute value of the
cutoff frequency wc for both positive and negative frequencies are
the same. The effective coupling strength of each mode with the ther-
mal effect included is determined by the bath spectral density near
those frequencies. That is, in Eq. (11), we use the approximation

C(w)dw = J(0)(1 + n(w, T))dw ~ f g0(w - w A, (18)

k=+1
where
&=V T (@) (1+n(wi, 7)), (19)
and
Ag = |y — w1 ]/2. (20)

Wealsolet wy = 0and w.(x+1) = wc at the boundaries k = +1 and +K
such that the formula of A holds for all k. In this way, the effective
thermal dynamics of the system can be described by the Hamiltonian
with 2K bath DoFs. The effective Hamiltonian is

Heff = Hs + HB' + HSB” (21)
where
s T t
Hy = Z (wkakak + w_kaika_k), (22)
k=1
and
& T T
HSB’ = QSZ (gk(ak + ak) +g_k(a_k + a_k)), (23)
k=1

which has the form of the effective Hamiltonian in Eq. (7), but may
have different discretization frequencies wy and w_y for the positive
and negative domains.
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To obtain a set of discretized frequencies wy, one intuitive way
is to first choose a set of discretized frequencies for wy >0 in a
logarithmic space on (Wmin, Wmax ), as log wy = 10g Wmin + (k= 1)A
with A = (10g Wmax — 10g Wmin)/K. For the negative frequency, we
choose w_i = —wy fork = 1,..., K. This is denoted as the logarithmic
discretization in the rest of this paper.

Another strategy is to balance the area under the effective spec-
tral density J(w)(1 + n(w, T)) for each discretized frequency wy.
That is, for each w; with k= 1,...,K, we first calculate the overall
area under the effective spectral density J (w)(1 + n(w, T)) as

A= ]j(w)(lJrn(a), T))dw, (24)

and scan over the frequency range (0,wc) to find the discretized
frequencies wy such that

Wi

[ 7@+ nw.1)de -

0

k1720 o K (5)
K

with gx = \/A/K as the effective coupling strength. In this way, the
area between wy_; and wy is equalized, i.e.,

A

/ J(@)(1+n(w,T))dw ==

, =1, ..., K 2
X k (26)

Wi

For the negative frequencies, k = -1,.. ., —K, we use the similar dis-
cretization strategy but with A" = f_owc J(0)(1+n(w, T))dw, and
hence, the discretized frequencies wy, satisfy

k+ I/ZA',

[\7((0)(1+n(w, T))dw = — )

k=-1, ...,-K,

and use g = \/A'/K as the effective coupling strength.

The criteria in Eqs. (25) and (27) are similar to those used by
Makri and co-workers for discretizing the bath spectral density,”
but it also includes the thermal effect from n(w, T). Notice that at
the high temperature limit, the spectral density 7 (w)(1 + n(w, T))
is proportional to (7 (@)/w+ 1), which corresponds to the case
where the reorganization energy is equalized for each discretized fre-
quency wy. For the rest of this paper, we will call this discretization
strategy the equalized discretization.

A third strategy to obtain a discretization of the bath is the bath
spectral density orthogonal (BSDO)** method, which can provide
an accurate BCF decomposition with a small number of discretized
modes. In this method, a discrete representation of the BCF is con-
structed by Gauss quadrature using the spectral density as the weight
of a quadrature, which can significantly improve frequency sam-
pling as it enables the construction of an efficient set of polynomial
interpolants. The BSDO can also be considered as the star-mapping
of the effective chain model of the finite temperature bath used
in the thermalized time-evolving density operator with orthogonal
polynomials (T-TEDOPA) method.”””" This method is discussed
in detail in Refs. 24, 43, 45, and 51. In particular, we employ the
strategy detailed in Refs. 43 and 51, followed by a diagonalization to
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transform it from the chain map to the star map of the harmonic
environment.

To evaluate the performance of the discretization strategy, we
compare the discretized effective spectral density, C(w), calculated
from the bath correlation function of the discretized model to the
exact C(w). Here, the C(w) is evaluated from the Fourier transform

@(w)=$ f c(H)edt, (28)

of the discretized bath correlation function

C(t) = Z ge . (29)
j

Here, g; is the effective coupling strength of the discretized model,
w;j is the discretized frequency, and j = £k for k= 1,...,K. Notice
that the overall number of discretized modes J = 2K, as we have both
positive and negative frequencies.

B. Decomposition of the bath correlation
function as an implicit discretization

As noted in Sec. II C, in the HEOM the discretization of the
bath is described by a continuous spectral density J(w) consist-
ing of a BCF C(t) with a few exponentially decaying terms in the
BCF decomposition Eq. (13). To characterize such a macroscopic
bath, a commonly used bath spectral density is the Drude-Lorentz
(DL) bath, which is often used to model the solvent modes. The DL
modell‘\‘fwlﬁfx

JIp(w) = 2o _poo

2 2
T w +Yp

(30)

models an Ohmic bath with reorganization energy Ap and charac-
teristic frequency y,. Other models include the Brownian oscillator,
which is used to describe possibly damped discrete vibrational
baths.” ™’ In this case, the spectral density is

41 o?
Jo(w) = =2 o

(0 - Q) + 4pfew®’ G
with @, = 1/Q% — y3 > 0, the effective oscillation frequency of the
bath mode, Ap the reorganization energy, and y;, the damping rate.

To obtain the decomposition of BCF, we evaluate Eq. (11)
using the residue theorem through analytical continuation and
expanding [1 + n(w, T)] through a decomposition using rational
functions,””"*!

C(t) = —2mi}, I;}fzs [T(2)](1+n(G T))e ™

-2miY Res[1+n(z, T)]J(E)e ™, (32)
jo

where {{;} are the first order poles of J(w) and {§;} those of [1
+ n(w, T)] in the lower-half complex plane. These expansions satisfy
Eq. (13), with each term defining a feature. Equation (32) leads to
an overall exponentially decaying BCF as the poles satisfy Im {; and
Im Ej <0.
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As an example, for the DL bath, the poles from J(w) are (;

fin, which corresponds to one term in Eq. (32) as c1e” ™! where

= Ayp(cot (yp / (2kgT)) —1i). This term decays exponentially on a
tlme scale T = yp', which corresponds to the high-temperature limit
of the bath, and it is inherently dissipative. On the other hand, the
poles from [1 + n(w, T)] are of infinite order but can be approxi-
mated by a series of rational functions with first order poles only.
For instance, the poles ; can be approximated as §; = ~iw; with w;
=2mjky T > 0,j=1,..., if one adopts the Matsubara series.”® Other
rational function series are also possible, such as the Padé approxi-
mant,” which also gives the poles §; = —iw; with w; > 0. One can also
directly use a series of rational functions to approximate the effec-
tive spectral density 7 (w)(1 + n(w, T)) with first-order poles only
to evaluate Eq. (11), as suggested in recent literature.”"*" Alterna-
tively, directly fitting the bath correlation functions with a sum of
complex exponential functions is also possible.*

We also note that the Drude-Lorentz spectral density exhibits
a singularity and an unphysical response function at ¢ = 0.°* While
it is primarily intended to describe long-time dynamics, this feature
can make it challenging for explicit discretization schemes to accu-
rately reproduce the short-time dynamics with a small number of
discretization modes.

We use an implicit discretization strategy based on the Padé
[(N-1)/N] approximant as the rational function series for [1
+n(w,T)]” to compare the results from the explicit discretization.
For a DL bath, this gives N + 1 terms in the BCF decomposition
Eq. (13) for HEOM, where the first term is from the pole from 7 (w),
and the other N terms are from the poles from [1 + n(w, T)].

IV. RESULTS
A. Drude-Lorentz environment

We first focus on the implicit and explicit discretization of
the Drude-Lorentz model, which is a widely used model of ther-
mal environments. Section IV B discusses the discretization of the
Brownian oscillator model.

1. Discretization of the spectral density

Figure 1 shows the discretized spectral density C(w) calculated
from the bath correlation function of the discretized model with
the logarithmic, equalized, and BSDO discretizations. For all meth-
ods, the cutoff frequency of the discretization is set at 1000 cm L,
For the logarithmic discretization, the minimum frequency wmin
is set to be 0.01 cm™'. To numerically evaluate the effective spec-
tral density C(w) from the BCF that oscillates instead of decaying
in the time domain, we apply a Gaussian window function G(t)
= exp(—t*/(20%)) with a width ¢ as

C’(w)z% f G(H)C(t) e dt. (33)

We choose ¢ =300 fs for the simulation, which results in
a broadening of the spectral density C(w) with a width of
o'~ 3 cm™. Figure 1 shows the discretized spectral density C(w)
with such broadening using (a) logarithmic, (b) equalized, and (c)
BSDO discretization with different numbers of discretized DoFs,
J = 120, 240.
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FIG. 1. Discretized spectral density developed from the (a) logarithmic, (b) equal-
ized, and (c) BSDO discretization strategies. The spectral density 7 (w) is the
Drude-Lorentz (DL) one with reorganization energy Ap = 200 cm=" and charac-
teristic frequency y, = 100 cm~", and the temperature is set to be T = 300 K.

The cutoff frequency of the discretization is set at 1000 cm=". For the logarithmic
discretization, the minimum frequency wp;, is set to be 0.01 cm~'. The number of
discretized DoFs is set to be J = 120, 240 for each panel. The implicit discretiza-
tion using the Padé [2/3] approximant with K = 4 (in yellow solid) and the exact
target 7 (w) (1 + n(w, T)) (in black dashed) are also plotted for comparison.

The figure also shows the converged implicit discretization
with Padé [2/3] approximant of [1+ n(w,T)] in each panel for
comparison. This corresponds to the K =4 case in HEOM. As
shown, for the logarithmic and equalized discretization strategies,
the exact effective spectral density 7 (w)(1 + n(w, T)) can be well-
approximated by the discretized spectral density C(w) for the fre-
quencies near zero as the number of discretized DoFs increases. In
turn, the BSDO discretization recovers more of the high frequency
part before the cutoff frequency. However, for the frequencies far
away from zero, the discretized spectral density C(w) deviates from
the exact one even when a large number of discretized DoFs are
used.

Figures S1-S3(a) and S3(b) show the BCF decomposition in
the time domain using the equalized, logarithmic, and BSDO dis-
cretization strategies. The equalized and logarithmic discretization
strategies can provide the overall trend of the BCF decay at short
times for the Drude-Lorentz environment. For longer times, they
gradually deviate from the exact BCF as the number of discretized
modes is limited. By contrast, the BSDO discretization strategy
can provide a more accurate BCF decomposition with the same
number of discretized modes, especially for the short-time regime.
However, when it deviates from the exact BCF at longer times,
it will deviate more significantly than the equalized discretization
strategy.
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2. Quantum dynamics of a two-level system

Consider first the dynamics of a two-level system coupled to a
DL bath with the spectral density in Eq. (30). The two-level system
{|0),]1)} is described by the Hamiltonian

E
Hs = EO'Z + Vo, (34)

where o, and oy are the Pauli matrices, E is the energy difference
between the two states, and V is the coupling strength between the
two states. The system operator Qg in the system-bath interaction
Hamiltonian is chosen as Qg = 0,/2. Notice that when V = 0, the sys-
tem is in the pure dephasing limit, and when E = 0, the system isin a
dissipative relaxation limit. We will first discuss the pure dephasing
dynamics and then the relaxation dynamics.

a. Pure dephasing limit. In the pure dephasing limit, the pop-
ulation of the energy eigenstates is fixed during the dynamics as
[Hs,Hsg] = 0. Suppose that the system is initially prepared in a
superposition |ys(0)) = (|0) +]1))/+/2. In this case, the dynamics
of the coherence |[ps]o1| can be exactly solved as®

loslol=exp| - / Jw)cot (522 ) =5 a0 | )

Therefore, the dynamics of the coherence |[ps]o1| and population
[ps]oo can be used as a benchmark for the simulation of the two-level
system for different simulation methods.

The two-level system is coupled to a DL bath with the spec-
tral density J (w), as shown in Fig. 1. We use the ML-MCTDH with
logarithmic, equalized, and BSDO discretization, as well as the TTN-
HEOM with the Padé approximant, to simulate the dynamics of such
a two-level system using the TENSO package.” In the simulations,
a balanced tree structure with maximal bond threshold R = 64 was
used for both TTN-HEOM and ML-MCTDH with a mixed prop-
agation scheme that combines both the two-site projector splitting
propagation algorithm and direct integration of the master equa-
tions from the time-dependent variational principle. The dimension
of the truncated Fock basis {|nx)}n -y of each auxiliary mode in the
HEOM is set with N = 20, while for each discretized DoF in the ML-
MCTDH, the dimension (the dimension of each primitive basis) is
setto be N = 2.

The performance of TTN-HEOM and ML-MCTDH in this
pure dephasing dynamics is shown in Fig. 2. In the figure, the
ML-MCTDH results from the logarithmic, equalized, and BSDO
discretizations with J = 240 DoFs and cutoff frequency 1000 cm™*
are shown in blue, cyan, and green lines, respectively. The TTN-
HEOM results from the Padé [2/3] approximant with K = 4 are in
black. The comparison to the analytical solution shows that both the
explicit and implicit discretizations can capture the pure dephas-
ing dynamics of the two-level system with an error of less than
1%. However, the explicit discretization strategy is more difficult
to converge to the exact solution even with a larger number of dis-
cretized DoFs and overall Hilbert space dimension compared to the
implicit discretization strategy. Furthermore, when using the explicit
discretization strategy, the logarithmic, equalized, and BSDO dis-
cretizations yield similar results when the number of discretized
DoFs is large enough. This is expected, as the three discretization
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FIG. 2. Errors in capturing the pure dephasing dynamics of a two-level system
using TTN-HEOM and ML-MCTDH. The two-level system is prepared in a super-
position of the two states [y(0)) = (|0) + |1))/+/2 and coupled to a DL bath at
300 K. Here, the reorganization energy is Ap = 200 cm~" and the characteristic
frequency y, = 100 cm~". ML-MCTDH is used to simulate the discretized dynam-
ics with logarithmic (log.), equalized (equal.), and BSDO discretization strategies
with J = 240 and cutoff frequency 1000 cm~". The TTN-HEOM is used to simu-
late the implicit discretization using the Padé [2/3] approximant with K = 4. The
solid lines are the error of the coherence |[ps]o1(t)|, while the dashed lines are
the error of the population |[ps]oo(t)|. The number in the bracket for each label
indicates the number of discretized DoFs used in the simulation.

strategies are equivalent in the limit of a large number of discretized
DoFs.

b. Relaxation dynamics. We now focus on the relaxation case
with V = 1000 cm™" and E = 0. We set the initial state of the system
to be [ys(0)) = (|0) +|1))/+/2. In this case, the system is subject to
both the dephasing and relaxation effects due to the system-bath
interaction. Due to the symmetry of the system, the populations
[ps]oo(t) and [ps]i1(t) remain fixed at 1/2 during the dynamics
even during the thermalization process. On the other hand, for the
system Hamiltonian Hs, its two energy eigenstates |e) and |g) are

1 1
g) = %(\0) =1, le)= ﬁ(lo) +[1). (36)

In this case, the system is initially prepared in the excited state
[y(0)) = |e), and the thermal state pi? = e~"/%7 ) Tre~Hs/knT i close
to|g) as V/(ksT) ~ 4.80 and [pg]g, ~ 0.999 93. This means that the
system is expected to relax to the ground state |g) with a very small
population remaining in the initial excited state |e).

Similar to the pure dephasing case, we use the ML-MCTDH
with logarithmic, equalized, and BSDO discretization strategies with
J = 240 discretized DoFs and cutoff frequency 1000 cm ™, as well as
the HEOM with the Padé [2/3] approximant to simulate the dynam-
ics of such a two-level system. The dimension of the basis for each
auxiliary mode in the HEOM is set to be 20, while for each dis-
cretized DoF in the ML-MCTDH, it is set to be 2. The dynamics
of population [ps]e(t) and purity Trp§(t), used to characterize the
relaxation dynamics of the two-level system, are shown in Fig. 3. The
population in the excited state [ps]e.(t) of Hs is shown in the upper
panels, and the coherence purity Trpi(t) in the lower panels.

The TTN-HEOM can capture the relaxation dynamics even
near the state with minimum purity with only four auxiliary modes,
while the ML-MCTDH with explicit discretization cannot capture
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FIG. 3. Dissipative dynamics of a two-level system with relaxation using different
methods. The two-level system is prepared in [w/(0)) = [e) = (0) + [1))/+/2
and is coupled with a DL bath at 300 K. Here, the reorganization energy
Ap =200 cm~" and the characteristic frequency yp = 100 cm~!. ML-MCTDH is
used to simulate the discretized dynamics with logarithmic, equalized, and BSDO
discretization strategies with J = 240 (solid lines) and cutoff frequency 1000 cm™—".
The TTN-HEOM is used to simulate the implicit discretization using the Padé [2/3]
approximant with K = 4. The upper panels show the population in the excited state
[ps]ee(t) of Hs, and the lower panels show the coherence purity Trp? (t). The
dotted lines are the results from the ML-MCTDH with logarithmic, equalized, and
BSDO discretization strategies with J = 240 and the correction Eq. (38) applied.
The number in the bracket for each label indicates the number of discretized DoFs
used in the simulation.

the relaxation dynamics even with 240 discretized DoFs. This may
be due to the differences in the tails of the effective spectral den-
sity C(w), as the relaxation dynamics is determined by the spectral
density J(Q) evaluated at the resonance frequency Q = 2V dictated
by the energy difference between the two energy eigenstates of the
system Hamiltonian Hs.®

To correct the dynamics, the rate correction for the excited state
population is

[P$(D)]ee = [pS"Jee  [PS()]ee _ e

c =e (37)
[ps(t)]ee = [p5"Tee  [ps(8)]ee
where ps(t) is the corrected density matrix, and
71 Q

Therefore, the corrected [p§(£)]ee = pe(t) [ps(t)]ee with p,(£) = 7.
For other matrix elements in p§(¢), the ground state popula-
tion is obtained from [p§(f)]g =1 - [ps(t)]ee» and the correc-
tion factor pg(t) = [ps(t)]ee/[ps(t)]g- The corrected |[ps(#)]g| and
|[ps () Jge| are assumed to be [[p5(#)]ge| = \/pg(£)pe()[[ps (1) Igel
and |[p5(£)]eg| = \/Pe(t)pe(t)|[ps(£)]eg|- The results of the ML-
MCTDH with the logarithmic, equalized, and BSDO discretization
strategies with J = 240 and this correction applied are shown in Fig. 3
in dotted blue, cyan, and green lines, respectively. As shown in the
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figure, with such correction, the ML-MCTDH simulations using log-
arithmic, equalized, and BSDO discretization strategies capture the
relaxation dynamics for the first 100 fs, and the correction makes the
system relax toward the thermal state pg'. However, the relaxation
rate of the excited state population [ps]e(t) is slower than the one
from the TTN-HEOM, suggesting a neglected influence from the tail
of the spectral density beyond Eq. (38).

Note that the ML-MCTDH results can be computed with a
small primitive basis size (2), which already offers converged results.
The reason is that when the number of discretized modes is large,
the coupling strength to each individual mode is small, and so is the
excitation of each bath mode. To demonstrate this explicitly, in Fig.
S4 we show the numerical convergence check for the relaxation case.
As shown, with a discretization of 120 modes, the primitive basis
size of 2 for each mode is sufficient to achieve convergence with a
larger primitive basis size within the first 400 fs of dynamics, yet still
deviates from the TTN-HEOM results.

If we further increase the cutoff frequency to 3000 cm™,
the ML-MCTDH with the three discretization strategies does not
require the correction from the tail of the spectral density and can
capture the correct dynamics up to the state of minimal purity (see
Fig. 4). However, the ML-MCTDH with both logarithmic and equal-
ized discretization strategies cannot capture the correct dynamics
from the state of minimal purity to the thermalized state, even with
J = 240 discretized DoFs. Employing the BSDO scheme improves
this and yields converged dynamics until ~900 fs. For BSDO, the
range of validity of the dynamics matches the range of validity of
the BCF decomposition in the time domain, as shown in Figs. S3(a)
and S3(b). In turn, for the equalized and logarithmic discretiza-
tion, despite the fact that they can capture the overall trend of the
BCF in the time domain, they are unable to correctly track the
whole thermalization because they do not properly sample the tail
of the spectral density in the frequency domain. This contrasts with
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FIG. 4. Same dynamics as Fig. 3 but with a larger cutoff frequency of 3000 cm~",
and the number of discretized DoFs is set to be J = 120 and J = 240 for the ML-
MCTDH computations.
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the TTN-HEOM with K = 4, which can already capture the correct
dynamics up to thermalization.

3. Seven-site model for Fenna-Matthews-Olson
complex

We now focus on the dynamics in the photosynthetic
Fenna-Matthews-Olson (FMO) complex using the two tensor net-
work methods. The FMO complex transfers the photoexcitation
energy from the antenna complex of green sulfur bacteria to the
photosynthetic reaction center.®” It consists of seven bacteriochloro-
phyll sites that transfer photoexcitation energy by exciton coupling
between them. The Hamiltonian of the FMO complex can be
described by the spin-boson model with the system Hamiltonian®®

200 -87.7 55 -5.9 6.7 -13.7 -99
-87.7 320 30.8 8.2 0.7 11.8 43
5.5 30.8 0 =535 -22 -96 6
Hs=| -59 82 535 110 -70.7 -17 —-63.3
6.7 0.7 =22 =707 270 711 -13
-13.7 11.8 -96 -17 711 420 39.7
-9.9 4.3 6 -63.3 -13 397 230
(em™),
(39)

and the system-bath interaction Hamiltonian Hsp is given by Hsp
=¥, Qg’)Xl(;), where Qg') = |i){i| is the system operator at the ith site

fori=1,...,7and XI(;) = Zszlglfi)(algi) + (alfi))T) is the bath coor-

dinate coupled to the ith site. Here, for the FMO complex, the bath at
each site is modeled as an independent harmonic reservoir with the
same DL spectral density to reduce the number of modeling para-
meters. This is a model that is often used in the literature.”” " The
ith bath is described by a spectral density

TV@) =Y (878w -w) -g8(w+wy)).  (40)
k=1

and the bath for each site is considered to be independent of one
another. The overall Hamiltonian is thus

H=Hs+Y H +Hep, (41)
i

with Hé’) = kazl wk(algl))falil).

We consider the case that each site |i) is coupled to a DL bath
with the same reorganization energy Ap = 35 cm™' and the same
relaxation timescale T = yf)l at 77 K. In this case, in the ML-MCTDH,
each Drude bath is discretized by 60 modes with a cutoff frequency
at 1000 cm ™}, which results in a total of 420 modes for all baths. For
the TTN-HEOM, the dissipators from each bath are additive. For
each DL bath, we use the Padé [4/5] approximant for the evaluation
of the BCF, which gives the number of auxiliary modes K = 6 for
each bath in the HEOM, resulting in a total of 42 auxiliary modes
for all baths. The dimensions of the Fock basis for each discretized
DoF in the ML-MCTDH and for each auxiliary mode in the HEOM
are all set to be 5. In the simulations, a balanced tree structure with
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maximal bond threshold R = 32 was used for both TTN-HEOM and
ML-MCTDH.

As discussed in Sec. IV A 2 b, the validity of the ML-MCTDH
with discretization depends on the range of convergence in fre-
quency and time of the BCF decomposition. Here, we focus on
the first one picosecond of the dynamics. The initial system state
is set to be at site 1 as pg(0) = [1){1]. The computed dynamics are
shown in Fig. 5. In the right panels, we use 7 = 50 fs, which corre-
sponds to a faster dissipation process, while in the left panels, we
use 7 =106 fs, which corresponds to a slower dissipation process.
We compare the results from the explicit discretization with the
ML-MCTDH and the implicit discretization with the TTN-HEOM.
The population dynamics of the site i is as p,;(¢), and the coherence
dynamics is measured by the purity Trpé(t) of the reduced density
matrix pg(t). The results show that either tensor network method
can capture the overall trend for the first picosecond of the popu-
lation and decoherence dynamics in the FMO complex. While the
explicit discretization with the ML-MCTDH shows a more oscilla-
tory behavior than the implicit discretization with the TTN-HEOM,
especially when the relaxation time 7 is short, the qualitative trend
of both population and decoherence dynamics is similar for all three
discretization methods. However, the ML-MCTDH with 420 dis-
cretized modes quantitatively deviates from the TTN-HEOM results
with 42 auxiliary modes, especially when the system is approaching
the state of minimal purity.

As for the computational cost, in Table I, we show the space and
time complexity of the FMO computations with the Drude-Lorentz
bath and 7 = 50 fs at 77 K using different methods as implemented
in TENSO. We focus on the first 100 fs of the dynamics, where the
ML-MCTDH results with all three discretization methods converge

= Site 1 Site 2 Site 3 === Site 4

7= 106 fs

7= 50fs

1.0 A b
> 0.8 E
=
& 0.6 A 1
0.4 E
0 500 1000 0 500 1000
Time (fs) Time (fs)
TTN-HEOM ML-MCTDH, equal.
ML-MCTDH, log. ML-MCTDH, BSDO

FIG. 5. Population and purity dynamics in FMO using ML-MCTDH with different
discretization strategies (dashed lines: equivalent reorganization energy dis-
cretization strategy; dashed-dotted lines: logarithmic discretization; dotted lines:
BSDO discretization) and TTN-HEOM with implicit discretization based on Padé
approximant (solid lines).
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TABLE 1. Space and time complexity of the FMO computation with the Drude-Lorentz bath and = = 50 fs at 77 K using
different methods. The time cost is estimated by the CPU time for simulating the first 100 fs of dynamics using eight cores
of Intel Xeon Gold 6330 CPU 2.00 GHz. The TTN size is counted by the number of complex floating-point (CFP) numbers

needed to store the TTN at 100 fs.

ML-MCTDH TTN-HEOM

Method discretization Logarithmic Equalized BSDO (Padé)

No. of modes for each bath 60 60 60 6

Time cost (h) 30 21 37 0.5

TTN size (CFP) 104 693 158 081 92472 43264
with the TTN-HEOM result. Here, since the dimension of the prim- Equalized BSDO
itive basis for each discretized mode used in the ML-MCTDH (2) 101 (@) 1 @Y
is smaller than that for each quasiparticle in the TTN-HEOM (5), 0944 f f Y/ : 14 f “‘\\}c
the space complexity (measured by the number of complex floating- sos 1Y iR Y
point [CFP] numbers needed to store the TTN at 100 fs) is compa- g7 ¥ i
rable between the TTN-HEOM and the ML-MCTDH. However, the g 074! i “' 1
time complexity for the TTN-HEOM is significantly smaller because 06V _'\' ¢
it has fewer core tensors and, therefore, a simpler tree structure | g
than the ML-MCTDH even when the average size of each core ten- 0.5 1 ; ; ; 1 ; . )
sor is larger. Since the operations in the implemented algorithms in
TENSO between different tensors are less optimized compared to the 101 (p) 1 o)
operations of a dense tensor implemented in the industry-standard 0.9 - 1
PyTorch package, the overall time cost in the TTN-HEOM is much ‘ |
smaller (40-70 times) than that of the ML-MCTDH with these three 208 1 1
discretization methods, compared to the advantages of the memory 3074l _"‘
cost (2-3 times). -"\.“ / ‘.“\ /

It is important to emphasize that the actual CPU time of each 061 1\ /’

method is influenced by many factors, such as the choice of TTN tree 0.5 W 1 e

structure and the details of the propagation algorithms. Specifically,
in our comparison, we employ one balanced binary tree, which is
automatically generated by TENSO. We also use the mixed propaga-
tion strategies with initial steps using the two-site projector-splitting
algorithm with adaptive ranks,””’* followed by the direct integra-
tion using the decomposed master equations for each tensor in the
TTN based on TDVP with the regularization technique.”! For the
integration of each decomposed master equation, we use the RK4(5)
method,” which is a Runge-Kutta method of fourth order with an
error estimator of fifth order for adaptive time step.

B. Brownian environment

To further test the validity of these observations in a differ-
ent bath model, we repeated the computation in Fig. 4 but using
a Brownian oscillator model of frequency w; with the same life-
time. The results are shown in Fig. 6 using the equalized (a, b)
and the BSDO (a’, b") discretization strategies. The oscillator’s fre-
quency w; is chosen at resonance with w; = 1000 cm™! (a, a’) and
off-resonance with w; = 50 cm™! (b, b’) with the two-level system. In
both cases, the width y, = 100 cm™" and the reorganization energy
Ap =200 cm™". Figures S1-S3 show the BCF decomposition with
the cutoff frequency 3000 cm™" in the time domain. The observed
behavior in the BCF decomposition and the dynamics is qualitatively
similar to that in the presence of a Drude-Lorentz bath. That is, for
the explicit discretization strategy, increasing the number of modes
increases the time range in which the strategy can accurately capture

0 200 400 600 0 200 400 600
Time (fs) Time (fs)

= TTN-HEOM (5)
= ML-MCTDH (240)

ML-MCTDH (120)
ML-MCTDH (60)

FIG. 6. Identical computations to those in Fig. 4 but with a Brownian oscillator
bath with an effective frequency [(a) and (a’)] at resonance w; = 1000 cm=" or
[(b) and (b")] out of resonance w; = 500 cm=" with the two-level system. In both
cases, the width y; = 100 cm~" and the reorganization energy Ag = 200 cm~".
The ML-MCTDH results are from the equalized [(a) and (b)] or BSDO [(a’) and
(b”)] discretization strategy with cutoff frequency 3000 cm=" and with the number
of discretized DoFs in the bracket for each label. The TTN-HEOM results are from
the Padé approximant for the low-temperature corrections with an overall K = 5.

the quantum dynamics. For the resonant case [Figs. 6(a) and 6(a’)]
with 240 discretization modes, this is enough to capture the initial
decoherence dynamics to a state that is close to the asymptotic
thermal state. However, while the HEOM dynamics remains in the
thermal state, the real-time propagation based on the explicit dis-
cretization strategy will eventually make the system deviate from this
thermal state due to its finite recurrence time. In turn, for the non-
resonant case [Figs. 6(b) and 6(b")], the explicit discretization only
accurately captures the initial purity decay, as the thermalization
process is slower than the accuracy range of the approach.

It is worth noting that the accuracy of the BSDO method is
sensitive to the choice of the frequency-domain interval. In Fig. 7,
we show the ML-MCTDH simulation results for the Brownian
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FIG. 7. ML-MCTDH simulation results for the Brownian oscillator bath using BSDO
discretizations with different cutoff frequencies. (a) and (a’) show the results for
the Brownian oscillator bath with the effective frequency wy = 1000 cm=", while
(b) and (b”) show the results for w; = 500 cm~". The number of DoFs used in the
BSDO is 240 in (a) and (b) and is 120 in (a”) and (b”).

oscillator bath with the resonant frequency w; = 1000 cm™! [(a) and
(@")] and with the off-resonant one w; = 500 cm™" [(b) and (b')]
using BSDO discretizations with different cutoff frequencies. We fix
the DoFs for the discretization to be 240 [Figs. 7(a) and 7(b)] and 120
[Figs. 7(a) and 7(b")]. With 240 DoFs, discretizations with a cutoff
frequency of 2000 cm ™" give converged results for the two different
Brownian oscillator baths for around 800 fs of dynamics. Larger or
smaller cutoff frequencies lead to deviations earlier in the dynam-
ics. This behavior is more pronounced for a discretization with 120
DoFs, where a cutoff frequency of 1500 cm™" gives better overall
trends than those cases with cutoff frequencies of 1000 or 2000 cm ™.
In turn, the larger cutoff frequency (3000 cm™) offers more accu-
rate results for early times. The observed behavior arises because the
discretization requires a large enough cutoff frequency to cover all
needed modes for long-time dynamics but cannot be too large such
that there are not enough modes around the peak of the bath spectral
density. These results highlight the importance of carefully selecting
both the cutoff frequency and the number of discretization degrees
of freedom to achieve accurate and converged simulations in the
explicit discretization.

Finally, it is known that the Brownian oscillator spectral den-
sity admits an efficient decomposition into a sum of exponentials,™
which can make this choice of spectral density more favorable
for the HEOM approach from the computational cost perspec-
tive. Nevertheless, the HEOM may exhibit numerical instability
for this type of bath, especially for the weakly damped Brownian
oscillators.””>>
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V. CONCLUSION

In this paper, we have systematically compared explicit and
implicit discretization strategies for simulating open quantum
dynamics coupled to a dissipative bath, focusing on wave function-
based time-dependent Schrodinger equation (TDSE) approaches
and density matrix-based hierarchical equations of motion (HEOM)
frameworks. Tensor network techniques, such as TTN-HEOM and
ML-MCTDH, further enhanced the scalability of both approaches
with the number of features or discretized modes in the bath. We
investigated different types of quantum environments that have
finite correlation time and can lead to thermalization of the system,
including the Drude-Lorentz environment and the Brownian envi-
ronments, both at resonance and off-resonance with the system. We
considered three widely used explicit discretization strategies of the
bath spectral density—logarithmic, equalized, and the bath spectral
density orthogonal method.

Our analysis reveals that the implicit discretization strategy
inherent to the HEOM formalism, which relies on structured
decompositions of the bath correlation function (BCF), offers signif-
icant computational advantages for capturing dissipative dynamics
compared to explicit discretization of the bath into discrete har-
monic modes. This efficiency comes from the HEOM’s ability to
encode the bath’s memory effects through a hierarchy of auxiliary
density matrices, capturing the dissipative and irreversible nature of
the bath while retaining numerical exactness. In particular, HEOM-
based methods excel for baths with rapidly decaying BCFs, where
a small number of auxiliary modes suffices to reproduce dissipative
behavior. The unitary wave function-based method with finite dis-
cretized modes can only mimic the thermalization up to a certain
time. This explicit discretization requires a large number of modes
to approximate continuum baths, leading to prohibitive dimen-
sionality even with advanced tensor compression and advanced
discretization techniques.

We also note that although the HEOM-based methods are

more efficient for dissipative dynamics, it is known that the numeri-
7,76

38,55,57,7

cal propagation of HEOM can become numerically unstable
when the bath correlation functions are long-lived. By contrast,
wave function-based ML-MCTDH with a unitary propagator'”’””*
can preserve the stability of the time-dependent Schrodinger
equations in general. Recently, it was reported that the explicit
and implicit strategies can also be unified in a pseudomode theory
with a quasi-Lindblad master equation framework that can achieve
improved numerical stability with respect to the HEOM. ®"*"
Future prospects include contrasting implicit, explicit, and
mixed discretization strategies for environments with long-lived
correlations.

SUPPLEMENTARY MATERIAL

See the supplementary material for plots of the discretized bath
correlation function in the time domain and a convergence study of
the ML-MCTDH computations with the number of primitive bases.

ACKNOWLEDGMENTS

This material is based on a study supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, Quantum Information Science Research in Chemical

J. Chem. Phys. 164, 024112 (2026); doi: 10.1063/5.0307152
Published under an exclusive license by AIP Publishing

164, 024112-11



The Journal

of Chemical Physics

Sciences, Geosciences, and Biosciences Program under Award No.
DE-SC0025334.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Xinxian Chen: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Investigation (lead); Methodology (lead);
Software (lead); Validation (equal); Visualization (equal); Writ-
ing - original draft (equal); Writing - review & editing (equal).
Ignacio Franco: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Funding acquisition (lead); Investigation
(equal); Methodology (equal); Project administration (lead); Soft-
ware (equal); Supervision (equal); Validation (equal); Visualization
(equal); Writing - original draft (equal); Writing — review & editing
(equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES

'D. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective
(University Science Books, 2007).

2R.P. Feynman and F. L. Vernon, Jr., Ann. Phys. 24, 118 (1963).

5A. 0. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).

“A. O. Caldeira, A. H. C. Neto, and T. O. de Carvalho, Phys. Rev. B 48, 13974
(1993).

5A. Sudrez and R. Silbey, J. Chem. Phys. 95, 9115 (1991).

N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4600 (1995).

7]. Hu, R.-X. Xu, and Y. Yan, J. Chem. Phys. 133, 101106 (2010).

8C. W. Kim and L. Franco, J. Chem. Phys. 160, 214111 (2024).

®W. Ying, Y. Su, Z.-H. Chen, Y. Wang, and P. Huo, ]. Chem. Phys. 161, 144112
(2024).

10U. Schollwdck, Ann. Phys. 326, 96 (2011).

1S, R. White, Phys. Rev. Lett. 69, 2863 (1992).

125, R. White, Phys. Rev. B 48, 10345 (1993).

"3M. A. Cazalilla and J. B. Marston, Phys. Rev. Lett. 88, 256403 (2002).

"H. G. Luo, T. Xiang, and X. Q. Wang, Phys. Rev. Lett. 91, 049701 (2003).

5 A. E. Feiguin and S. R. White, Phys. Rev. B 72, 020404 (2005).

163, Keller, M. Dolfi, M. Troyer, and M. Reiher, . Chem. Phys. 143, 244118 (2015).
17B. Kloss, I. Burghardt, and C. Lubich, . Chem. Phys. 146, 174107 (2017).

15]. Ren, Z. Shuai, and G. K.-L. Chan, ]. Chem. Theory Comput. 14, 5027 (2018).
"9H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73
(1990).

20H. Wang and M. Thoss, ]. Chem. Phys. 119, 1289 (2003).

2'H. Wang and H.-D. Meyer, ]. Phys. Chem. A 125, 3077 (2021).

221, Grasedyck, STAM J. Matrix Anal. Appl. 31,2029 (2010).

ZH. Wang and M. Thoss, ]. Chem. Phys. 124, 034114 (2006).

241, de Vega, U. Schollwick, and F. A. Wolf, Phys. Rev. B 92, 155126 (2015).

25p L. Walters, T. C. Allen, and N. Makri, J. Comput. Chem. 38, 110 (2017).
28Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).

27D. A. Lidar, “Lecture notes on the theory of open quantum systems,”
arXiv:1902.00967 [quant-ph] (2020).

28Y. Tanimura, Phys. Rev. A 41, 6676 (1990).

ARTICLE pubs.aip.org/aipljcp

29Q. Shi, L. Chen, G. Nan, R.-X. Xu, and Y. Yan, J. Chem. Phys. 130, 084105
(2009).

30Q. Shi, Y. Xu, Y. Yan, and M. Xu, . Chem. Phys. 148, 174102 (2018).

31Y. Yan, M. Xu, T. Li, and Q. Shi, ]. Chem. Phys. 154, 194104 (2021).

32R. Borrelli and S. Dolgov, J. Phys. Chem. B 125, 5397 (2021).

33T, Ikeda and G. D. Scholes, ]. Chem. Phys. 152, 204101 (2020).

34L.P. Lindoy, A. Mandal, and D. R. Reichman, Nat. Commun. 14, 2733 (2023).
35X. Dan, M. Xu, J. T. Stockburger, J. Ankerhold, and Q. Shi, Phys. Rev. B 107,
195429 (2023).

36X. Chen and I. Franco, . Chem. Phys. 163, 104109 (2025).

37R. Borrelli, ]. Chem. Phys. 150, 234102 (2019).

38T, Li, Y. Yan, and Q. Shi, J. Chem. Phys. 156, 064107 (2022).

39Y.Ke, J. Chem. Phys. 158, 211102 (2023).

40y Takahashi and H. Umezawa, Int. J. Mod. Phys. B 10, 1755 (1996).

“R. Borrelli and M. F. Gelin, ]. Chem. Phys. 145, 224101 (2016).

“2D, Brey, W. Popp, P. Budakoti, G. D’Avino, and I. Burghardt, . Phys. Chem. C
125, 25030 (2021).

“3D. Tamascelli, A. Smirne, J. Lim, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett.
123, 090402 (2019).

“*H. Takahashi and R. Borrelli, ]. Chem. Phys. 161, 151101 (2024).

“5H. Takahashi and R. Borrelli, ]. Chem. Theory Comput. 21, 2206 (2025).

“6G. Harsha, T. M. Henderson, and G. E. Scuseria, ]. Chem. Phys. 150, 154109
(2019).

“7M. Tokieda and K. Hagino, Ann. Phys. 412, 168005 (2020).

“8 A, Tshizaki and G. R. Fleming, ]. Chem. Phys. 130, 234111 (2009).

4V, May and O. Kiihn, Charge and Energy Transfer Dynamics in Molecular
Systems (John Wiley & Sons, 2011).

50X. Chen and I Franco, J. Chem. Phys. 160, 204116 (2024).

5'A. W. Chin, A. Rivas, S. F. Huelga, and M. B. Plenio, ]. Math. Phys. 51, 092109
(2010).

52A. 0. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).

53h. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115 (1988).

S54H. Liu, L. Zhu, S. Bai, and Q. Shi, J. Chem. Phys. 140, 134106 (2014).

551, S. Dunn, R. Tempelaar, and D. R. Reichman, J. Chem. Phys. 150, 184109
(2019).

5€Y. Yan, T. Xing, and Q. Shi, J. Chem. Phys. 153, 204109 (2020).

57M. Krug and J. Stockburger, Eur. Phys. J. Spec. Top. 232, 3219 (2023).

58y, Zheng, J. Jin, S. Welack, M. Luo, and Y. Yan, J. Chem. Phys. 130, 164708
(2009).

%9L. Cui, H.-D. Zhang, X. Zheng, R.-X. Xu, and Y. Yan, ]. Chem. Phys. 151,024110
(2019).

S0H.-D. Zhang, L. Cui, H. Gong, R.-X. Xu, X. Zheng, and Y. Yan, J. Chem. Phys.
152, 064107 (2020).

STM. Xu, Y. Yan, Q. Shi, J. Ankerhold, and J. T. Stockburger, Phys. Rev. Lett. 129,
230601 (2022).

2B, Le D¢, A. Jaouadi, E. Mangaud, A. W. Chin, and M. Desouter-Lecomte,
J. Chem. Phys. 160, 244102 (2024).

83H. Takahashi, S. Rudge, C. Kaspar, M. Thoss, and R. Borrelli, ]. Chem. Phys.
160, 204105 (2024).

64 A, Ishizaki, J. Phys. Soc. Jpn. 89, 015001 (2020).

85M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition
(Springer, 2007).

6R. Korol, X. Chen, and I. Franco, J. Phys. Chem. A 129, 3587 (2025).

57. Adolphs and T. Renger, Biophys. . 91, 2778 (2006).

88 A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. U. S. A. 106, 17255 (2009).
%H.-G. Duan, A. Jha, L. Chen, V. Tiwari, R. ]. Cogdell, K. Ashraf, V. L.
Prokhorenko, M. Thorwart, and R. J. D. Miller, Proc. Natl. Acad. Sci. U. S. A.
119, 2212630119 (2022).

7OL. E. H. Rodriguez and A. A. Kananenka, Phys. Rev. E 111, 014143 (2025).
7TH. O. Gestsson, C. Nation, J. S. Higgins, G. S. Engel, and A. Olaya-Castro,
J. Chem. Phys. 162, 114114 (2025).

72C. Lubich, B. Vandereycken, and H. Walach, SIAM . Numer. Anal. 56, 1273
(2018).

J. Chem. Phys. 164, 024112 (2026); doi: 10.1063/5.0307152
Published under an exclusive license by AIP Publishing

164, 024112-12



The Journal

of Chemical Physics ARTICLE pubs.aip.org/aipljcp

73L. P. Lindoy, B. Kloss, and D. R. Reichman, J. Chem. Phys. 155, 174108 (2021). 78 A.J. Dunnett and A. W. Chin, Phys. Rev. B 104, 214302 (2021).
74L. P. Lindoy, B. Kloss, and D. R. Reichman, J. Chem. Phys. 155, 174109 (2021). 7M. Xu, V. Vadimov, M. Krug, J. T. Stockburger, and J. Ankerhold, “A universal
75L. F. Shampine, Math. Comput. 46, 135 (1986). framework for quantum dissipation: Minimally extended state space and exact
76G. Park, Z. Huang, Y. Zhu, C. Yang, G. K.-L. Chan, and L. Lin, Phys. Rev. B 110, time-local dynamics,” arXiv:2307.16790 [quant-ph] (2023).
195148 (2024). 891, p. Lindoy, D. Rodrigo-Albert, Y. Rath, and I. Rungger, “pyTTN: An open
77]. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete, Phys. source toolbox for open and closed system quantum dynamics simulations using
Rev. B 94, 165116 (2016). tree tensor networks,” J. Chem. Phys. 163, 202501 (2025).

J. Chem. Phys. 164, 024112 (2026); doi: 10.1063/5.0307152 164, 02411213

Published under an exclusive license by AIP Publishing



