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ABSTRACT

We introduce an efficient method, TTN-HEOM, for exactly calculating the open quantum dynamics for driven quantum systems interacting
with highly structured bosonic baths by combining the tree tensor network (TTN) decomposition scheme with the bexcitonic generalization
of the numerically exact hierarchical equations of motion (HEOM). The method yields a series of quantum master equations for all core
tensors in the TTN that efficiently and accurately capture the open quantum dynamics for non-Markovian environments to all orders in the
system-bath interaction. These master equations are constructed based on the time-dependent Dirac-Frenkel variational principle, which
isolates the optimal dynamics for the core tensors given the TTN ansatz. The dynamics converges to the HEOM when increasing the rank of
the core tensors, a limit in which the TTN ansatz becomes exact. We introduce TENSO, tensor equations for non-Markovian structured open
systems, as a general-purpose Python code to propagate the TTN-HEOM dynamics. We implement three general propagators for the coupled
master equations: two fixed-rank methods that require a constant memory footprint during the dynamics and one adaptive-rank method with
a variable memory footprint controlled by the target level of computational error. We exemplify the utility of these methods by simulating
a two-level system coupled to a structured bath containing one Drude-Lorentz component and eight Brownian oscillators, which is beyond
what can presently be computed using the standard HEOM. Our results show that the TTN-HEOM is capable of simulating both dephasing
and relaxation dynamics of driven quantum systems interacting with structured baths, even those of chemical complexity, with an affordable
computational cost.
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I. INTRODUCTION is needed to understand the evolution and decay of coherence

and entanglement in qubits, simulate the operation of digital
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Computation of the dynamics of open quantum systems with
high precision is a central challenge in physics, chemistry, and
quantum information science.' ” It is necessary to capture the deco-
herence and eventual thermalization of quantum systems due to
interactions with a quantum thermal environment. From a molec-
ular science perspective, such open quantum dynamics is central in
our elementary description of photophysics, photochemistry, mul-
tidimensional optical spectroscopies,”” coherent control,""" and
charge and energy transfer.”” " From a quantum information sci-
ence perspective, correctly capturing such open quantum dynamics

and analog quantum processors, design quantum control strate-
gies, and develop strategies to minimize decoherence effects in
next-generation quantum devices.'” *’

In open quantum dynamics,”' " it is customary to divide the
Hamiltonian of the quantum universe, H = Hs + Hg + Hsg, into a
system, Hs, which corresponds to the degrees of freedom (DoFs)
of interest, an environment or bath, Hp, and their interaction, Hsg.
The state of the system is completely described by its reduced den-
sity matrix pg(t) = Trg[p(¢)] obtained by tracing out the bath DoFs
from the density matrix of the composite quantum system p(t). The
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dynamics of the system pg(t) can be obtained by either following
the dynamics of both the system and bath and then tracing over
the bath or by solving so-called quantum master equations satis-
fied by pg(¢) that implicitly capture the influence of the environment
on the system DoFs. The former approach is preferred'*” > but is
often computationally impractical, as the bath can be macroscopic.
For this reason, there has been impressive progress in formulat-
ing increasingly accurate quantum master equations and developing
computational techniques to propagate them."”’

Of particular interest are numerically “exact” master equations,
such as the hierarchical equations of motion (HEOM), "
they can be used to model a large class of problems of interest in
chemistry and quantum information science with an accuracy that
can be assumed. This contrasts with common strategies based on
the Born-Markov approximation, such as the Lindblad*’ and Red-
field master equations,””"' that are only valid for quantum systems
weakly coupled to an environment that has a short memory time
with respect to the system’s dynamics—conditions that are often
violated by chemically and physically relevant systems. The HEOM
approach is complemented by other numerically exact methods to
capture the open quantum dynamics that do not have a master
equation form, such as the quasi-adiabatic propagator path integral
(QuUAPI). "

The HEOM is based on decomposing the dynamics of the bath
correlation function (BCF) into a series of K complex exponential
functions or features. The influence of the thermal environment on
the system is captured by introducing an infinite hierarchy of aux-
iliary density matrices (ADMs) that evolve as the system decoheres
and reaches thermal equilibrium. The dimensionality M x M of each
ADM is the same as the reduced density matrix of the M-level sys-
tem. This HEOM dynamics was recently shown to be identical to the
system in interaction with K fictitious bosonic quasiparticles called
bexcitons that are born, oscillate, and decay during the dynamics in
such a way that the system has the correct dynamics.”

This hierarchy can be truncated to a given order N for each fea-
ture, which is referred to as the depth of the HEOM. The number
of required ADMs is N¥, resulting in the overall space complexity of
HEOM O(M*NX). Therefore, the computational cost of the HEOM
increases exponentially with the number of features, K. This number
of features grows with the complexity of the chemical environment
or when low-temperature corrections are needed in the dynamics.
For this reason, to date, using the HEOM, we are able to investi-
gate illustrative model problems with simple environment models
with only a few features in the BCF decomposition, such as a sin-
gle Drude-Lorentz or Brownian oscillator model.””*"*" However,
the HEOM becomes intractable for realistically highly structured
chemical environments.

To reduce this curse of dimensionality, one strategy is to
employ the filtering technique that removes ADMs that are almost
zero,* thus enabling HEOM simulations with more complex envi-
ronments with larger K. While helpful, the strategy is still insuffi-
cient to model chemically realistic problems; furthermore, it is not
applicable to environments at low temperatures.”’ A second strat-
egy is to capture the time dynamics of the BCF more efficiently, thus
reducing the number of required features.”””” More general strate-
gies to curb this curse of dimensionality are needed to apply this
numerically exact HEOM method to chemically complex systems
and environments.

ARTICLE pubs.aip.org/aipl/jcp

In this paper, we introduce a tree tensor network (TTN)
decomposition of the HEOM, TTN-HEOM, that enables efficient
simulation of open quantum dynamics in structured thermal envi-
ronments, even those of chemical complexity. Our approach is based
on the recent bexcitonic generalization of the HEOM, which recov-
ers all HEOM variants and is, therefore, of general applicability to
the HEOM family of quantum master equations. The method fur-
ther admits arbitrary time-dependence in the system Hamiltonian
as needed to investigate driven dynamics of qubits and molecular
systems in the presence of a thermal environment. In addition, we
develop a general-purpose Python-based computational implemen-
tation of the TTN-HEOM that we name TENSO. For computational
efficiency, our implementation takes advantage of NumPy>* and
PyTorch,” which contain a series of libraries specifically designed
and optimized to deal with tensor manipulation on CPUs and GPUs.

Tensor network decompositions are the basis of highly suc-
cessful simulation strategies””"' in many-body science. In uni-
tary quantum dynamics, tensor trains (or matrix product states)
have been successfully used to enable wavefunction propagation in
high-dimensions.””**"*’ In turn, TTN decompositions of the multi-
DoF wavefunction propagated by the time-dependent Schrodinger
equation are the basis of widely employed methods such as the
multi-layer multi-configurational time-dependent Hartree method
(ML-MCTDH)""*® and related strategies.””’" For open quantum
systems, tensor network techniques have also been proposed to
accelerate simulations. This includes efforts in approximate methods
such as Lindblad master equations’"’” and strategies where thermal
effects are included just at the initial time through purification.”””
They have also been used in numerically exact approaches, such
as the thermalized time-evolving density operator with orthogonal
polynomials algorithm,”* path-integral process tensor methods,”” "’
and also the HEOM.”®”® " Qverall, the current view that has
emerged from these efforts is that tensor network strategies can
be successful in curbing the curse of dimensionality in quan-
tum dynamics by efficiently encoding the entanglement among
DoFs.

In this paper, we advance a rigorous and practical TTN decom-
position of the HEOM by taking inspiration from ideas and methods
in the MCTDH literature. Specifically, we arrange the collection
of all ADMs in HEOM into an extended density operator (EDO)
containing both the physical DoFs and the DoFs arising from the
decomposition of the BCF into features. We then use a TTN decom-
position to express this high-order EDO tensor as a contraction
of low-order core tensors. We provide a rigorous derivation of the
quantum master equation satisfied by each core tensor in the TTN
by invoking the Dirac-Frenkel time-dependent variational principle
(TDVP), which is also used in the MCTDH.””* These coupled
master equations guarantee that the TTN decomposition of the
EDO remains as accurate as possible during the dynamics. To prop-
agate the dynamics, we use strategies used in MCTDH and adapt
them and generalize them to the EDO and non-unitary dynamics
of the HEOM. Specifically, we implement and test the projector-
splitting®™ ™ and direct-integration with regularization”""""
and demonstrate that they provide stable propagation of
TTN-HEOM.

We exemplify our method and computational implementa-
tion in a two-level molecule coupled to a highly structured thermal
environment with a spectral density extracted from experiments,” a
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system that is challenging to model using standard HEOM due to the
large memory requirements. To this end, we decompose the spectral
density in terms of Drude-Lorentz features to represent the solvent
and underdamped Brownian oscillators to represent intramolecular
vibrations.”””” This approach is more efficient to invoke in HEOM
compared to the discretization approach, where finitely many dis-
crete vibrational modes are used for modeling the bath, as they do
not capture the dissipative nature in open quantum dynamics.’’

Compared to recent advances in combining tensor network
techniques into HEOM, our proposed method and computational
implementation admit both tensor trees and tensor trains and, there-
fore, build upon but generalize initial efforts using tensor train
strategies. 5%

Compared to recent efforts to introduce TTN into the
HEOM, " we have been able to develop and implement three
numerically stable propagation strategies based on projector-
splitting (PS) and direct integration. PS is a form of Trotterization
where a single-step in the overall propagation is split into stepwise
propagation of each core tensor in the TTN. We implemented two
versions of PS: a constant rank PS1 method where memory require-
ments are fixed and an adaptive rank PS2 method controlled by the
target level of computational error.

In addition, we introduce a direct integration method that
arises from our derivation of the quantum master equation of
the core tensors through TDVP. The method simultaneously inte-
grates the master equations for all core tensors. As such, it admits
any numerical integration scheme, such as high-order Runge-Kutta
schemes’ and, therefore, can be parallelized and has better scaling
with the integration time step At with respect to PS. However, the
scheme requires regularization,z(“% 1 which can add a small error to
the dynamics.

We implemented the TTN-HEOM with these numerical prop-
agation strategies into a Python package called Tensor Equations
for Non-Markovian Structured Open systems (TENSO). We discuss
the merits and limitations of these numerical propagation strategies
in TTN-HEOM using TENSO. Overall, our developments provide
a TTN-HEOM method and computational implementation of full
functionality that enables investigations into the dissipative dynam-
ics of quantum systems immersed in highly structured thermal
bosonic environments.

The paper is organized as follows. We first summarize the
bexcitonic generalization of the HEOM (Sec. II A). Then, we intro-
duce its TTN decomposition (Sec. II B) and isolate the equations
of motion satisfied by the core tensors (Sec. II C). Next, we intro-
duce the three propagation methods (Sec. II D) and discuss the
computational implementation of the TTN-HEOM (Sec. II E). In
Sec. 111, we exemplify the utility of the method by simulating dissipa-
tive quantum dynamics due to interactions of quantum systems with
highly structured thermal baths using the three propagation meth-
ods and different TTN topologies. We summarize our main findings
in Sec. I'V.

Il. THEORY

A. Hierarchical equations of motion
and bexcitonic picture

HEOM is capable of following the dissipative dynamics of
general driven quantum systems coupled to multiple independent

ARTICLE pubs.aip.org/aipl/jcp

thermal baths through system operators that do not need to com-
mute.”” For clarity in presentation, and without loss of generality, we
consider coupling to one thermal harmonic bath with Hamiltonian

2 2,2
Hy =3 [ £+ 255, 1
? (Zm]- 2 )

J

where x; and p. are the position and momentum operators of the
jth harmonic mode of effective mass m; and frequency w;. The
system-bath coupling Hsg = Qg ® X3 is linear to a system operator
Qg and a collective bath coordinate

XB = Z CiXj, (2)
J

where ¢; quantifies the coupling strength between the jth bath mode
and the system operator.

While the dynamics of the density matrix of the composite sys-
tem p(t) is unitary, the dynamics of the system’s density matrix
ps(t) = Trp(p(t)) is non-unitary and satisfies*

ps(t) = T F(£,0)ps(0), ©)
where 7 is the time-ordering operator

F(£,0) = ¢ W EGOL au(ClmnQs ) @)

and C(t) = Tr(Xs(t)Xs(0)py!) is the BCF. Throughout we use
atomic units where & = 1 and the notation A”B = ABand A<B = BA'
for the ordering of matrix multiplications, and A* = A> — A< for the
commutator super-operator generated from A.”” In writing Eq. (3),
we have adopted the interaction picture of Ho(t) = Hs(t) + Hg,
where O(t) = (Te /o Ho) )*O(t) Te U T Eauation (4)
provides a formal solution to the open quantum dynamics at all tem-
peratures and to all orders in the system-bath interaction. As seen,
C(t) contains all the information needed to capture the influence of
the bath on pg(t).

The BCF is related to the bath spectral density J(w)
= % l¢i"8(w - w;)/(2mjw;) through'**

c(t) = fo  J(@)(coth (0/(2ksT)) cos (wt) — i sin (wt))dw. (5)

The integral can be resolved by using the residue theorem through
the analytical continuation of J(w) and Matsubara” or Padé”™
expansion of the thermal coth(w/(2ksT)) component. That anal-
ysis shows that C(¢) and its complex conjugate C* (¢) can always be
decomposed in terms of a series of complex exponential functions as

K
and C*(t) = Zékey"t, (6)

K
c()=> e’
k=1 k=1

where c, &, and y, are complex numbers. Other numerical methods
can also be used to fit the BCF into the form in Eq. (6).”’ "’ Each k in
the series Eq. (6) defines a feature of the bath. This decomposition of
C(t) into K features can capture any physical dynamics, including
exponential decay, oscillations, and their combination.*’

The HEOM results from introducing this decomposition of
the BCF into the exact dynamical map in Eq. (3) and calculat-
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ing the time-derivatives. What this shows is that the influence of
the thermal environment on the dynamics of the system is exactly
captured through a collection of auxiliary M x M density matrices
(ADMs) {0, ()} with the same dimensionality of py(¢). Here, riis a
K-dimensional index 7i = (n1,...,1,...,nx) with n, =0,1,2,...,
and the series runs ad infinitum. We arrange these ADMs as a vector
of matrices that we call the extended density operator (EDO)

() = 3 ox(0)li), )

in a basis {|#)=|n)® - -®|n)®---®|ng)} such that g;(t)
= (7|Q(t)). The physical system’s density matrix ps(t) = g5(t) is
located at i = 0 = (0,...,0).

In this context, we find that the exact quantum dynamics for
this EDO |Q(¢)) is™

s - (o X o)om.  ©

k=1
with
o A - N A
Dy = Yk“}:“k + (ckQs - &Q5 )% a,t - QS ks 9)
and initial conditions

1(0)) = ps(0)[0), (10)

where p¢(0) is the initial state of the system. The first term in Eq. (8)
is the unitary dynamics, while D captures the dissipation due to
the kth feature of the bath. Here, the bosonic creation &;E and anni-

hilation & operators ([dy, &z,] = 8y, ) associated with the kth bath
feature connect the different ADMs as

) =g+ Ung + 1), dlng) = /nglng — 1). (11)

In turn, the 2 is any invertible operator that satisfies [ék, &;E &k] =0,
which we refer to as the metric. Equation (8) defines a class of exact
quantum master equations, as there is a choice in the representation
of |#i) (position |¥), momentum |p), or number |1i}) and the metric
% The standard HEOM™*** is a specific case of Eq. (8) obtained
when the number representation and 2 = i(&zéc x)~'/% are chosen.
As discussed in Ref. 39, based on Eq. (8), the open quantum
dynamics can be interpreted as the system interacting with a collec-
tion of fictitious bosonic quasiparticles that we call bexcitons. For
this, we associate |ri) with the creation of bexcitons with respect
to vacuum |0). Specifically, we associate a bexciton of label k, a
k-bexciton, for each feature of the bath k. The state |#i) corresponds
to a situation in which n; k-bexcitons have been created for each k.

In this picture, &;E creates and & destroys a k-bexciton. The com-

mutation relation between &, and &;E dictates that bexcitons are
bosons. While the bath can be macroscopic, only K effective bex-
citons are needed to capture the relevant component that influences
the system. Therefore, the bexcitons offer a coarse-grained, but still
exact, view of the correlated non-Markovian system-bath dynam-
ics to all orders in Hsg. The dissipators { Dy} in Eq. (8) describe
the bexcitonic dynamics and their interaction with the system. As
the composite system evolves toward a stationary state, bexcitons
are created and destroyed. Each version of Eq. (8) constitutes an

AT
Ay
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exact map of the open quantum dynamics to the system-bexciton
dynamics. While the system’s dynamics is common to all maps, the
bexcitonic one is not. For this reason, the bexcitons are unphys-
ical quasiparticles, and bexcitonic properties should be viewed as
a way to monitor the open quantum dynamics and its numerical
convergence.

B. Tree tensor network decomposition

The computational challenge of the HEOM is that the number
of bexcitons K needed to accurately describe the dynamics increases
as the complexity of the spectral density grows and with decreas-
ing temperature as needed to appropriately decompose C(t) [see
Eq. (5)]. Furthermore, the ladder of states for each n; needs to be
truncated at a given (N, — 1) that defines the depth of the k-bexciton,
a quantity that needs to be increased until convergence. The over-
all space complexity of Eq. (8) for an M-state system and K bath
features all truncated at a depth of Ny, = O(N) is O(M*N*) and,
therefore, shows exponential growth with the number of bath fea-
tures K. This is the reason why the HEOM computations have been
limited to relatively simple models of the bath.”” Our hypothesis is
that the HEOM has a lot of redundancy in state-space that can be
efficiently compressed through a tensor network strategy and used
to curb this curse of dimensionality.

In the same way that the density matrix of the system p(t) has
matrix elements [ps]ij = (i|ps(t)|), where {|i)} is a basis that spans
the Hilbert space of the system, the EDO has tensor elements

() Jijmme = (il - - x| Q(£))]7) (12)
where {‘”k>}£]::_ol is the number basis that spans the space of the
k-bexciton truncated at the level of (N — 1). The bexcitonic dynam-
ics Eq. (8) for this extended tensor can be written as %Q(t)
= L(t)Q(t), where L(t) is the tensor representation of the super-
operator that generates the dynamics (—iHg (t) + Yo, D)) in the
given basis. Because the basis is a tensor product of individual ele-
ments |i) ® (j|® |n1) ® - - - ® |nk), then from Eq. (8) we can define
local operators hy, (k =>,<,1,...,K) such that

5K+2
S () @k @kl @ e hl = L(t). (13)
m=1

The label m runs over the individual terms in Eq. (8). Each Dy in
Eq. (8) gives five terms, and the system Liouvillian —iHg (t) gives
two more. Each term consists of a component h;,(t) that acts on
basis {|i)}, a component h;, () that acts on {{j|}, and components
h) that act on {|ng)}

The extended density tensor is high dimensional and can be
compressed through a TTN, which contains a collection of many
low-order core tensors with a given contraction-ordering that can
be topologically described by a tree graph (see Fig. 1). The TTN
may contain core tensors with different tensor orders. We want to
decompose the high-order tensor into a series of low-order tensors,
as the operations between high-order tensors are computationally
expensive. For instance, the space complexity of a D-order tensor
Aq,..qp, With R as the range of all indices ay is O(RP). Since the
space-complexity of a tensor grows as a power of its order D, we
naturally want the order of each core tensor in a TTN to be as
small as possible. However, one cannot use only order-2 tensors in
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FIG. 1. Topological structure of (a) a tensor train with K bexcitons for the extended
density operator (EDO), (b) a perfectly balanced tensor tree with 16 bexcitons,
and (c) a balanced tensor tree with 20 bexcitons. TTN-HEOM admits all these
topologies with core tensors of variable order; the figure focuses on order-3.

n

TTN for such decomposition in the presence of a thermal environ-
ment, as it cannot give a tree, including a train for K > 0. Therefore,
the minimal non-trivial order for the core tensors is 3. For this rea-
son, below we focus on the TTN-HEOM, where all core tensors are
of order-3. The generalization of the TTN to arbitrary order for each
of the core tensors is included in the supplementary material.

No matter what the topology of the TTN is, the number of
order-3 core tensors in the decomposition will be K, and the num-
ber of indices for contractions in the TTN will be K — 1. The simplest
example is a tensor train [Fig. 1(a)], which can be formulated as

Qij”l'“ﬂx
M 0 p0 @ (K1)
= Z Aijal Uﬂl”lﬂz Uuz"zu3 e UuK—l"KflﬂK' (14)
ayaz---ag—1

Here, {a,}X]' are the introduced indices for contractions with
as=0,...,R,— 1, with Ry being the rank of index a,. In turn,
Figs. 1(b) and 1(c) show tensor trees for a 16-bexciton and 20-
bexciton EDO, respectively. In Fig. 1, each node represents a core
tensor, while each bond represents an index in {i, j} U {as;}57' U
{m}£_,. The bonds {a, B, y} attached to a node indicate that the ten-

sor UY represented by that node will have indices a, 3,y as Uo(t;)y

Notice that the arrangement of indices a, 8,y in tensor U is not
reflected in Fig. 1. As a convention (and without loss of generality),
for U we always place the index a; in the first index position a.
Generally, the core tensors are isolated through hierarchical
Tucker decomposition,' """ which repeatedly applies singular value

ARTICLE pubs.aip.org/aipl/jcp

decompositions (SVDs). The final result of such a decomposition on
a high-order EDO gives a TTN that can be formally represented as

Q) Jijmy--ne

B 0 50) (K-1)
= Z Aijﬂl Uﬂl.Bl)’l Y

i uK—lﬁK—lVK—l
= [con(A (1), UV (1),..., US D (O)) jmeomes  (15)

where Con represents contractions among all core time-dependent
tensors  A®(¢), UV (¢t),..., U () in the TTN. For each
UY(t), its second and third indices fs, ys € {as}’ 7' U {m )X,
(s=1,...,K-1). From the SVD, the U(s)(t) are semi-unitary core
tensors in the sense that the matrix [U®)( t)]a, gy reshaped from the
tensor [U®) (t)]a,y satisfies

> [0 O (U ()]angy = O (16)
By

By contrast, there is only one root core tensor A9 in the TTN, which
does not need to be semi-unitary. As a design principle, we choose to
include the system’s indices i, j, and the index a; in the root tensor,
such that the influence of all bexcitons is captured through com-
pressed index a;. In this way, the unitary component of the system
is exact and not compressed, while the influence of the bexcitons is
compactly captured by the TTN.

For a given set of ranks {R;} such that Ry = O(R) and a bexci-
ton depth N such that Ny = O(N), the space complexity of the TTN
is O(M?R + KNR(N + R)),'*" which no longer grows exponentially
with the number of bath features K. The smaller the rank that can be
used, the more efficient the compression of the TTN.

It is useful to define the height L of a core tensor U as the num-
ber of bonds on the path between UY and the root. For instance, the
root A© is of height 0, and in our TTN ansatz Eq. (15), the uW is
always of height 1. We sort the label s of the core tensor U accord-
ing to its height L(U“) without loss of generality. That is, for two
core tensors U™ and UY, if L(U") < L(UY), then r < s.

C. Master equations for a tree tensor network

To develop the master equations for the TTN, we invoke the
Dirac-Frenkel TDVP*** and adapt it to Q(t) as

5 [m(t)]:jnr.,nk[(m) - %)Q(t)]ijmmnk —0,  (17)

ijng--ng

where 8Q(t) denotes a small variation of Q(t). By doing so, it
yields optimal dynamics for the core tensors that capture the dynam-
ics of Q(t) in a space with reduced dimensionality that changes
dynamically during the quantum evolution. To guarantee that the
TTN decomposition remains, we further require that Eq. (16) holds
during the propagation by demanding

N * d S
> (U9 O]y 5, U (D)]agy =0, (18)
Y

for all ¢, a condition that is referred to as the gauge condition.”
From Egs. (17) and (18), we can systematically develop equations
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of motion for the semi-unitary and root core tensors for an arbi-
trary tensor tree. Appendix A derives the equations of motion for
order-3 tensors, and the supplementary material offers their gener-
alization using graph notation to a general TTN containing tensors
with arbitrary order.

With the TTN decomposition in Eq. (15) and the gauge con-
dition in Eq. (18), the master equation of the root tensor A” (t)

depends on f Mm (t) (defined later) as

[ (1)]a a,A(O) (19)

ija,

Ay =2 X [

m  ija;

This is the simplest of the equations because the semi-unitary
properties of the U (¢) and the gauge condition cancel out the
terms involving direct contraction between the U (¢) and its time-
derivatives. In turn, the master equations of the semi-unitary tensors
UY(t) are

) ()
Z Du al/ dt U 'ﬁ’y’

=3 S DS )

m a;asﬁy

(s2) (s3) (s) (s) (s)
X ([Fm ]‘B’ﬁ[Fm ]y ’yUulﬂy Uﬂﬁ/)/[ m ]asag)- (20)

Note that in our notation, F,(,fz)(t) always contracts with the sec-
ond index of UY (t), while F (t) contracts with the third one. The
definition of matrix F$ (t) for x = 2 and 3 depends on the location
of the tensor U (¢) in the TTN. F,(,,SK)(t) = ffn”)(t) (u>s) if the
xth index corresponds to a contracted index or bond in the TTN.
That is, when the «th index in UY (¢) is an a, in Eq. (15). In turn,
F,(,fx) () = hgnk) [cf. Eq. (13)] when the «th index also occurs in the
original EDO tensor Q(t) and, therefore, corresponds to an open
bond in the TTN. That is, when the «th index in U"(t) is an n in
Eq. (15).

The matrices f,(ﬂs)(t) (s=1,...,K—-1)are defined as

(5) (S)* (52) (s3) ()
m aaﬁ— Z U’ﬁ'y' ﬁ[Fm ] yUaﬁy (21)

Notice that this definition is recursive, as ff,f)(t) depends on
F$9 (1) = ffn”)(t) (u > s) if the xth index corresponds to a con-

tracted bond. The matrices D (¢) and matrices Dfrf)(t) for given
label m in Eq. (13) are also defined recursively. For s = 1,

aja, ijay* “ijay

D(l) - Z A(O)A(O)*,
ij
(22)
1 0 0)*
(D5 Taga = 3 Ui [ AL A
vy

For s > 1, there is a bond in the TTN corresponding to a; in Eq. (15)
that contracts tensors U (¢) and U™ (¢) (r < s). If U (¢) has a; as
its third index in Eq. (15), then

ARTICLE pubs.aip.org/aipl/jcp

b, = T 0, n 0%

alea
alaye (23)
(D Juta, = 3 [E L Uy (DL e, Ul
uja,s’s
In turn, if U has as as the second index in Eq. (15), then
(S) _ (N p™) yn=*
alag ZUuae ala, “v“ss’
a a,€e
(24)

D wa = 3 [F 1 UL (D ]aa UL

/r’

P
ala,ee

In Sec. II E, we discuss the order in which these terms [fs,f)(t),

DY(t) and DY (#)] need to be evaluated. As an explicit example,
Appendix B details the TTN-HEOM scheme with K = 4.

From Eq. (10), the initial condition for the EDO is
Qijny-ni (0) = [ps(0)]ij60n, - - - Song» where pg (0) is the initial state of
the system. In addition, we need to determine the initial conditions
for the core tensors, A”) (¢ = 0) and U (¢ = 0), in the TTN. Except
for the minimal rank case when all R, = 1, this choice is not unique.
We choose

A5 (0) = [ps]ij0oa, (25)
for the root tensor. In turn, U(S) (O) for glven as =0, 1 SRi-1
is ﬁlled as U = 60560y, = (S]ﬁé\oy, = (5\0551),, = 82ﬁ80y,

4/3y = 61/;61y, = 6@62,,, ....More exphc1t1y, in each page of ten-

sor Ué‘gy(o) the matrlx U (0) for ag=0,1,...,R,— 1 is chosen
as
00 0
0 0 0 e
() _ ©) _
U’ =lo 0o 0o ---) U =looo ,
01 0 0
00 0
() _ ) _
U7"=1o 0 o » U7 =11 0 o ,
00 0
01 0 0
) ) _
Us"=1o 0 o U7 =19 0 o ,

and so on. The choice of Ué;) satisfies the correct initial condition

for the EDO. In addition, the choice of Ussgy further guarantees the
semi-unitary property of U (0) at the initial time. This choice is
sufficient and is one of the simplest possible, as all non-zero elements
are 1 and there is only one non-zero element in each U(S) (0). Fur-

thermore, it locally balances all bonds associated with a node across
the TTN.
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D. Propagation methods
1. Direct integration

The main idea of direct integration is to simultaneously inte-
grate the non-linear coupled series of ordinary differential equations
(ODEs) in Egs. (19) and (20) using standard integration techniques.
The advantage of this strategy is that it enables coupling the TTN-
HEOM to well-developed ODE solvers based on Runge-Kutta’* and
other schemes that allow for large integration time steps, adaptive
time steps, and even parallelization.

To isolate the exact derivatives for the semi-unitary tensors, we

-1
need to multiply both sides of Eq. (20) by (D(S)(t)) . The chal-
lenge of this direct integration strategy is that this inverse does not
always exist. In particular, for initially separable states, as required
by the HEOM, D®(¢) is singular. To see this, consider [D(") (0)]aa
= Y Aija, (0)Af,, (0) = (Trp3(0))B0a, Soa; from Eq. (25). This leads
to a singular matrix D" (0). The remaining D (0) are also singular
according to the recursive relation [Eq. (23)] and the semi-unitary
properties of U [Eq. (16)].

To make progress, we introduce the pseudo-inverse'®” (D(S) )
of a matrix D). The pseudo-inverse is a well-known generalization
of the inverse of a matrix. It can be constructed from the SVD of
DY = UoV' where U, V are unitary matrices that are readily invert-
ible as U = U™!. The pseudo-inverse (D(S)) = Vo' U, where
o" is the pseudo-inverse of the diagonal matrix ¢ obtained by replac-
ing the nonzero singular values o, with their multiplicative inverses

;. Since the SVD always exists, then (D))" can also always be
defined.
Multiplying both sides of Eq. (20) by (D®))* yields

<s> d
S P gVt

=3 3 18w
m alaBy

D7 EET, g g O
< (B 1ggl PRV, UG, = U L L) 20)

as

Here,

’P,Efz,, =y Df{fgx( D(S));:u;" 27)

and

,,,_z D )a (D) (28)

s%s

+ -1
If matrix D is invertible, then (D(S)) = (D(S)) and Pf,fi,,
= 0zq7 becomes an identity matrix. In turn, when DY is singular,
then P isa projector to the column space of the matrix D® as

PO =D00(DV0) = ¥ wnu®, @9

b st
a(1)>0
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where u,,(t) is the bth column of U(t) and 0, (t) is the bth singular
value of matrix D (t). Hence, asingular D (¢) will introduce a loss
of information if we let < U(S)(t) ~ P(S)(t) U(S)(t)

To handle this smgularlty issue, we 1nv0ke the regulariza-
tion technique developed in MCTDH and adapt it to this TTN-
HEOM.”*"""! In one simple strategy, all singular values ¢, in D (¢)
that are smaller than a threshold € are replaced by e. That is, if

the SVD of D(f) S Uas bV,
Dgf) ~ 3, U, 2.5+ This makes DY(t) invertible but

introduces an error of O(e) in DY (¢).

Our choice of regularization described below reduces the intro-
duced error in D () from O(e) to O(€?), increasing the stability
and overall accuracy of this propagation scheme. To do so, what is

oy the regularization approximate

orb Max (0, €) Vo

needed is to regularize both D (¢) and every Dy (). Starting from
s = 1, we perform the SVD for AD = >b WMy W* and define

ijay ijby b a b,
D) = ¥, 1Tl al), WS GO)
ryJ

Here, Df,,l ) (1), 0V (), and V' (¢) are all time-dependent quantities.
Furthermore, together with the core tensor y® (t), we define a non-
semi-unitary tensor A" () such that

A0 =Y oV y®)

b1y aiby aipy’ (31)

a

For s > 1, the construction of D,(j ), as well as WY, 69, v and A®,
is performed by a recursive process over the TTN structure that is
similar to the definition for D and D,(,f ) [cf. Egs. (22)-(24)].

For s > 1, there is a bond in the TTN corresponding to as in
Eq. (15) that contracts tensors U (¢) and U () (r <s). In this
recursive argument, oy )(t) and A" (t) have already been deter-
mined from the previous step in the recursion. If U (¢) has a; as
its second index in Eq. (15), then the SVD of A is

(r) (ORSOROLS
Ab,axe Z Wh bse b a b (32)

by

Then, D (1) is defined as

D ]an = 3 [FSV10UD D10, WE. (33)

aya.e’ bybe
ab.e'e
In this case,
(s) (r) 4 ()x
Da al — Z Ab aSsAb ale (34)

€

In turn, if U(')(t) has a; as its third index in Eq. (15), the SVD of
AD js

bsas Z W( bs (S) (S)*’ (35)

by

and

[D51as, = 2 021U DL, WSy (36)

a,b.e'e
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In this case,

D& _ 5 A 4
a al — Z b, eaSAhreag’ (37)

b.e
For both cases, the definition of A®) () continues as

() _ )y (5)* u®
Ah,By Z b as sﬂ)’ (38)

Substitute Eq. (32) into Eq. (34
DY becomes

) and Eq. (35) into Eq. (37), and

DY), - %j Ve ( ;)) v(b) (39)
Furthermore, comparing Eq. (23) with Eq. (33) and Eq. (24) with
Eq. (36), we have
D Tu = 32 (5 Tus 0O VS). (40)
b
From Egs. (39) and (40), Eq. (28) becomes
(€9 Taar = 3 [DTas (o) VY. (41)

b,

The regularization is to replace a( ) that are less than e by e. Hence,
the equation of motion Eq. (26) becomes

d
aUﬂs”ﬂ’V'
2 Y D] (max (0, 6)) " V)
m . bsalafy
(2) (D7 17 1 [
x ([ESP sl E1,, 050, - U [0 Taar ) (42)

and the multiplicative inverse is now always achievable. The key
aspect of this regularization is that it introduces an error of O(¢€?) in
DY (¢) [cf. Eq. (39)].

2. Projector-splitting propagator

Another branch of the propagation method is based on the
so-called projector-splitting (PS) technique. These techniques avoid
the errors introduced by regularization but introduce Trotteriza-
tion errors inherent to the approach. In a PS algorithm, instead of
propagating all the core tensors at the same time as in the direct inte-
gration, the dynamics of each tensor is propagated individually and
sequentially.

The details of this algorithm, and proof of its validity, are dis-
cussed in the studies of tensor train and tensor tree” *'"'"* in the
context of time-evolution of the matrix product state for a wave-
function. The generalization of a one-site version of this algorithm
(PS1) to HEOM with a tree tensor network can be found in Ref. 84.
Here, we outline these algorithms and how they are used in TTN-
HEOM and generalize the two-site version (PS1) of this algorithm
to the TTN-HEOM. PS1 is a static-rank method fixed memory algo-
rithm where the rank is constant during propagation. In turn, the
PS2 that we generalize is a dynamic-rank method that updates the
rank in the TTN to achieve a target propagation accuracy.

ARTICLE pubs.aip.org/aipl/jcp

The formal solution of the master equation %Q(t) = L(t)Q(t)
is Q(t+A) = 2D Q(1) for a small time step A. In a Trotterization
scheme in PS, £(t) is split into £(t) = ¥ P; £(t). The Trotter
propagatoris Q(f + A) ~ ¢ e £() .. AP LmQ(t) to first order in
AorQ(t+A)~ e2 PHEW Lo h P (0 03 P £(0 L 03 P £Ma(t)
to second order in A. We employ the second Trotter, where each
time step is divided into a forward step in the splitting of L,
e% Phoax £(8) .. 53 P

Lp L(t)

£ followed by a backward step in such split-

ting e2 ez P’"m £ We denote each e”"*() as a split-step
with a time 7.

In the PS method, at each split-step, the TTN is transformed
such that the propagation is always on the root tensor, for which the

dynamics does not have the singularity issue. [cf. Eq. (19)]. For this,
one needs to construct f, ) [cf. Eq. (21)] during the propagation.

Suppose at a split-step that the root is now located at A™; then the
master equation is

t tx [3 y Z Z F(rl) tx Dt F(VZ) ]‘B'ﬁ [Fr(nr?,)]y’yAi;)y’ (43)
m afy

where F(™ acts on the xth index of A”). The value of F$™ is I, if
the «th index of A" is i, b, if it is j, B if it is ny, and £ if it is
a;. The transformation of the TTN moves the location of the root
tensor from its current location to one adjacent semi-unitary tensor
via additional SVD. In one step of the PS propagator, we start from
the original root and travel over every core tensor in the TTN. Once
all core tensors in the TTN have been updated, the algorithm then
returns the root tensor to its original position and proceeds to take
another dynamical time step.

In the rest of this section, the Einstein summation convention
is assumed.

a. PSI algorithm. The PS1 algorithm we implemented is in a
second-order Trotter propagator form. The key of the algorithm is
to find a round-trip path over the whole tensor tree such that each
contracted bond in the tree is traveled exactly two times. This can be
performed by the depth-first-search algorithm'’
We first travel over the tree: start from the root A'”), go past every
closed bond twice, and return to the origin A”). The forward path is
a sequence P = (A(O), u®,. . oD U(l),A(O)). We propagate
the whole TTN by A/2 when we travel along the forward path. After
that we use the reversed sequence of the forward path P as the back-
ward path to propagate another A/2 to finish one step of propagation
for the whole TTN. We use P[i] to represent the core tensor at the
ith location of P, and the range of i = 1,...,2K — 1 for the order-3
TTN as in Eq. (15).

Suppose that in the TTN the root tensor is A" and one of its
neighbors is U, The one-site move function move1(r,s, ) with a
split-step time 7 is shown in Algorithm 1.

5 from the root A©)

This algorithm generates f 0 a semi-unitary U such that

()* (0
Usgar Unga, = Oatars (44)
and the new root tensor AY. For the specific case when the time
step 7 = 0 (which is needed below), it is equivalent to skipping the
propagation at line 1 in Algorithm 1.
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ALGORITHM 1. One-site move function move1.

ARTICLE pubs.aip.org/aipl/jcp

ALGORITHM 3. Backward step of PS1.

/] Without loss of generality, suppose that the indices in
AT and US) are Ai;)u and Ua(s}?g
1 Perform the SVD OfAi/?a, = Wapp0y V-
2Let US) < Weg,,.
st [ < U TES Lo [ES 1 U
4 Let Myo, < 0, Vi,.
5 Propagate M by 7 using the master equation
%Mujas’ = [ Enr)]a’u,[ Snr)]aja,Ma,ay
6 Let AS), « Moo, US.

7 Delete A, U and ff,f)

The iterative PS1 algorithm for the forward step in the splitting
of £ is shown in Algorithm 2, and the backward one in Algorithm 3.

b. PS2 algorithm. In the two-site PS algorithm (PS2), it is pos-
sible to dynamically update the rank, i.e., the dimensionality of the
dynamical space, in the TTN by constructing 4-order tensors, propa-
gating them, and then decomposing them back to the 3-order tensor
structure. The forward steps and backward steps for PS2 are simi-
lar to those in PS1, but PS2 implements a two-site move of the root
tensor in the split steps in addition to the one-site move.

Suppose that in the TTN the root tensor is A” and one of its
neighbor UY. The two-site move function move2(r, s, 7) with a split-
step time 7 is showed in Algorithm 4.

In the SVD at line 2 in Algorithm 4, to control the rank of
a, after the move, in practice we use a truncated version of SVD such
that the range of b is only for those o}, > ¢’ as

Matﬁye 4 Z Waﬂbab ;slv (45)

b st
e’

where €' is a parameter that controls the error in the truncated
SVD. Similarly to move1, for the specific case of time step 7 =0, it
is equivalent to skipping the propagation at line 2 in Algorithm 4.

ALGORITHM 2. Forward step of PS1.

1 fori< 1,2 ..., 2K —-2do
2 Suppose Pli] is A7), and Pli+1] is U®).
/] Compare the heights of A" and U,
if L(AM) < L({U®) then
‘ Call movel(r, s,0) to get U and A®).
else
Propagate A™ by % using Eq. (43).
Call movel(r,s, —5) to get U and A®).
end if
9 | Let P[]+ U™, and P[i+ 1] + A®.
10 end for
11 Propagate A by % using Eq. (43).

0 N o O s W

1 Propagate A©) by % using Eq. (43).
2 for i+ 2K -1, 2K -2, ..., 2do
Suppose P[i] is A™, and P[i — 1] is U,
if L(A™) < L(U®) then
Propagate A by % using Eq. (43).
Call movel(r,s, —%) to get U™ and A®),
else
‘ Call move1(r,s,0) to get U™ and A,
end if
10 | Let P[]+ U™, and P[i — 1] + A®).
11 end for

© oo N o o W

ALGORITHM 4. Two-site move function move2.

Without loss of generality, suppose the indices in
& Y, supp
A and U are Ai;)a and U,gfy)e.
1 Let Mygye < AWyl

afa; ~ asye
2 Propagate M by 7 using the master equation
1 2 2 3
%M"‘ﬁ)’f = [F'SI )]tx'oc[FY(Vlr )]13’/3 [FSj )]y'y [FS; )]s’sMaﬂ)’S'
3 Perform the SVD of Mygye = Wopy05 Vo
4Let US) « Wegg,.
5 Let [ fn’)]a;a’ - UO(J;Z,* [Fr(nrl) ]txloc[Fr(an)]ﬁ’ﬂ Uil;)z,'
6 Let AS), < 05 Vi,

7 Delete A, U® and fs,f)

ALGORITHM 5. Forward step of PS2.
., 2K 2do

1 fori«1, 2, ..

2 Suppose Pli] is A™, and P[i+ 1] is U®).
3 | if L(AD) < L(U®) then
4 ‘ Call move1(r, s,0) to get U™ and A®).
5 else
6 Call move2(r, s, %) to get U™ and A®).
7 Propagate A®) by —2 using Eq. (43).
8 end if
9 | Let P[i] + U™, and Pli + 1] « A®).

10 end for

11 Propagate A©® by % use Eq. (43).

The iterative PS2 algorithm for the forward step in the splitting
of L is shown in Algorithm 5, and the backward one is shown in
Algorithm 6.

The adaptive rank is dictated by our criterion in Eq. (45) in
PS2. This criterion is useful for the bulk of the dynamics. However,
for trees that contain core tensors with all three bonds connected,
the criterion needs modification at initial times. This is because the
tensor rank of A" is one for the initial HEOM state Eq. (25). In
Algorithm 4, if A”) is of tensor rank one, then together with the
semi-unitary property of U, the number of non-zero o, in the SVD
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ALGORITHM 6. Backward step of PS2.

1 Propagate A by % use Eq. (43).
2 for i+ 2K —1, 2K -2, ..., 2do

3 Suppose Pli] is A", and P[i — 1] is U,

a | if L(AM) < L(U®) then

5 Propagate A" by f% using Eq. (43).
6 Call move2(r, s, %) to get U™ and A,
7 else

8 ‘ Call movel(r, s, 0) to get U™ and A,
9 end if
10 | Let P[i] + U™, and P[i — 1] + A®).
11 end for

step Eq. (45) is at most 1, resulting in the new rank R, to be fixed
at 1, no matter whether the propagation of time 7 is performed.

To address this challenge, for all times, in practice the range of
b is chosen to be twice the number that satisfies Eq. (45), where the
order of the SVD is chosen such that o1 > 0, >--- > 0.

3. Remarks

In the same way that for wavefunction propagation there
is no one propagation scheme that is better in all physical
problems, """ we expect that for the TTN-HEOM the three pro-
posed methods—direct integration, PS1, and PS2—will have specific
regimes in which they have favorable properties. The advantage of
PS propagators over direct integration is that it avoids the regulariza-
tion error controlled by e. The disadvantage of the PS propagator is
that it requires sequential SVDs during the dynamics, which makes
the algorithm more difficult to parallelize. 103194 Byrthermore, since
itindividually propagates components of the tensor tree with a given
time step A, its propagation error is of O(A®), which is comparable
to Trotter error. By contrast, for a Runge-Kutta method of order
n, the direct integration can compute with the integration error
O(A"™).

Both direct integration and PS1 are limited by the assumption
that the complete dynamics can be described by the TTN with a
given rank. By contrast, in PS2, the ranks are variable during the
dynamics from a truncated SVD controlled by an error of €', which
makes it possible to change the size of the TTN accordingly.

E. Implementation considerations and capabilities

We implemented the TTN-HEOM in a Python package, Tensor
Equations for Non-Markovian Structured Open (TENSO) systems,
using the popular NumPy™® and PyTorch’ libraries for the tensor
data structure and tensor operations, as well as torchdiffeq'’
for integrating the quantum master equations for tensors.'”” These
packages offer high-level protocols for ease of programming that are
compatible with various computational platforms such as CPUs and
GPUs of different architectures. Details of the implementation will
be provided in a subsequent publication; however, here we describe
some of its key elements for TTN-HEOM.

TENSO admits system Hamiltonians with any level structure
and arbitrary time dependence, making it of utility to investigate
driven open quantum systems. The TENSO implementation admits
arbitrary order for the core tensors and arbitrary tree structure. As

ARTICLE pubs.aip.org/aipl/jcp

such, it goes beyond the order-3 tensor equations discussed in Secs.
II B-II D, and beyond tensor-train approaches to the HEOM. In
the supplementary material, we detail this generalization using the
language of graphs.

The system-bath coupling can include any number of terms
Hs =Y, Qéd) ®X}(3d), and the {Qéd)} do not need to commute.
Therefore, TENSO can be used to investigate a system that is coupled
to two or more environments through non-commuting operators,
something that is computationally challenging to adopt in path
integral-based transfer tensor strategies.

This package currently implements the three propagation
strategies discussed in Sec. II D: direct integration of the quan-
tum master equations with fixed ranks and the stepwise projector-
splitting propagator, including PS1 with fixed ranks and PS2 for
variable ranks during propagation.

To run a simulation using TENSO, in the input one needs to
specify the parameters ¢k, &, Y in the decomposition of the BCF
Eq. (6). Any decomposition compatible with Eq. (6) can be used.
For common spectral density models, including Drude-Lorentz and
underdamped Brownian oscillator, we have implemented a helper
function to obtain these parameters in Eq. (6) using either a Padé’
or Matsubara’” expansion for the thermal factor coth(w/2kpT'). The
helper function gives both the high-temperature terms from the
model spectral densities and an arbitrary order of low-temperature
correction terms from the expansion from the thermal factor. Our
code is also compatible with other BCF decomposition strategies
that yield the form in Eq. (6).”""

To make use of the flexibility of the TTN, in the input one can
also specify the topology of a TTN with the open bonds correspond-
ing to all system and bexciton indices. The topology that is chosen
for the TTN will automatically determine the quantum master equa-
tions for the core tensors. The code admits as input a list of the nodes
in the TTN and their connectivity to either open bonds or to other
nodes. We implemented templates for automatically generating the
train topology as exemplified in Fig. 1(a) and the balanced tree topol-
ogy as exemplified in Figs. 1(b) and 1(c). However, TENSO admits as
input any type of TTN with open ends i,j, n1, . . ., nx, with any one
of the core tensors specified as the root initially.

Each tree structure has a unique version of the quantum master
equations (19)-(24). These equations have common quantities that,
for computational efficiency, must be evaluated in a specified order
to avoid duplication of efforts. The order in which the {f f,f)(t)}
are computed is based on the structure of the tree. We compute the
{ff,f)} froms = K — 1 to 1. This can be seen in Eq. (21), which shows
that f © only depends on f () with u > s. That is, the computation
of f S,f ) proceeds from the leaves of the TTN (the nodes with open
bonds ny, . . ., ng) to the root.

Furthermore, in the direct integration propagation method
with regularization, we need to evaluate {Df,f ) ()}, as well as
{a®)(t)} and { V¥ ()}, for integrating Eq. (42). In this case, we pro-
ceed from the root to the leaves. That is, we go from s =1 to K -1
to evaluate all D (#), 0" (¢), and V9 (¢) for Eq. (42). This can be
seen from Egs. (30)-(36), as DY, a® (1), and V¥ (t) only depend
on D$, a”(t), and V' (t) with r <. In this way, we provide a
systematic sequential procedure to travel through the TTN and con-
struct the needed f S,f ), ng ). For the direct integration, this needs to
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be performed whenever the derivative of the core tensors is com-
puted. For PS, this needs to be performed before each forward step
in the algorithm.

Each propagation step runs over the whole TTN of Q(¢) that
includes the dynamical information of the system and the collection
of bexcitons. The reduced density operator of the system py(t) is
calculated from the Q(¢) for output times as

[ps()]i= 3 [con(A(6), UL (1), US™D) (1) Jijnyeome

nyeng

X 5()"1 e 50,11(. (46)

In practice, the expression of TTN in Eq. (15) is substituted in
Eq. (46). To avoid reconstructing the full high-order EDO, the con-
tractions are first performed for the n; indices and then from ax—;
toa;.

Specifically, this is performed by constructing a series of vectors
t® from s = K — 1 to 1. The recursive definition of t*) is

) =3 (BT U

. (47)
ap
By !

Here, the definition of vector T (¢) for « = 2 and 3 depends on the
location of the tensor U (¢) in the TTN. 9 (¢) = t ™) (¢) (u > s)
if the xth index corresponds to a contracted index or bond in the
TTN. That is, when the xth index in U (¢) is an a, in Eq. (15). In
turn, Z,E;K)(t) = Oon, when the «th index is an n; in Eq. (15). That
is, when it corresponds to an open bond in the TTN. Notice that
this definition is recursive, as t{; (1) depends on T¢¥ (1) = ) (1)
(u>s) if the xth index corresponds to a contracted bond
[cf. Eq. (21)]. After the construction of £ (¢), the reduced density
operator of the system pq(t) is calculated as

[ps()]i = 3 [A ()]0, [ ()L (48)

a

In this way, the explicit evaluation of the full high-order EDO tensor
is avoided.

The HEOM is a numerically exact method for a given decom-
position of the BCF Eq. (5). However, by construction it does not
guarantee positivity of the reduced density operator of the system
and, in fact, negativities can occur when employing inaccurate BCFs.
Since the TTN-HEOM is a decomposed version of HEOM, it can be
numerically exact, but its overall accuracy will also be limited by the
quality of the spectral density that is employed in the model.

In contrast to HEOM, TTN-HEOM can be efficiently employed
with highly structured spectral density and with low-temperature
corrections, as needed to perform computations in chemically realis-
tic systems. Our efforts complement a tensor train implementation
of the HEOM'"" and a recent ML-MCTDH software package with
HEOM capabilities. '

I1l. NUMERICAL EXAMPLE
A. Model

To illustrate the TTN-HEOM, we consider a two-electronic
surface molecular system described by a two-level model coupled to
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FIG. 2. Bath spectral density J(w) describing electron-nuclear interactions for
thymine nucleotide in room temperature water with broadenings y, = 50 cm™’
for each Brownian oscillator.

a structured thermal bath. In the Hamiltonian, the electronic system
is

Hs = Z(I0{1] - o)(0l) + V()0 + o)1), (49)

where |0) and |1) denote two diabatic electronic states, E is the
energy level difference between them, and V is their electronic
coupling. In turn, the system is coupled to the bath via

Qs = 5 (1)1 - [0)(o)). (50)

That is, the bath is assumed to introduce energy fluctuations between
|0) and |1). As an initial state, we take the system to be in a pure
superposition state of the form |ys) = (|0) +[1))/V/2.

To characterize the system-bath interaction, in numerical exact
simulation it is common to use simple model spectral densities, such
as the Drude-Lorentz or the Brownian oscillator. As a computa-
tionally challenging example, in this paper we adopt the realistic
spectral density’> shown in Fig. 2 recently extracted from resonance
Raman experiments for thymine nucleotide in room temperature

TABLE |. Parameters in the spectral density Eq. (51) characterize the bath for thymine
nucleotide in water at 300 K. Parameters are taken from Ref. 92.

b wj (em™) Ay (ecm™) y, (cm™)
0 B 715.73 54.45

1 1663 330.0 50

2 1416 25.6 50

3 1376 186.0 50

4 1243 161.7 50

5 1193 77.3 50

6 784 26.5 50

7 665 32.0 50

8 442 14.9 50
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water. This spectral density consists of one Drude-Lorentz compo-
nent at low-frequencies that describes the solvent and 8 Brownian
oscillators at higher frequencies that represent the interaction of the
electronic system with intramolecular vibrations. That is, the bath
spectral density is

8
(@) =Jor(@) + 37 (@), (51)
b=1
with ]DL((U) = %w)zjoi:;g and ]éb)(w) = %#&W Here, A() is

the reorganization energy of the solvent and y;" its relaxation time.
In turn, A, is the reorganization energy of the bth vibrational mode,

wy its natural frequency, y; " its lifetime, and w}, = \/wj, — y7 > 0 its
effective frequency under damping. Spectral density parameters are
listed in Table L.

B. Tensor tree and bexcitonic choices

For the TTN, we use either a balanced binary tree or a
tensor train, both of them containing order-3 core tensors only.
The balanced tree structure, in particular, minimizes the average
distance between the index of each bexciton n; and the indices of
the system i, j. To obtain the correct thermal state, we include 3 low
temperature correction terms from the Padé expansion to evaluate
Eq. (6). This results in 20 overall bexcitons in the HEOM, and
the resulting balanced tensor tree structure is shown in Fig. 1(c).
Since the index k for different terms in the BCF decomposition
Eq. (6) is arbitrary, the correspondence of y to different parts of the
spectral density is not unique. Here, we choose n; to correspond to
the high-temperature Drude-Lorentz, n;-n1; to the high-
temperature Brownian oscillators, and n13-n2 to the overall low
temperature corrections. The Brownian oscillators are sorted in
descending order of their frequencies. Each Brownian oscillator
requires two bexcitons to be described, while the Drude-Lorentz
feature requires just one. As a metric in Eq. (9), we employ

2, = in/Recy.

C. Open quantum dynamics of the model

To test the performance of TTN-HEOM under different system
settings, we set V = 1000 cm™" and change the energy gap E from
0to 5000 cm ™. We monitor the dynamics through the population of
states |0), [ps Joo, and the purity Tr(pg ), which is a basis-independent
measure of coherence (i.e., purity = 1 for a pure system, <1 for mixed
states, and 1/2 for a maximally mixed two-level system).

Figure 3 shows the converged purity and [ps]oo(t) dynamics
for the two-surface molecules with varying E. The system undergoes
an initial decay of purity due to interaction with the bath until it
reaches a minimum around 0.5. Subsequently, the purity recovers
as the system relaxes to thermal equilibrium. For early times, the
decay of purity is Gaussian and independent of the details of the sys-
tem Hamiltonian. In agreement with the theory of early decoherence
time scales,’' """ this segment of the dynamics just depends on the
initial-time quantum and thermal fluctuations of the operators cou-
pling the system and bath. The subsequent purity oscillations are due
to the population transfer between |0) and |1), which are beyond the
short-time limit. For longer times ¢ > 100 fs, the purity and popu-
lation oscillate as the system relaxes to thermal equilibrium. These
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FIG. 3. TTN-HEOM dynamics captured by different propagation methods for the
two-level system in Eq. (49) interacting with a highly structured thermal environ-
ment (Fig. 2) using the balanced tree in Fig. 1(c). Different colors denote varying
model parameters. The direct (solid line) and PS1 (crosses) integration use a rank
of 60 for all tensors. The mixed propagator (PS2 — direct, circles) starts with
the PS2 propagator with an initial rank 3 and switches to direct integration when
the adaptive rank grows beyond 60. Note the convergence and stability of the
dynamics for all model parameters and integrators.

deviations from exponential dynamics are clear signatures of non-
Markovian open quantum dynamics that persist even for long times
for this highly structured bath.

These results demonstrate that the TTN-HEOM can capture
the numerically exact open quantum dynamics of systems inter-
acting with highly structured thermal environments. We further
note that the TTN-HEOM and HEOM yield identical results. While
HEOM computations for highly structured environments like those
in Fig. 3 are not tractable, we numerically illustrate in Fig. S4 in
the supplementary material the coincidence between TTN-HEOM
and HEOM using only the Drude-Lorentz component in the bath
spectral density.

D. Propagator choice

Figure 3 shows that using TENSO we can obtain identical
dynamics with the three implemented propagation strategies. For
the PS1 and direct integration, converged results are achieved with
a moderate rank R = 60 for all Ry and a depth N =20 for all N.
For the direct integration, the integration of all core tensors is cal-
culated simultaneously with a regularizing parameter e = 10~* using
the RK4(5) method, which allows for adaptive time step h during
the propagation. This method is of O(h*) with an error estimator of
order O(h*) used to determine the integration time step h. For the
PS1 and PS2 methods, a fixed timestep A of 0.1 fs is applied for split-
ting the propagation as described in Algorithms 2, 3, 5, and 6, while
the integration of each low-order tensor is calculated by RK4(5).
Furthermore, in the PS2 method the truncated SVD is performed
with an € = 1077. Here, in all RK4(5) integrators, the relative error
tolerance is 107> and the absolute error tolerance is 107,
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The direct integration strategy offers a practical approach for
propagating the bulk of the dynamics. However, it is numerically
challenging in the initial stage (<2 fs), requiring extremely small time
steps (<0.0001 fs). This is because we start from an initially separable
system-bath state, which requires regularization to remove the sin-
gularity issues in evaluating Eq. (20). This regularization introduces
a small artificial error when this singularity occurs and affects the
stability and accuracy of the numerical integration. Once this initial
stage is overcome, the matrix D) becomes numerically invertible,
as all the eigenvalues A; in matrix DY are greater than zero. That is,
if the regularization constant e satisfies € < mini\/A;, then the regu-
larization scheme Eq. (42) becomes a numerically exact method to
calculate the inverse of D in Eq. (20).

PS1 is a robust strategy to propagate the TTN-HEOM and a
common choice for tensor network methods. The main challenge
is that it incurs Trotterization errors of O(A*) in addition to the
integration errors within each split-step in O(h*) with the actual
integration time h < %. As direct integration, PS1 requires a list of
initial ranks to capture the entanglement between different core ten-
sors, and the convergence with rank requires performing repeated
calculations.

In turn, in PS2 the ranks change adaptively during propaga-
tion starting from an initial given rank for each contracted bond.
The algorithm has the advantage of adapting the ranks as needed
to accurately capture the dynamics and, thus, has variable mem-
ory requirements. Specifically, the ranks change such that the error
introduced in the SVD Eq. (45) is consistent with the control para-
meter €. These ranks change in a non-uniform fashion, as the rank
of some bonds can be larger than others. Our PS2 propagation starts
with minimal ranks. Therefore, these ranks initially grow using PS2
but, eventually, as the dynamics progress, can also decrease. Overall,
for a TTN with order-M core tensors, the PS2 contains the prop-
agation of 2M — 2 tensors, which is of higher-order computational
complexity.

These three methods can be combined on-the-fly to construct
strategies that leverage their strengths and overcome their limita-
tions. There is significant flexibility in combining them, as they only
require the state of the TTN at the specific propagation time. For
instance, one straightforward PS2 — direct strategy is to use the
PS2 at initial times followed by direct integration. This mixed strat-
egy has the benefit of determining the proper requirement for the
ranks for each bond from the early time dynamics and avoiding
the initial singularity in TTN-HEOM that limits the direct propaga-
tion strategy. Once the required computational resource requested
by PS2 exceeds a threshold level, one switches to the direct inte-
gration method that has the advantage of allowing integration with
higher order adaptive time step methods compared to the order of
Trotterization errors in PS1 and PS2.

The results from this mixed PS2 — direct strategy approach are
also shown in Fig. 3. In this case, all core tensors in the TTN start
with a rank of 3 and use the PS2 propagator until the maximum rank
in the TTN reaches 60. After that, the remaining dynamics are prop-
agated using direct integration. We find that, compared to the direct
integration with regularization and PS1 with all ranks to be the same,
the mixed PS2 — direct strategy can achieve the converged results
with reduced computational resources. For instance, Fig. 4 shows the
computation time of each of the propagation strategies in Fig. 3 for
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FIG. 4. Computation time of each propagation strategy in Fig. 3 on 8 cores of an
Intel Xeon Gold 6330 Processor. Each bar shows the computation time of different
propagation strategies for the initial 100 fs of dynamics (left axis). The dashes mark
the computation time for the PS2 segment (~2 fs) of the PS2 — direct method
(right axis).

the initial 100 fs of dynamics (run on 8 cores of an Intel Xeon Gold
6330 Processor). By adopting the PS2 for the initial propagation, the
mixed strategy with direct integration achieves the best performance
while still providing numerically converged results. The reason for
this is that the effective simulation space identified by PS2, where
at least one bond has a rank of 60, is smaller than the one used for
PS1 and direct, where all bonds have a rank of 60.

For the chosen propagation parameters, PS1 is actually faster
than direct integration with the same size of ranks in the TTN. This is
because the main computational effort in the direct integration is in

evaluating the { f G )} and {Df,f ) }, which requires a series of sequen-
tial SVDs that are not parallelized. This is similar to the sequential
SVDs required in the PS1. However, the difference is that, while in

PS1 the f () are evaluated only once during Trotterization time A,

in the direct integrator the f &) and DY are constructed whenever
the derivatives of all core tensors are requested by the high-order
numerical integrator, and this occurs several times per integration
time step h < A. Therefore, the direct integrator is slower than the
PS1 for the same size of TTN, as it contains more matrix construc-
tion steps. However, if we use the mixed strategy where the most
part (>2 fs) of the dynamics is obtained by the direct integration, it
actually becomes faster than PS1. This is because the direct integra-
tor inherits the non-uniform ranks from the initial PS2 segment that
reduces the overall simulation space.

Figure 5 shows the effect of adjusting the rank threshold in
the mixed propagation strategy. The other parameters are the same
as in Fig. 3. The figure shows that for the first 100 fs conver-
gence is achieved with a rank limit of 40, while longer dynamics
require a rank of 60. As expected, increasing the accuracy of the
TTN by increasing the ranks achieves longer converged dynamics.
The maximum rank needed for convergence depends on the sys-
tem Hamiltonian, revealing that a larger system energy gap demands
a higher rank for convergence. We hypothesize that as the gap
increases, the influence of the bath becomes increasingly Markovian,
as revealed by the reduction of the partial purity oscillations for long
times. However, this Markovian limit is more challenging to capture
for this numerically exact non-Markovian TTN-HEOM method.
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FIG. 5. TTN-HEOM dynamics for varying maximum rank thresholds for the system
and TTN in Fig. 3 using the mixed propagator (PS2 — direct). The propagator
starts with PS2 with an initial rank 3 and switches to direct when one of the adaptive
ranks grows beyond 80 (solid lines), 60 (crosses), and 40 (circles).

E. Tree structure choice

Different TTN structures are expected to influence the com-
putational cost of the TTN-HEOM dynamics and the effectiveness
of the method to compress the open quantum dynamics. However,
given a tree structure, it is challenging to optimize the ranks for
efficient computation. The PS2 strategy has the advantage of auto-
matically adapting the compression in different components of the
tree to satisfy the criteria of Eq. (45).

To investigate the influence of the tree structure on the com-
putational resources requested by the PS2 — direct propagation, we

E=5Y —— E=3V — E=V
—— E=4V — E=2V — E=0

1.00
c
o
© 0.751
3
o
£ 0.50 A
<
3 0.25
et
(V]

0.00 - . . . . .

1.0 4

2 0.8

5

[=%

0.6 -
0 5 10 15 20 100 200 300 400
Time (fs)

—— Balanced Tree O Train

FIG. 6. Balanced tensor tree vs tensor train TTN-HEOM dynamics for the system
in Fig. 3 using the mixed strategy (PS2 — direct) with maximum rank threshold 80.
Note that the dynamics is independent of the tree structure.

ARTICLE pubs.aip.org/aipl/jcp

performed TTN-HEOM simulations for the same model as in Fig. 3
using this mixed propagation strategy using a tensor tree and ten-
sor train. The tensor train scheme is the one shown in Fig. 1(a) with
K =20, and the tree scheme is the one shown in Fig. 1(c). Figure 6
shows that, as expected, the open quantum dynamics is independent
of the TTN employed.

Figure 7 shows the growth of the maximal rank and size (over-
all number of core tensor elements) of the TTN with these two
TTN structures for the dynamics in Fig. 6. The maximal rank
increases during the PS2 propagation until it satisfies the threshold
and changes to the direct method of fixed rank. Overall, the size of
the TTN in the tensor train [Fig. 1(a)] grows faster than that in the
tree scheme [Fig. 1(c)] when applying the same error tolerance in the
propagation algorithm. This is because in the HEOM, the primary
entanglements in the tensor occur between the system and each bath
feature. By employing the tensor tree with the system DOFs at the
root and the bath features at the leaves, one minimizes the aver-
age distance in the TTN between the system and each bath feature
to O(log K). In turn, for the tensor train, the average distance is
O(K). This offers an example where balanced tensor trees are bet-
ter suited for TTN-HEOM from a computational cost perspective,
which may be because it keeps strongly correlated parts in the TTN
closer to one another.”” Our TTN includes all possible tensor tree
topological structures, with the balanced TTN and the tensor train
being two extreme particular cases. We expect that the “optimal”
TTN structure should sit in between these two extreme cases.

Finally, we point out that simply storing the needed EDO
directly in these simulations is just not possible using present-day
and foreseeable computational resources. Table IT lists the size of
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FIG. 7. Maximal rank and size of the TTN during PS2 — direct propagation with
the maximum rank threshold of 80 for a tensor train (circles) and a tensor tree
(solid lines) for the dynamics in Fig. 1(c). TTN size refers to the overall number
of core tensor elements. In (a) and (b), the splitting time step A is 0.01 fs, while
in (c) and (d), it is 0.1 fs. Note that the tensor train size grows faster than the
tensor tree scheme under the same SVD tolerance (1077) in Eq. (45). Although
the rank required from PS2 grows rapidly, switching to direct integration with fixed
rank does not introduce appreciable errors.
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TABLE Il. Size (overall number of core tensor elements) of TTN for a bath described
by 20 features and a depth of 20 for each Ni. The memory usage of a dense high-
order EDO tensor in HEOM is also shown for comparison.

Balanced tree Train Dense HEOM
Rank 40 60 80 40 60 80 cee
Size (x10°) 0.7 22 49 06 13 23  42x10%

a TTN with fixed rank and compares it to the size of the EDO in
conventional HEOM with 20 features and a depth of 20 for each
feature. Storing a dense tensor with that size of 4.2 x 10*® would
require 6.7 ronnabytes (10%”) of memory! Here, the estimation of
the dense HEOM reflects the whole uncompressed Hilbert space
dimension. In reality, from practical experience, one can use other
numerical techniques, such as filtering out near-zero elements,*’
or use the standard truncation by total depth instead of the depth
of each bexciton to shrink the active dynamical space in HEOM
more aggressively. The depth of 20 is a conservative choice for this
case study, and the greatest lower bound of such truncation depths
needs to be determined by actual computations or experiences on a
specific physical model. Therefore, either tensor networks or other
techniques are necessary for practical simulation based on current
classical computers.

IV. CONCLUSION

In conclusion, we introduced TTN-HEOM, a numerically
exact quantum master equation method based on the bexcitonic
hierarchical equations of motion (HEOM) and a tree tensor net-
work (TTN) decomposition. TTN-HEOM is designed to capture
the dynamics of driven open quantum systems interacting with
structured bosonic thermal environments, even those of chemical
complexity.

The specific advances of this paper are as follows: (1) we intro-
duced a tensor network decomposition of the HEOM based on the
bexcitonic generalization. As such, the proposed TTN decomposi-
tion applies to all HEOM variants that can be cast into the general
bexcitonic form—including the standard HEOM with and without
scaling and the collective bath coordinate method—and admits a
representation of the bexcitons in number, position, or momen-
tum basis. (2) We showed that the bexcitonic equations of motion
can naturally be expressed in sum-of-product form, that the bexci-
tonic density operator can be decomposed by a tree tensor network,
and that a useful set of coupled master equations can be devel-
oped for the low-order tensors from Dirac-Frenkel’s TDVP. Our
developments are analogous to the ML-MCTDH, as the three main
design principles (sum-of-product dynamical generator, tree tensor
network decomposition, and Dirac-Frenkel’s TDVP) are identical.
However, while ML-MCTDH is designed for unitary dynamics, the
TTN-HEOM is designed for thermal dissipative dynamics. (3) We
implemented the TTN-HEOM into a general-purpose code, TENSO,
which stands for Tensor Equations for Non-Markovian Struc-
tured Open systems. TENSO admits arbitrary tensor tree structures,
including tensor trains and balanced tensor trees, and arbitrary
orders for the core tensors. TENSO includes three numerically stable
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propagation strategies (fixed-rank direct integration and PSI and
adaptive rank PS2) for the decomposed master equations based on
TDVP. The direct propagation offers adaptive time steps and the
use of integration routines with errors that are high-order in the
integration time step. In turn, the PS1 and PS2 are based on second-
order Trotterization. Specifically, PS1 conserves the size of the TTN
by keeping all ranks constant during the dynamics. In turn, PS2 is
an adaptive-rank method that updates the size of the TTN accord-
ing to the error in a truncated SVD step. These strategies can be
mixed at will in practical simulations. TENSO also includes com-
mon decompositions of the bath correlation functions, including
the low-temperature corrections, for common environmental spec-
tral densities such as the Drude-Lorentz and Brownian oscillator
models.

Our TTN-HEOM method can capture both the early times
and the asymptotic dissipative dynamics of general quantum sys-
tems immersed in thermal environments. This contrasts with some
other tensor network techniques, such as the TD-DMRG,"’ ML-
MCTDH,** and T-TEDOPA,”* which are unitary in nature and can
only mimic the dissipative dynamics for a finite amount of time by
explicitly capturing the dynamics of a finite discretized version of the
bath.

Our TTN-HEOM method admits arbitrary tree tensor network
structures, tensors with orders that vary across nodes, and vari-
able ranks for the core tensors during propagation. This contrasts
with recent advances in combining tensor network techniques into
HEOM with specific tensor train decompositions.”* **>%’

With respect to the choice of master equation formalism, the
TENSO package implements propagation strategies based on the gen-
eral sum-of-product master equation generator Eq. (13). This con-
trasts with other approaches where the generator of the dynamics
is equivalently expressed as a hierarchical sum-of-product form'!!
or strategies where the generator is decomposed as a matrix prod-
uct operator (MPO)* or a tree tensor network operator (TTNO)
with the same network structure as the extended density operator®
(see also Refs. 114 and 115 for a discussion on how to optimize
this strategy). An advantage of the TENSO framework is that it
is straightforwardly adaptable to any dynamical master equation
method that admits a sum-of-product type of generator. Using it, we
thus avoid repeatedly implementing tensor network techniques for
other quantum master equations with sum-of-product generators,
such as the Lindblad equation and the time-dependent Schrodinger
equation.

We demonstrated the self-consistency and utility of
TTN-HEOM and TENSO by capturing the open quantum dynamics
of a two-level molecule interacting with a structured thermal envi-
ronment with a spectral density composed of one Drude-Lorentz
and 8 Brownian Oscillator features. Because of computational
cost, such a model is well beyond the applicability of standard
versions of the HEOM. We show that the dynamics is independent
of the tree structure and propagation method, demonstrating
the self-consistency of TENSO. Overall, by providing a system-
atic approach for propagating exact quantum master equations,
TTN-HEOM facilitates precise numerical simulations from sim-
ulating open quantum dynamics coupled with realistic chemical
thermal environments.

We expect that the TTN-HEOM and TENSO will be use-
ful to understand and emulate the operation of realistic quantum

J. Chem. Phys. 163, 104109 (2025); doi: 10.1063/5.0278591
Published under an exclusive license by AIP Publishing

163, 104109-15

¥1:9G:G1 G20T Jequialdas 80


https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics

devices, to engineer quantum environments that enhance molecu-
lar function, to isolate molecular qubits with enhanced coherence
properties as needed for quantum technologies, to understand ele-
mentary steps in photosynthesis and photovoltaics, and to test
quantum control strategies in the presence of quantum environ-
ments. Future prospects include investigating other combinations
for the mixed propagation strategy, implementing an adaptive one-

LIS 35 an alternative choice of PS2, and the potential

site algorithm''"’! hoic
use of auto-differentiation techniques™"” for propagation.

SUPPLEMENTARY MATERIAL

See the supplementary material for the generalization of the
TTN theory and algorithms to general tree topology and a numerical
illustration of the coincidence between TTN-HEOM and HEOM for
a Drude-Lorentz bath.
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APPENDIX A: SKETCH OF DERIVATIONS
OF EQS. (19) AND (20)

The derivation of the two master equations (19) and (20) for
the TTN in Eq. (15) follows from (i) the TDVP (Eq. (17)), (ii)

ARTICLE pubs.aip.org/aipl/jcp

the constraint that all U (¢) (0 < s < K) are semi-unitary tensors
[Eq. (16)], and (iii) the gauge condition [Eq. (18)].
We rewrite the TTN decomposition as

Qij”l“'”K(t) = Z A(O)ugrzmz gt (A1)

ija,

Here, U (1 is the branch of the TTN that contracts with the root A”
and contains U™V as

UL = [con(UD (1), UKD () armroomg. (A2)

More generally, we define

, (A3)

K

U;:,)lzl...n% = [Con(U(s)(t), .. -)]asn[lu%

as the branch of TTN that breaks the bond a; and includes U(s),
where {1, ..., €k} isasubset of {k}}_,, corresponding to the part

of indices n; that show up in the branch ¢/ ) In turn, A,(]Sn)/ _—
is another half of the branch of TTN that breaks the bond us and
includes A and {lx 1, ..., lk} = {k}Ik{:l\{él, ..., Uk}, corre-
sponding to the complement part of the indices n; that show up in
the branch A®).
In this way, the original EDO Qjjn,...n, () is
Qg (1) = z AL U, e,

Yoy gy ey Gs

— Z A(S)u(s) (A4)

o N}
N ngKS}. Notice that A = A©® a5 shown in

Here, i and j are the multi-indices with i = {i, Jo ey -
and j = {I’l(gl, ..
Eq. (Al).
Because the TTN can be considered as a series of singular value
decompositions, and all UW are semi-unitary, we have

S UG UL =84 (A5)
i

Proof. This can be proved with an induction on the tensor
tree.

(1) Suppose the core tensor Ua nen, has the indices ny and n; on
its second and third positions in the TTN decomposition
Eq. (15). Then U®) = U, and Eq. (A5) is an instance of
Eq. (16).

(2) Uu(_fgun, in the TTN decomposition Eq. (15). Suppose U () has
indices L{(E:‘j)l where j, =j\{n},and

Z u(S)*u(S)
j

as)

Z Z u(u)*Ua(Sz*n[ Ufgssﬂ) ”Iu(:j])l
al P jim

= Z 6a;au U,;Esz*nan(ja) n
ala,n

=3 Uy Ustun = O (A6)
a,n;

The second-to-last equal sign is due to the inductive

hypothesis, and the last one is from Eq. (16).
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3) Ua(fzkav. This case is similar to (2).
(4) Uéfgu%. Assume U has indices Llé:;?, and U ) has indices
u lgfj)z’ with j, = j \j,. Therefore,
Z u(s)*u(s) Z Z Z u(”)*u(“)*U(-‘)*

alj, alalal,
a;,a, a),ay jij,

U U y @)

)y Au)y

= Y O b, Uglyy Usida,

ala, a,a,

= Z U(S)* Uu(sgua,, = 8a_§as- (A7)

ala,a,
auav

The second-to-last equal sign is due to the inductive
hypothesis, and the last one is from Eq. (16).

From (1)-(4), Eq. (A5) is proved for all s. |
Similarly, the gauge condition can also be generalized to the
branch as
©[d <s)] _
U, u =0. A8
Z o [ ], (A8)

To derive Eq. (19), we plug Eq. (A4) into the TDVP Eq. (17),

§(ACUOY LAY :a(A(S>u<s>)*%(A<5>u<s)). (A9)

That is,
SA LU 2 A 14 1 AO* 514> £ A 14
A(S)u(s) " A(S)u(s)

YO YOIEa ()% 57 /()% O
=0ADT U AUt =

A O 109 O L 4@ 5100x 4© 9 )
ot ot
(A10)

Since the variation of 8 A®)* and 6U/)* is independent and
arbitrary, therefore,

Z u(-‘)*ﬁ u(s)A(S)

i’y ij
Jljﬂs
()% 0 (s) (s) OENORNO
_%:u] U AT Zu Umat“‘ll'a’ (A11)
and
Z A(S)* 1]1;“4(5)7/{(5)
i'ija,
ORCAPOINE O 409 1)
%3,4 57 Aia Uy .Za:A Al 5 Uy (A12)

From Eq. (A11) and the properties of the branch U in Egs. (A5)
and (A8), we have

4 _ ()% (s) )
A Zua,, Ly s US) AL (A13)

iy ia; >
i'ija
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and when s = 1, it becomes

" Ul A (A14)

any Nkt tjay

9 ,© <1>*
EAI'J'a’ = Z Z Z/{ . ‘C”J’”’ .
ijay .- omy ijny - nK

nl ceng
Furthermore, note that

(1)*
Z ua;ﬂ;n-n 'C",J,”,
ny-eng ijny-- nK

=) [hjn]i’i[hfn]j’j[ Snl)]a;al- (A15)

. ulgllf)h'“nx

Hence, we obtain Eq. (19).
On the other hand, plug Eq. (A13) into Eq. (A12), and then we
obtain

O £y AU
Z Al a’ 1 i A u

i'ija,

AU Ly, AL, U

1”]"1}a a

<s>* © 9,
+ 2 A A oo (Al6)

iag

To obtain the master equation of UY), similar to the derivation in
Eq. (A5), suppose U looks like U;ssa)uav in the TTN decomposition
Eq. (15) [other cases Uéfgk%, Uéjzu,,l, and Ué:,zkm are similar]; then
the master equation of U can be obtained by multiplying 2/ 2*
and U (V)* on both sides of Eq. (A16). Suppose Z/ILS:‘].)] and Z/li:j)z with
j» = \j;> then

> u“’)*u(“)*A‘S)* Loy AL U
i'j'ijas
- Z Z D(S) “s“ S”u)]a “u[ SHU)]“;;‘% Ua(ssa)uav’ (A17)
(v)* (u)* (s)* (S)* ) 40) 7,0)
U UGS A UG Lyt o) AL UL
1”]”1)u a
=3 Z [D$)] ,,,Uy> ol Nasars (A18)
and

W) 0% 4@ 4096 -5 p© 456
Z uﬂvjz uau]'l Aia; Alm ot aSJ Za: asal dtUa a0, (A19)

ijas
Here, we have used the definition of f S,f), Df,f), and DY intro-

duced in Egs. (21)-(24) to simplify the equation. Plugging
Egs. (A17)-(A19) into Eq. (A16), we have

» 456
D, —=U,
Z ajal dt alalal,

as

:Z Z [Dfrf)]us’us”[ Snu)]u;uu[ r(nv)]uLuUU:rsu)uuv

Z Z D(S) ajal Unftza [ fj)]asa;' (AZO)
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Similarly, for U[S:,z)u -

(S) d (S)
D.,,—-U, ,
; alal dt ala;n

=2 3 O Larar L5 Jaga B 1 US,,

m ala,n
-3 3 D] ,;,Ubfjn[ aars (A21)
m alag
for Uéfgk%,
x d

> 0 508
~ ala!’ dt ana’,
s

- (s) (k)
*z Z [Dm ]u;ag’[hm ]n;uu

£ T, U

anka
m alnia,
-2 Y D N U [ Lo (A22)
m uas

and for Uéjﬁm,

E D..,—=U" ,
o aal de - amny

s k I s
=3 Y PV Taar [0 L 1 Ly US

m alngm
- Z Z [Dr(rf) aa Uész n [ Srf)]asag- (A23)
m alag

Hence, Eq. (20) is derived.

APPENDIX B: EXAMPLE OF TTN-HEOM FOR AN OPEN
QUANTUM DYNAMICS WITH 4 BEXCITONS

To better demonstrate that the TTN scheme yields a closed set
of master equations, here we consider an example of tensor tree
decomposition for Q(¢t) with K = 4 bexcitons,

Qijmnznan(t)
RiRyR;
=3 AU (U, (O (0, (@Y

a1a,0a3

where A is the root. Inserting Eq. (B1) into Eq. (17) and taking into
account the gauge condition Eq. (18) yields

S =TS LD uadl), 32

m ijay
for the root tensor. The f ) is defined as

Sr?) a Las = Ua(r?rt,r [h(”]ngm [hfn4) ]nl’;m Utg:lrlnp (B3)

ATATY N

m a ray = Z U(;)r*r (I)Jn;nl [hSnZ)]n;nz Ulgzalenz’ (B4)
n n’ O

N = U L ) [ ) U (BS)

’or
aja,asa;
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and capture the bexciton influence on the system. Note that f o
depends on f @ and f ) while the latter depends on the dissipators
WP These quantities effectively extract the relevant bath dynam-
ics that influences the system in a compressed fashion. In turn, the
semi-unitary tensors capture the active space of the bexcitons that
influence the system’s dynamics. The equations of motion for them
are given by

X([ m ]aguz[ Sr?)]asag (2) - (2) [ gnl)]a,a;): (B6)

ajayas a,a al

©) d 3
D u)
;[ ]szt unn

-Y Y

m ala;nin,

x([hﬁmn;n,[hf,f)] ul) U P law), (B

nyny gt 1, aynin,

©) d (@
D1, Ul
Z[ ]%%dt ansn

a3
_ Z Z D(S) Ll

m alasnyn,

% ([B5Lms [0S 1 U = U [ L) (BS)

nyny a nyny asning

Here, the quantities D& ) and DY are defined by

(1) (0) 4 (1)*
(D" ]aa, 2,1: A‘I“ Ajjay > (BS)
[D(z)]aﬁaz = Z Ua(fza)’ag[ (1)]a a U§f2223, (B10)
[D(a)]agfls = Ucfza)a [ (1)]“;“1 U‘SIZ“)ZZV (Bll)
and
[Dr(nl)]aial = > [l [l A('O? ’AI(JQ*’ (B12)
i'j'ij

[Dr(ﬂZ)]u;uz = Z [ En?))]uw;U:lz;lal[Dfnl)]a a, Uélza)z';}) (B13)
D )wa = Y Ll U [P 1 U (B14)

ajalaay
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