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We introduce a practical and accurate strategy to capture light-matter interactions using the Floquet formalism
in the velocity gauge in combination with realistic first-principle models of solids. The velocity gauge, defined by
the linear coupling to the vector potential, is a standard method to capture the light-matter interaction in solids.
However, its use with first-principle models has been limited by the challenging fact that it requires a large
number of bands for convergence and its incompatibility with nonlocal pseudopotential plane wave methods.
To improve its convergence properties, we explicitly take into account the truncation of Hilbert space in the
construction of the Floquet Hamiltonian in the velocity gauge which leads to a series of nested commutators
between the position operator and the material Hamiltonian. To avoid the incompatibility with the pseudopo-
tentials and efficiently compute the nested commutators, we base our computations on generalized tight-binding
Hamiltonians derived from first-principles through maximally-localized Wannier functions. We exemplify the
approach by computing the non-equilibrium optical absorption spectra of laser-dressed trans-polyacetylene chain
using realistic electronic structure. We show that, by proceeding in this way, Floquet consideration involving the
truncated Hilbert spaces reproduces the full basis calculations with only a few bands and with significantly
reduced computation time. The strategy has been implemented in FLOQTICS, a general code for the Floquet
engineering of the optical properties of materials. Overall, this work introduces a useful theoretical tool to realize
Floquet engineering of realistic solids in the velocity gauge.
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I. INTRODUCTION

Strong light-matter interactions provide powerful means
to control and manipulate the physical and chemical prop-
erties of matter. The latest advancements in laser-technology
now enable the generation of few-cycle lasers in the IR and
UV/Vis region with intensities of ∼1013–1014 W cm−2. At
those intensities, the incident light can dramatically distort
the electronic structure of bulk matter as the strength of the
light-matter interaction becomes comparable to the strength of
chemical bonds before the onset of dielectric breakdown. This
opens exciting opportunities to create laser-dressed materials
with structure-function relations that can be very different
from those observed near thermodynamic equilibrium. Re-
cent studies have demonstrated the creation of light-induced
conical intersections [1,2], superconductivity [3,4], high har-
monic generation [5,6], and light-wave electronics [7–9]. To
better understand emerging experiments, it is highly desirable
to develop theoretical simulations based on realistic material
Hamiltonians that go beyond parabolic bands or simple tight-
binding models often employed to describe the properties of
laser-dressed solids.

Theoretically, the external laser field can be considered
as a time-periodic perturbation and, thus, can be treated ex-
actly using Floquet theory. This has lead to a plethora of
contributions in Floquet engineering [10–15], the study of the
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physical property of periodically driven systems. Importantly,
recent observations have demonstrated that the Floquet picture
remains accurate even for modeling the effects of ultrashort
few-cycle lasers [16,17].

A standard method of capturing the light-matter inter-
actions in the Floquet engineering of solids is through the
velocity gauge [18–21], where interaction is bilinear in the
vector potential of light (A(t )) and the materials’ momentum
operator. This is in contrast to the length gauge where the
interaction is bilinear in the electric field of light (E(t )) and
matter’s dipole operator. Due to gauge invariance, both ap-
proaches provide identical results for the physical observables
provided the basis is complete. The length gauge has the
advantage of rapidly converging with the number of bands
[22–25], but breaks the spatial periodicity of the solids. Its
implementation leads to the Peierls substitution [26] in tight-
binding models but often ignores intra-cell dipole transitions
present in realistic solids. In turn, the velocity gauge has
the advantage of respecting the space-periodicity of solids as
needed to invoke Bloch theorem, and provides a key physical
perspective of the laser-induced dynamics in solids [27–29]
and computational advantages in some cases [30–36]. How-
ever, it is limited by the fact that it usually requires a large
number of bands for convergence [22–24]. Moreover, efficient
and accurate first-principle electronic structure calculations
for solids based on density functional theory (DFT) often
require using the non-local pseudopotentials in the Hamil-
tonian. This pseudopotential approach leads to non-linear
light-matter interaction terms in the velocity gauge [37–39],

2469-9950/2025/112(8)/085139(13) 085139-1 ©2025 American Physical Society

https://orcid.org/0000-0003-2518-4689
https://orcid.org/0000-0002-0802-8185
https://ror.org/022kthw22
https://ror.org/022kthw22
https://crossmark.crossref.org/dialog/?doi=10.1103/2k9g-r77f&domain=pdf&date_stamp=2025-08-22
https://doi.org/10.1103/2k9g-r77f


VISHAL TIWARI AND IGNACIO FRANCO PHYSICAL REVIEW B 112, 085139 (2025)

which are often ignored as they add significant computational
burden especially when a large number of bands are needed
for convergence. Both these issues make the computations in
velocity gauge in the Floquet formalism using first-principle
models approximate as, in practice, only a small finite number
of bands can be tractably used to propagate the quantum
dynamics.

In this paper, we propose an accurate and practical strategy
to simulate the Floquet engineering of solids in the veloc-
ity gauge based on first-principle material Hamiltonians. For
this, we first derive the light-matter interaction Hamiltonian
in the velocity gauge from the length gauge taking into ac-
count the truncation of the Hilbert space. We refer to this
scheme as the truncated velocity gauge. Our efforts are build
upon Refs. [40,41]. We generalize these initial considera-
tion to be able to capture realistic Hamiltonians (see also
Ref. [42]) and to drive-probe considerations where a strong
pump laser drives the system out-of-equilibrium and a second
weak laser probe its properties. The approach is motivated
by the superior convergence properties of the length gauge
in truncated Hilbert spaces. As shown, such space truncation
within Floquet engineering leads to terms that are non-linear
in the vector potential of probe and drive laser expressed as
a series of nested commutator between the position opera-
tor and the material Hamiltonian. The combined light-matter
Hamiltonian in the truncated velocity gauge respects the
space-periodicity of the solid and allows the Bloch theorem to
be invoked throughout. To capture the electronic structure, we
employ generalized tight-binding models constructed through
Wannier interpolation [43] of first-principle calculations, a
useful strategy in describing linear and non-linear optical re-
sponse of solids [26,36,44–47]. The Wannier function based
approach allows us to compute the nested commutators up to
all orders of the vector potential in a straightforward way,
even in presence of non-local pseudopotential terms in the
Hamiltonian. This proposed strategy based on the truncated
velocity gauge can be used to investigate the response prop-
erties of laser-dressed materials described through realistic
Hamiltonians in a computationally efficient way that avoids
the convergence issues inherent to the velocity gauge and the
complications of computing the light-matter interactions with
DFT-based solid Hamiltonians.

To exemplify and test the approach we use it to model the
non-equilibrium optical absorption properties of laser-dressed
solids based on our previous work [21] but now in the context
of a first-principle realistic Hamiltonian for a solid. In this sce-
nario, a crystal is dressed by a laser of arbitrary intensity and
frequency, and the effective absorption properties of this laser-
dressed system are then probed using a weak laser treated
up to first-order in perturbation theory. We compute the op-
tical absorption spectra of laser-dressed trans-polyacetylene
(tPA). The computations in the truncated velocity gauge with
this realistic material Hamiltonian show faster convergence
with respect to the number of bands than the usual velocity
gauge, and accurately capture the spectrum even at high drive
field strengths where the issues due to the non-local pseu-
dopotential become important. Overall, our proposed strategy
enables faster and accurate velocity gauge computations of
light-matter interactions using a realistic description of the
material Hamiltonian as needed in Floquet engineering.

This paper is organized as follows. In Sec. II we derive the
theory of laser-dressed solids in truncated Hilbert spaces and
use it to characterize its optical response properties. In Sec. III
we show how to computationally implement the theory using
a realistic description of materials. In Sec. IV we compare
computations for tPA in velocity and truncated velocity gauge
with varying laser intensity and number of bands. We summa-
rize our main findings in Sec. V.

II. THEORY

A. Velocity gauge Hamiltonian for truncated Hilbert spaces

Inspired by Ref. [40], we now derive a Hamiltonian for
a laser-driven solid in the velocity gauge starting from the
length gauge while taking into account the effect due to the
truncation of Hilbert space. We opt to start with the length
gauge as it shows much faster convergence with respect to
the number of basis states compared to the velocity gauge
[22–24].

In the length gauge, electrons in a solid satisfy the time-
dependent Schrödinger equation (TDSE) [38,46,48]

ih̄
d

dt
|�l (t )〉 = (Ĥ0 + eE(t ) · r̂)|�l (t )〉, (1)

where |�l (t )〉 is the many-particle electronic state in the
length gauge, Ĥ0 is the space-periodic material Hamiltonian
which can include contributions from both local and non-local
potentials, −e is the charge of electron, E(t ) is the electric
field due to the external laser and r̂ = ∑M

i=1 r̂i is the position
operator of the M-electron system. We assume a uniform
electric field in space and employ the electric dipole approx-
imation, which is accurate as the unit cell is typically much
smaller than the wavelength of light [49].

In the velocity gauge, the TDSE is obtained by a Power-
Zienau-Woolley transformation [33,50]

|�l (t )〉 = T̂ †(r̂, t )|�(t )〉 = e
ie
h̄ A(t )·r̂|�(t )〉 (2)

of Eq. (1), where |�(t )〉 is the state in velocity gauge and
A(t ) is the vector potential of light (E(t ) = − dA(t )

dt ). We ac-
count for the truncation of Hilbert space by not assuming
the canonical commutator relation [r̂x, P̂y] = ih̄1̂δxy, where
P̂ = ∑M

i=1 p̂i is the true many-body momentum operator and
r̂x, P̂y are position and momentum along particular Cartesian
coordinates of the many-body system. This implies that in the
truncated Hilbert space P̂ �= me

ih̄ [r̂, Ĥ0] due to the Hilbert space
truncation in addition to possible effects due to the non-local
pseudopotential (see Sec. III). This yields

ih̄
d

dt
|�(t )〉 = Ĥ (t )|�(t )〉, (3)

where

Ĥ (t ) = Ĥ0 +
( e

ih̄

)
[A(t ) · r̂, Ĥ0]

+ 1

2!

( e

ih̄

)2
[A(t ) · r̂, [A(t ) · r̂, Ĥ0]]

+ 1

3!

( e

ih̄

)3
[A(t ) · r̂, [A(t ) · r̂, [A(t ) · r̂, Ĥ0]]] + · · ·

(4)
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is now the velocity gauge Hamiltonian in the truncated
Hilbert space. Here, we have used the relation eÂB̂e−Â = B̂ +
[Â, B̂] + 1

2! [Â, [Â, B̂]] + 1
3! [Â, [Â, [Â, B̂]]] + · · · . In this work,

we call this the “truncated velocity gauge” to differentiate it
with the velocity gauge in complete Hilbert spaces. The nested
commutator terms in Eq. (4) simplify to the regular velocity
gauge when the canonical commutator [r̂x, P̂y] = ih̄1̂δxy is
strictly satisfied and the material Hamiltonian does not include
any non-local pseudopotential. In that case, [r̂, Ĥ0] = ih̄

me
P̂

leading to the second term in right side of Eq. (4) being
eP̂ · A(t )/me, the third term being [eA(t )]2/2me, while other
higher order terms cancel.

A useful property of Eq. (4) is that it maintains the space-
periodicity of the material Hamiltonian even in the presence
of the external field. In fact, any spatial translation by integer
multiples of the lattice vector R in Eq. (4) cancel out due to the
commutator structure and the fact that Ĥ0 remains invariant
under these translations. This enables to invoke Bloch theorem
which will be used in Sec. II D.

B. Drive and probe laser considerations

We extend the truncated velocity gauge Hamiltonian to
simulate a physical situation in which an arbitrarily strong
continuous wave (CW) laser dresses a solid while the effec-
tive non-equilibrium properties of this laser-dressed solid are
probed using a weak CW laser. The net vector potential in
such a situation is given by A(t ) = Ad(t )êd + Ap(t )êp, where
Ad(t ) and Ap(t ) represent the time-dependence of the drive
and probe laser, respectively. In turn, êd is the unit vector of
the drive laser polarization while êp is for the probe. Inserting
this into Eq. (4) yields

Ĥ (t ) = Ĥ0 +
( e

ih̄

)
[(Ad(t )êd + Ap(t )êp) · r̂, Ĥ0]

+ 1

2!

( e

ih̄

)2
[(Ad(t )êd ) · r̂, [(Ad(t )êd+Ap(t )êp) · r̂, Ĥ0]]

+ 1

2!

( e

ih̄

)2
[(Ap(t )êp) · r̂, [(Ad(t )êd+Ap(t )êp) · r̂, Ĥ0]]

+ · · · . (5)

Equation (5) contains terms proportional to powers of the
drive laser, probe laser and mixed vector potential terms.
While we fully capture the effects of the drive, we only focus
on the linear response to the probe. In this regime

Ĥ (t ) ≈ ĤLD(t ) + Ĥp(t ), (6)

where ĤLD(t ) is the laser-dressed Hamiltonian and Ĥp(t ) is the
interaction due to the probe laser to first order in Ap(t ). The
individual contributions can be simplified by writing them as

ĤLD(t ) = Ĥ0 +
(

eAd(t )

ih̄

)
[êd · r̂, Ĥ0]

+ 1

2!

(
eAd(t )

ih̄

)2

[êd · r̂, [êd · r̂, Ĥ0]] + · · ·

= Ĥ0 + Ĥd(t ), (7)

where the light-matter interaction with the driving laser is
Ĥd(t ) = ∑∞

j=1
1
j! ( eAd (t )

ih̄ ) j[(êd · r̂) j, Ĥ0] with

[(êd · r̂) j, Ĥ0] ≡ [êd · r̂, . . . [êd · r̂, Ĥ0] · · · ]︸ ︷︷ ︸
j times

being the jth-order nested commutators of position and mate-
rial Hamiltonian. In turn, the interaction with the probe laser
becomes:

Ĥp(t ) = eAp(t )

ih̄

(
[êp · r̂, Ĥ0]

+ 1

2!

eAd(t )

ih̄
[êp · r̂, [êd · r̂, Ĥ0]]

+ 1

2!

eAd(t )

ih̄
[êd · r̂, [êp · r̂, Ĥ0]] + · · ·

)

= eAp(t )

me
Ẑ (t ), (8)

where Ẑ (t ) is a truncated momentum operator that contains
all the operator terms. Note that Ẑ (t ) contains powers of Ad(t )
that arise due to the Hilbert space truncation. That is, space-
truncation mixes the vector potential of the probe laser with
that of the drive even at the level of the Hamiltonian.

The laser field due to the drive and the probe laser can be
taken to be of any general time-periodic form and polarization.
For simplicity, here we take the drive laser vector potential
Ad(t ) = −Ed

�
sin(�t ), where Ed is its amplitude and h̄� its

photon energy. The vector potential due to the probe laser is
taken as Ap(t ) = −Ep

ω
sin(ωt ) with amplitude Ep and photon

energy h̄ω. Note that although the total Hamiltonian is not
periodic in time due to the presence of the probe, the laser-
dressed Hamiltonian ĤLD(t ) is, with time period T = 2π

�
.

C. Optical response of a laser-dressed solid

We quantify optical transitions in the laser-dressed non-
equilibrium solid by the rate of change among laser-dressed
states due to interaction with the probe laser [21,51,52]. Math-
ematically, the rate is given by

I (ω) = lim
t→∞

W (t, ω)

t − t0
, (9)

where W (t, ω) is the probability of a probe photon of energy
h̄ω being absorbed or emitted in the laser-driven material after
an interaction time t − t0, with t0 being the initial time. To
first-order in the probe laser (confer Eq. (16) in Ref. [21])

I (ω) = lim
t→∞

e2E2
p

2h̄2m2
eω

2(t − t0)

∫∫ t

t0

dt1dt2CZ,Z (t1, t2)

× Re[e−iω(t1−t2 ) − e−iω(t1+t2 )], (10)

where the operator CZ,Z (t1, t2) = 〈�a|ẐI(t1)ẐI(t2)|�a〉 rep-
resents the two-time correlation function of the truncated
momentum operator Ẑ (t ) that couples to the probe laser and
|�a〉 is the system’s many-body state at t0. In Eq. (10), we
have adopted the interaction picture of ĤLD(t ) where ẐI(t ) =
Û †

d (t, t0)Ẑ (t )Ûd(t, t0) and Ûd(t, t0) = T e
−i
h̄

∫ t
t0

dτ ĤLD(τ ) is the
evolution operator of the laser-dressed system. Equation (10)
reduces to Eq. (16) in Ref. [21] when the Hilbert space

085139-3



VISHAL TIWARI AND IGNACIO FRANCO PHYSICAL REVIEW B 112, 085139 (2025)

becomes complete and to the equilibrium theory of optical
absorption [53] in the absence of the drive laser (Ed = 0).
While formally exact, Eq. (10) is difficult to solve numerically
as it requires propagating the many-body system forward and
backward in time for each pair of time t1 and t2, and for each
value of ω. To make progress, below we invoke the Floquet
theorem.

D. Introducing second quantization

We consider solids that can be described using an effective
non-interacting Hamiltonian as constructed from DFT. In this
case, the laser-dressed Hamiltonian Eq. (7) can be rewritten in
second quantization as

ĤLD(t ) =
∑
k∈BZ

∑
u,v

〈ψuk|ĤLD(t )|ψvk〉ĉ†
ukĉvk, (11)

where the creation (annihilation) operator ĉ†
uk(ĉuk ) creates

(annihilates) a fermion in Bloch state |ψuk〉 with band index u
and crystal momentum k in the first Brillouin zone (BZ). The
effective single-particle Hamiltonian

ĤLD(t ) = ĥ0 +
∞∑
j=1

1

j!

(
eAd(t )

ih̄

) j

[(êd · r̂) j, ĥ0]

= ĥ0 + ĥd(t ), (12)

where ĥ0 is the single-particle Hamiltonian of the pristine
crystal, r̂ is the single electron position operator and ĥd(t ) =∑∞

j=1
1
j! ( eAd (t )

ih̄ )
j
[(êd · r̂) j, ĥ0] is the laser-matter interaction

with the driving field.
Since Eq. (12) is periodic in space, we can in-

voke Bloch theorem. The R-periodic Bloch modes |uk〉 =√
V e−ik·r̂|ψuk〉 can be obtained by solving the eigenvalue

relation (e−ik·r̂ĥ0eik·r̂ )|uk〉 = εuk|uk〉, where εuk is the band
energy and V the volume of the crystal. Bloch theorem is
useful in simplifying the matrix elements in Eq. (11) from the
bulk to the single unit cell as

〈ψuk|[r̂, Ô]|ψvk′ 〉 = δk,k′N〈ψuk|[r̂, Ô]|ψvk′ 〉UC, (13)

where Ô represents a space-periodic gauge covariant operator
(such as ĥ0, [r̂, ĥ0], etc.), N is the number of unit cells (or,
equivalently, the number of crystal momentum vectors) and
〈· · · 〉UC is an integral over the unit cell only. Equation (13)
shows that the dynamics of the laser-dressed system in the
truncated velocity gauge is decoupled in the reciprocal space
and all transitions due to the probe laser happen without
change in momentum (i.e. vertically), as already reflected in
Eq. (11).

To solve Eq. (10) via the two-time correlation function
CZ,Z (t1, t2), we need to determine ẐI(t ). In second quantiza-
tion, ẐI(t ) = ∑

k∈BZ

∑
u,v〈ψuk|ẑ(t )|ψvk〉ĉ†

uk,I(t )ĉvk,I(t ) with

ẑ(t ) = me

ih̄

(
[êp · r̂, ĥ0] + 1

2!

eAd(t )

ih̄
[êp · r̂, [êd · r̂, ĥ0]]

+ 1

2!

eAd(t )

ih̄
[êd · r̂, [êp · r̂, ĥ0]] + · · ·

)
(14)

being the single-particle truncated momentum operator of the
laser-dressed solid in terms of the nested commutators. Taking

into account that for non-interacting particles [21], the inter-
action picture fermionic operators are determined by

ĉuk,I(t ) =
∑

v

(Û (t, t0))uk,vkĉvk, (15)

where Û (t, t0) = T e
−i
h̄

∫ t
t0

dτĤLD(τ ) is the time-ordered single-
particle evolution operator of the laser-dressed system, then

ẐI(t ) =
∑
k∈BZ

∑
u,v,r,s

〈ψrk|Û†(t, t0)|ψuk〉〈ψuk|ẑ(t )|ψvk〉

× 〈ψvk|U (t, t0)|ψsk〉ĉ†
rkĉsk. (16)

The problem of determining Eq. (10) via Eq. (16) can be
solved once the matrix elements of Û (t, t0) are determined.
To do so, we invoke the Floquet theory.

E. Application of the Floquet-Bloch theory

Since the single particle Hamiltonian for laser-dressed
solid is periodic in both space ĤLD(r̂, t ) = ĤLD(r̂ + R, t )
and time ĤLD(r̂, t ) = ĤLD(r̂, t + T ), the laser-dressed sys-
tem satisfies both Floquet [54,55] and Bloch [53] theorem.
Thus, the Floquet-Bloch states [18]

|�αk(t )〉 = 1√
V

e−iEαkt/h̄eik·r̂|�αk(t )〉 (17)

are solutions to the TDSE

ih̄
∂

∂t
|�αk(t )〉 = ĤLD(t )|�αk(t )〉. (18)

Here, the Floquet-Bloch mode |�αk(t )〉 with index α and
crystal momentum k is a function that is periodic in both
time and space [〈r|�αk(t )〉 = �αk(r, t ) = �αk(r, t + T ) =
�αk(r + R, t )] and Eαk is the corresponding quasienergy.

The Floquet-Bloch modes and quasienergies can be de-
termined by solving the following eigenvalue relation in
Sambe space [55] (the tensor product space of the regular
Hilbert space and the space spanned by the T -periodic Floquet
Fourier basis {ein�t } where n ∈ Z).

ĤF (k, r̂, t )|�αk(t )〉 = Eαk|�αk(t )〉, (19)

where ĤF (k, r̂, t ) = e−ik·r̂ĤLD(t )eik·r̂ − ih̄ ∂
∂t is the Floquet-

Bloch Hamiltonian. The Floquet-Bloch modes are uniquely
defined in a Floquet-Brillouin zone (FBZ) with the fundamen-
tal FBZ being −h̄�

2 < Eαk � h̄�
2 for k in the first BZ of the

crystal.
The Floquet-Bloch modes can be further expanded in terms

of the time-periodic Floquet Fourier basis and the set of Bloch
modes as

|�αk(t )〉 =
nF∑

n=−nF

∑
u

F (nu)
αk ein�t |uk〉, (20)

where 2nF + 1 are the number of Floquet Fourier basis states
needed for convergence. Substituting Eq. (20) into (19), and
taking the inner product in the Sambe space (that is, left
multiplying by 1

T

∫ T
0 dt〈vk|e−im�t ) yields∑

n,u


mv,nu,kF (nu)
αk = EαkF (mv)

αk , (21)
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where


mv,nu,k = 1

T

∫ T

0
dt〈vk|e−ik·r̂ĤLD(t )eik·r̂|uk〉ei(n−m)�t

+ nh̄�δnmδuv. (22)

Substituting Eq. (12) into right hand side of Eq. (22) yields


mv,nu,k = (εuk + nh̄�)δnmδuv

+ 1

T

∫ T

0
dt〈vk|e−ik·r̂ĥd(t )eik·r̂|uk〉ei(n−m)�t

= (εuk + nh̄�)δnmδuv +
∞∑
j=1

j∑
l=0

1

j!

(
eEd

2h̄�

) j( j

l

)

× (−1)l〈vk|e−ik·r̂[(êd · r̂) j, ĥ0]eik·r̂|uk〉δ j−2l+n,m,

(23)

where we have used the binomial expansion, and where
( j

l

) =
j!

l!( j−l )! . Note that the Floquet Hamiltonian matrix elements no
longer form a block-tridiagonal matrix as in the case of the
usual velocity gauge in complete Hilbert space because of the
truncation.

The Floquet-Bloch states define the single-particle evolu-
tion operator [56]

Û (t, t0) =
∑

k∈BZ,α

|�αk(t )〉〈�αk(t0)| (24)

needed to calculate the two-time correlation function
CZ,Z (t1, t2) via Eq. (16). Equation (24) can be verified by
noting that it satisfies the TDSE in Eq. (18), and Û (t0, t0) = 1̂.

F. Optical absorption coefficient for the laser-dressed solid

Substituting Eqs. (24), (20), and (17) into (16) we get

ẐI(t ) = 1

V 2

∑
k∈BZ

∑
u,v

∑
α,β

eiEαβk (t−t0 )/h̄〈uk|�αk(t0)〉

× 〈�βk(t0)|vk〉Zαβk(t )ĉ†
ukĉvk, (25)

where we have taken into account the orthonormality of Bloch
states 〈ψuk|ψvk′ 〉 = δuvδkk′ and, where Eαβk = Eαk − Eβk.
Here, we define the truncated momentum matrix elements be-
tween the Floquet-Bloch modes α, β with crystal momentum
k as

Zαβk(t ) = 1

V
〈�αk(t )|e−ik·r̂ ẑ(t )eik·r̂|�βk(t )〉. (26)

Since the Floquet-Bloch modes and ẑ(t ) are T -periodic,
Zαβk(t ) can be further expanded in a Fourier series

Zαβk(t ) =
∞∑

n=−∞
Z (n)

αβkein�t , (27)

where

Z (n)
αβk = 1

T

∫ T

0
dt Zαβk(t )e−in�t (28)

is the n-th Fourier component of the truncated momentum
matrix element.

Following the procedure detailed in Ref. [21], we construct
the two-time correlation function using Eqs. (25) and (27) and
inserting it into Eq. (10). From this, we separate I (ω) into
distinct contributions due to optical absorption and stimulated
emission. The net rate of absorption R(ω) is obtained by
subtracting the rate of stimulated emission from the rate of
absorption. The optical absorption coefficient A(ω) = R(ω)h̄ω

V I0
is obtained as the ratio of the power absorbed by the in-
cident probe laser per unit volume and incident light flux
I0 = ε0E2

p cnr/2, where ε0 is the permittivity of vacuum, c the
speed of light, and nr the refractive index of the material [57].
In this way, we obtain an expression for the optical absorp-
tion coefficient of the laser-dressed solid using the truncated
velocity gauge

A(ω) = e2π

m2
eε0cnrV ω

∑
k∈BZ

∑
α,β

∞∑
n=−∞

�αβk
∣∣Z (n)

αβk

∣∣2

× [δ(Eαβk + nh̄� − h̄ω) − δ(Eαβk + nh̄� + h̄ω)],

(29)

where each of the terms in the sum are the contributions due to
a particular optical transition from Floquet-Bloch mode β →
α at crystal momentum k. Here,

�αβk = 1

V 4

∑
u′,u

|〈uk|�βk(t0)〉|2|〈�αk(t0)|u′k〉|2

× n̄uk(1 − n̄u′k ) (30)

is the so-called population factor that ensures that the initial
state with label βk is occupied and final state αk is empty,
and n̄uk = 〈�a|ĉ†

ukĉuk|�a〉 represents the thermal occupation
number of band u and crystal momentum k at preparation
time.

Equation (29) shows that the optical absorption in a laser-
dressed solid is akin to that of the equilibrium response theory
[53] but with the Floquet-Bloch modes playing the role of
pristine eigenstates as the optical absorption is seen to emerge
from transitions among them. The Bohr transition energy is
given by the difference in the quasienergy of the participating
modes (Eαβk) along with the nh̄� term which corresponds
to the number of Floquet-Brillouin zones separating them.
The first term in Eq. (29) represents absorption; the second,
stimulated emission. The intensity of a transition from β → α

separated by n FBZ is determined by the population factor
�αβk and the n-th Fourier component of the truncated momen-
tum matrix element Z (n)

αβk. The population factor guarantees
that an optical transition happens from an initially occupied
band to an empty one. Overall, this shows that the Floquet-
Bloch modes are the natural states to understand the optical
absorption properties of laser-dressed solids.

The theory presented here is valid for realistic material
Hamiltonians as obtained from first-principle based computa-
tions. It differs from our previous theory in the velocity gauge
[21] in that it takes into account Hilbert space truncations
inherent to any electronic structure computation. Specifically,
this changes the laser-dressed Hamiltonian in Eq. (22) used
to obtain the Floquet-Bloch modes using Eq. (21) and the
transition matrix elements of the new truncated momentum
operator coupled to the probe laser, Eq. (26), which now need
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to include the driving laser. The Floquet-Bloch Hamiltonian
Eq. (23) in the truncated Hilbert space is not block tridiagonal
anymore as the nested commutator terms depend on the pow-
ers of the drive vector potential [see right side of Eq. (23)].
This means that the Floquet-Bloch Hamiltonian constructed
in the truncated velocity gauge is less sparse and would
comparatively require more Floquet Fourier basis states (nF )
for convergence compared to the Floquet-Bloch Hamiltonian
in the usual velocity gauge. This theory reduces to that in
Ref. [21] when the basis is complete such that [r̂i, P̂j] = ih̄1̂δi j

and the material Hamiltonian does not include any non-local
potential.

III. COMPUTATIONAL METHOD

The computation of the optical absorption spectrum of
laser-dressed solids for the complete Hilbert space [21] and
truncated spaces (Sec. II) requires the single-particle laser-
dressed Hamiltonian in the Bloch state basis to construct
the Floquet-Bloch Hamiltonian and obtain the Floquet-Bloch
modes. We now discuss how this is accomplished in both
complete and truncated Hilbert spaces using a realistic Hamil-
tonian for the material and its integration into FLOQTICS
(Floquet optics in Solids) which is a computational package
to characterize the optical properties of laser-dressed solids
[58].

A. Complete Hilbert space

As a benchmark for the truncated velocity gauge (Sec. II),
we perform computations assuming a complete Hilbert space
as detailed in Ref. [21]. The solid Hamiltonian is based on
DFT as obtained from first-principle computational packages
(such as QUANTUM ESPRESSO [59]). When employing a realis-
tic DFT Hamiltonian in Floquet engineering, two challenges
emerge: (i) basis-set convergence, and (ii) the modification of
the light-matter interactions due to non-local pseudopotential
(VNL). The non-local pseudopotentials are used to eliminate
contribution due to inert core electrons in the electronic
structure [60,61] and enables efficient electronic structure
calculations compared to all electron methods. However, as
generalized by Louie et al. [39] and described in previous
work [37,38], the single-particle Hamiltonian of a solid in
the presence of VNL interacting with a strong driving laser in
dipole approximation is

ĤDFT
LD (t ) = ĥ0 − eAd(t )

me
·
(

p̂ − ime

h̄
[r̂, V̂NL]

)

+ e2A2
d(t )

2me
+ 1

2!

(
ieAd(t )

h̄

)2

[r̂, [r̂, V̂NL]] + · · · .

(31)

Equation (31) simplifies to the usual velocity gauge coupling
p̂ · Ad(t ) in the absence of the non-local pseudopotential.
In our computations, we consider the single-particle laser-
dressed Hamiltonian

Ĥ(VG)
LD (t ) = ĥ0 − eAd(t )

me
·
(

p̂ − ime

h̄
[r̂, V̂NL]

)
(32)

obtained from Eq. (31) by only considering the linear cou-
pling to the drive vector potential, and applying a gauge

transformation to remove the purely time-dependent term pro-
portional to A2

d(t ) (this term only contributes to an overall
phase to the wavefunction with no observable consequences).
Computing the matrix elements of Eq. (32) is directly ac-
cessible in QUANTUM ESPRESSO [62,63] while the neglected
non-linear coupling terms due to VNL are not. This approx-
imation implies that the calculations involving Eq. (32) can
become inaccurate for strong driving laser. As described in
Sec. III B, by using the maximally-localized Wannier func-
tions (MLWFs) [43], it is technically possible to capture the
non-linear interaction terms in Eq. (31). However, such an
approach remains, in practice, impractical as it involves de-
termining the MLWFs and the non-linear coupling matrix
elements for the large number of bands required for conver-
gence in the velocity gauge formalism.

The methodology to calculate the optical absorption spec-
tra of laser-dressed solids in the velocity gauge is detailed in
our previous work [21] and is implemented in FLOQTICS [58].
The code requires as input the band structure, light-matter
interaction matrix elements [second term in Eq. (32)] in Bloch
states basis, k-vectors sampling the BZ and the drive laser pa-
rameters as input. It outputs the absorption spectrum, intensity
of absorption as a function of h̄ω, obtained by broadening
the absorption lines using a Lorentzian function of a chosen
width.

B. Truncated Hilbert space

Determining the Floquet state through Eq. (21) and cal-
culating the optical absorption spectrum of laser-dressed
solid using Eq. (29) in the truncated velocity gauge requires
evaluating the nested commutators of position and material
Hamiltonian in the Bloch state basis. To do so, it is convenient
to describe the Hamiltonian using a general tight-binding de-
scription constructed from the MLWFs as obtained through
WANNIER90 [64]. In this case, a Bloch-like state in the Wan-
nier gauge can be expressed as [43,65–67]

∣∣ψ (W)
f k

〉 = 1√
N

∑
R

eik·R| f R〉, (33)

where | f R〉 is the f Wannier function localized in the unit
cell at position R. We assume that these Wannier func-
tions form a complete (

∑
f R | f R〉〈 f R| = 1̂) and orthonormal

(〈 f R′| f ′R′〉 = δ f f ′δRR′ ) basis. The completeness relation re-
quires a convergence check on the number of MLWFs used.
The material Hamiltonian expressed in these Bloch-like states
is given by[

h(W)
k

]
f f ′ = 〈

ψ
(W)
f k

∣∣ĥ0

∣∣ψ (W)
f ′k

〉 =
∑

R

eik·Rt f 0 f ′R, (34)

where t f 0 f ′R = 〈 f 0|ĥ0| f ′R〉 is the tight-binding hopping pa-
rameters. The Wannier interpolated band structure can be
obtained by diagonalizing h(W)

k that is,[
U †

k h(W)
k Uk

]
uv

= εukδuv, (35)

where Uk is the unitary operator that leads to the
diagonalization.
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The true Bloch eigenstates of the material Hamiltonian can
be expanded in the {|ψ (W)

f k 〉} basis as

|ψuk〉 =
∑

f

∣∣ψ (W)
f k

〉
Uu f k. (36)

We use this expansion to evaluate the space-periodic nested
commutator as

1

i
〈ψvk|[r̂, Ô]|ψuk〉 = 1

i

∑
f , f ′

U †
v f k

〈
ψ

(W)
f k

∣∣[r̂, Ô]
∣∣ψ (W)

f ′k

〉
Uu f ′k

=
∑
f , f ′

U †
v f k

(∇kO(W)
f f ′ (k) − i[Â, Ô] f f ′k

)
× Uu f ′k, (37)

where Ô(W)
f f ′ (k) ≡ 〈 f k(W)|Ô| f ′k(W)〉 = ∑

R eik·R〈 f 0|Ô| f ′R〉,
[Â, Ô] f f ′k ≡ 〈 f k(W)|[Â, Ô]| f ′k(W)〉, and A f f ′ (k) ≡∑

R eik·Rd f 0 f ′R is the Fourier-transformed position operator
with d f R′gR = 〈 f R′|r̂|gR〉. The matrix elements t f 0 f ′R and
d f 0 f ′R are directly obtained from WANNIER90. We provide
a detailed derivation of Eq. (37) in terms of the Wannier
functions in the Appendix.

Equation (37) is useful to exactly capture the light-matter
interaction as all the nested commutator terms in Eq. (22)
are of this form. As shown, 〈ψvk|[r̂, Ô]|ψuk〉 require the
matrix elements of Ô in the Bloch-like state basis. Thus,
every next-order commutator term (for example [r̂, [r̂, Ô]])
requires the matrix elements of the previous-order commu-
tator ([r̂, Ô]). This property of Eq. (37) allows us to obtain
any general order matrix elements iteratively starting with
Ô = ĥ0. Furthermore, evaluating Eq. (37) using the MLWF
allows us to go beyond previous works [40] where only the
first few terms were required in the nested commutators. The
computations performed using Eq. (37) can accommodate
both the intercell and the intracell position operator matrix
elements among the Wannier functions present in realistic
materials. Hence, it goes beyond the length gauge based Flo-
quet engineering implemented using Peierls substitution that
often ignores the intra-cell dipole matrix elements. Further
note that the procedure remains valid even in presence of
the non-local pseudopotentials as the derivation of Eq. (37)
does not impose any restriction on the form of ĥ0 other than
it being space-periodic and described using the generalized
tight-binding models.

Note that the computations in the truncated velocity gauge
enable exact treatment of the drive and probe laser up to all
orders [using Eq. (37)]. This is in contrast to the approximate
treatment in velocity gauge for DFT-based material Hamilto-
nian [Eq. (32)] assuming a complete Hilbert space.

C. Integration into FLOQTICS

The truncated velocity gauge computations for Floquet
engineering has been computationally implemented into FLO-
QTICS [58] which is freely available through GitHub. The code
allows the efficient calculation of the optical absorption spec-
trum of a solid that is driven by a laser of arbitrary intensity
and frequency, interfaces with electronic structure codes for
space-periodic materials, and is fully parallelized.

The code takes the k-vector sampling the BZ, tight-binding
parameters (t f 0gR and d f 0gR) describing the realistic material
and the drive laser parameters as inputs. The k-vectors can
be obtained by imposing the Born–von Karman boundary
condition using the lattice vectors of the material while the
parameters t f 0gR and d f 0gR, for a given number of Wannier
functions taken in a unit cell, are obtained from WANNIER90
[64]. The code first computes the εuk using Eq. (35) and the
specified number of nested commutator matrix elements using
Eq. (37) for the given probe and drive laser polarization êp, êd

for each k-vector in the BZ. The code then constructs and di-
agonalizes the Floquet-Bloch Hamiltonian using Eqs. (21) and
(22) to obtain Eαk and the coefficients F (nu)

αk for the given drive
laser amplitude and photon energy. Computations should be
checked for convergence on the number of nested commutator
terms in Eq. (21), the Floquet Fourier basis states (nF ), and the
number of Wannier functions. The code proceeds to calculate
the Fourier components of the truncated momentum matrix
elements Eq. (26), and the population factor Eq. (30) using n̄uk
as inputs. In the end, the code outputs the optical absorption
spectrum of the laser-dressed material with each absorption
line broadened using a Lorentzian function of a given width.

FLOQTICS uses the highly parallelized direct diagonaliza-
tion package ELPA (Eigenvalue soLvers for Petaflop Appli-
cations) [68] for the diagonalization of the Floquet-Bloch
Hamiltonian. It also parallelizes the calculation of the Fourier
components of the truncated momentum matrix elements by
distributing the components across different processors. The
efficient parallelization of the computation allows us to com-
pute the absorption properties with a finer Brillouin zone
sampling of a realistic solid in a tractable computational time.

IV. RESULTS

To illustrate and test the methodology, we focus on
the optical absorption spectrum of the laser-dressed trans-
polyacetylene (tPA) as it provides a realistic model system
that is simple enough due to its one-dimensionality to enable
us to check the convergence of the absorption spectrum with
respect to modeling parameters in tractable computational
time. We contrast the absorption coefficient as computed in
velocity (Sec. III A) and truncated velocity (Sec. III B) gauge
and their convergence properties. Because of the approxima-
tions in Eq. (32), the velocity gauge is only expected to be
accurate for weak to moderate strengths of the laser-dressing.
By contrast, the truncated velocity gauge is expected to be
accurate for arbitrary laser strength.

The qualitative features of the optical absorption of laser-
dressed matter have already been discussed in Ref. [21].
Briefly, the findings suggest that when a periodic solid
is driven out of equilibrium by a continuous wave laser,
the Floquet-Bloch replicas are formed. These laser-dressed
states are replicas of the valence and conduction band that
are separated from each other by integer multiples of the
drive photon energy. When this laser-dressed band struc-
ture is probed, it leads to emergence of the below-band
edge transitions, absorption sidebands and mid-infrared fre-
quency absorption/stimulated emission features. The below-
band edge features and absorption sidebands occur due
to transitions among the Floquet-Bloch replicas while the
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FIG. 1. (a), (b) Band structure of the tPA obtained from DFT
(red lines) along the 
 → X direction in the BZ. Dashed lines are
interpolation with (a) 6- (blue) and (b) 17- (green) Wannier functions
per unit cell. (c) Equilibrium absorption spectrum of tPA computed
using DFT in the velocity gauge (red), and truncated velocity gauge
from the 6-band (blue) and 17-band (green) generalized tight-binding
models.

low-frequency transitions emerge due to the hybridization of
the Floquet-Bloch states. Overall, it is shown that a strong
non-resonant laser can substantially transform the optical ab-
sorption spectrum of a solid.

In the following computations, for definitiveness, we focus
on dressing with non-resonant drive laser with photon energy
h̄� = 0.4 eV. Throughout, the probe and drive laser is taken
to be linearly polarized with polarization direction along the
lattice growth direction. For all our calculations below, we
obtain converged results with nF = 150, use a Lorentzian
lineshape for the absorption lines with 0.04 eV width and
remove transition below 0.06 eV to account for the discrete
sampling of the Brillouin zone.

A. Electronic structure and its Wannier interpolation

The first-principle self-consistent field computations of the
electronic structure of tPA are done in QUANTUM ESPRESSO,
using the local density approximation (LDA) with the
Perdew-Zunger parametrization for the exchange-correlation
functional [69], ultra-soft pseudopotential [70], and a plane
wave cutoff of 100 Ry that yield 160 converged bands. We
use the geometry of tPA from Ref. [71] with bond length
alteration of 1.34/1.54 Å and unit cell of dimensions 2.496 ×
10 × 10 Å3. The obtained DFT based band structure is shown
in Figs. 1(a) and 1(b) (red lines). The Brillouin zone is dis-
cretized using 500 × 1 × 1 k-vector grid. The obtained band
gap of 1.67 eV at X point is in the range of experimentally
observed band gaps [72,73]. Figure 1 also shows the band
structure constructed from the 6 [Fig. 1(a), blue lines] and
17 [Fig. 1(b), green lines] Wannier functions tight-binding

FIG. 2. Optical absorption spectrum of tPA calculated using
Eq. (32) in the velocity gauge for h̄� = 0.4 eV and Ed (a) 0.1 V/Å
(b) 0.2 V/Å and (c) 0.3 V/Å. Different lines correspond to the
different number of bands taken in the computation. Insets show the
spectrum in the low-frequency region.

models and their comparison with the DFT band structure.
In both cases, the Wannier functions accurately interpolate
the DFT results. We also contrast the equilibrium optical
absorption spectrum of the tPA in Fig. 1(c) computed with
the tight-binding model to that calculated using 140 bands in
DFT. The equilibrium optical absorption spectrum shows an
absorption edge at the direct band gap of 1.67 eV and subse-
quent decrease in A(ω) as expected for one-dimensional solids
[53]. As seen, the equilibrium absorption spectrum matches
for the three different Hamiltonians. Overall, this shows that
the Wannier interpolation is highly accurate and can be further
used to simulate the laser-dressed properties.

B. Optical absorption spectrum of laser-dressed materials
in velocity gauge

We obtain the non-equilibrium absorption spectrum for the
500 × 1 × 1 k-vector grid in the Brillouin zone for varying
drive laser amplitude Ed = 0.1–0.3 V/Å. The Fermi energy
of the system is at −3.065 eV such that bands below (above)
this energy are valence (conduction) bands. We obtain con-
verged results with respect to the number of Floquet Fourier
basis using nF = 150 in the computations. Figures 2(a)–2(c)
show the optical absorption spectrum of the tPA obtained
using the absorption coefficient formula in Ref. [21] with
each absorption line broadened using a Lorentzian function
of width 0.04 eV. The light-matter interactions are captured as
in Eq. (32) for both probe and drive laser. The different lines in
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each plot represent different number of bands taken (from 10
to 140 bands) into account for the computation. The inset in
each plot shows the absorption spectrum in the low-frequency
range (h̄ω ∈ [0, 0.6] eV) of the probe laser. As seen, the
absorption spectrum for Ed = 0.1 V/Å require 30 bands (or-
ange line) for convergence for h̄ω ∈ [1, 6] eV and 120 bands
(purple line) in the low-frequency range. Upon increasing the
drive field amplitude to Ed = 0.2 V/Å, 70 bands (green line)
are required for fully converged absorption spectrum in the
[1,6] eV of the electromagnetic spectrum. Convergence in the
low-frequency region still requires 120 bands. Further increas-
ing the electric field amplitude to Ed = 0.3 V/Å shows that
even 100 bands are not enough for a converged calculation.
Convergence in this case is achieved for 120 bands. Overall,
the computations in Fig. 2 underscore the limitations of the
velocity gauge consideration in Floquet engineering where
a large number of bands are required for convergence. This
requirement becomes increasingly more problematic as the
drive field strength is increased.

We now show how our strategy to take into account space
truncation solves these issues. We use as a benchmark, the 140
band computations as it yields converged results for the range
of the drive field strength considered.

C. Optical absorption spectrum of laser-dressed materials
in truncated velocity gauge

We now discuss the optical absorption spectra of the laser-
dressed tPA computed in the truncated velocity gauge as
discussed in Sec. II. The tight-binding parameters are ob-
tained from Wannier interpolation for the 6- and 17-band
model. The first 3 bands (or first 5) in the 6 (or 17) Wan-
nier band model correspond to valence band states. We use
500 × 1 × 1 k-vector grid for the calculations, nF = 170, and
up to 22 nested commutators in the laser-dressed Hamiltonian
and in the truncated momentum matrix elements. The large
number of commutators are required to capture the light-
matter interactions due to the non-resonant driving pulse, as
the importance of the matrix elements scale with the powers
of Ed/h̄� and h̄� = 0.4 eV is low in this case.

Figures 3(a)–3(c) show the absorption spectra of the laser-
dressed tPA in the truncated velocity gauge using the 6- (blue
lines) and 17-band (green lines) models for Ed = 0.1–0.3
V/Å. These computations are contrasted with the optical ab-
sorption spectrum obtained from velocity gauge calculations
with the 140-band DFT model (red lines). The truncated
velocity gauge computations significantly show faster con-
vergence with the number of bands compared to the velocity
gauge computations in Fig. 2. For example, as seen in Fig. 3(a)
for Ed = 0.1 V/Å, the truncated velocity gauge calculation
with 6-band is already converged in contrast to the 30 bands
needed in the velocity gauge [Fig. 2(a), orange line]. The
6-band and 17-band truncated computation are also aligned on
top of each other for Ed = 0.2 V/Å in Fig. 3(b) while velocity
gauge requires 70 bands for convergence [Fig. 2(b), green
line]. Even at strong drive laser amplitude Ed = 0.3 V/Å, the
6-band spectrum is converged in h̄ω ∈ [0, 3] eV range while
velocity gauge computations in h̄ω ∈ [0.6, 3] eV required
100 bands for convergence [Fig. 2(c), brown line]. Further,
the 6-band computations are converged in the low-frequency

FIG. 3. Truncated velocity gauge computations of the optical
absorption spectrum of tPA for h̄� = 0.4 eV and Ed (a) 0.1 V/Å
(b) 0.2 V/Å and (c) 0.3 V/Å, using a 6-band (blue lines) and 17-
band (green lines) generalized tight-binding model. For comparison,
computations in the velocity gauge with the 140-band DFT model
(red lines) are also shown. Insets details the spectrum in the low-
frequency region.

region (h̄ω ∈ [0, 0.6] eV) for the range of Ed studied here
in Figs. 3(a)–3(c) where 120 bands were required in the ve-
locity gauge computation [see Figs. 2(a)–2(c) purple line] for
convergence. The deviations between the 6- and the 17-band
model seen in Figs. 3(b) and 3(c) in the h̄ω > 3 eV range are
attributed to the missing bands in the computation.

Figure 3 also shows the accuracy of the truncated veloc-
ity gauge computations. As seen in Fig. 3(a) for Ed = 0.1
V/Å, the 6-band computation in the truncated velocity gauge
reproduce the 140-band DFT model spectrum. Fig. 3(b) for
Ed = 0.2 V/Å, the 140-band DFT model spectrum in veloc-
ity gauge shows some deviations with respect to the 6- and
17-band spectrum in truncated velocity gauge. We attribute
these differences to the neglected terms in Eq. (32) in the usual
DFT approach that arise due to the non-local pseudopotential
present in the realistic material Hamiltonian. The computa-
tions in the truncated velocity gauge for the 6- and 17-band
model are more accurate in this case as no such approxima-
tion is involved. For strong drive amplitude Ed = 0.3 V/Å
in Fig. 3(c), the DFT based computation in velocity gauge
show larger deviations with respect to the truncated velocity
gauge computations as expected because the neglected terms
are non-linear in the drive.

The computations of the optical absorption spectrum in
the truncated velocity gauge accurately recover the results
of the velocity gauge using just a few bands. The truncated
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velocity gauge also shows faster converge with respect to the
number of bands compared to the velocity gauge. The velocity
gauge computations work accurately for relatively low electric
fields amplitude up to 0.2 V/Å but additional contributions
from the neglected terms in Eq. (32) are required to capture
the exact laser-dressed dynamics at higher field strengths.
The converged calculations in the truncated velocity gauge
are based on exact light-matter interaction Hamiltonian and
are expected to accurately represent the theoretical absorption
spectrum of the laser-dressed tPA.

In terms of the computational cost, the converged ab-
sorption spectrum of the laser-dressed tPA for the truncated
velocity gauge (17-band) takes 4 minutes of CPU time for
calculations of the absorption lines for one k-vector on the
Intel Xeon Gold 6330 processor. In turn, the converged com-
putations in the velocity gauge (140-band) take 1080 minutes.
This shows that the truncated velocity gauge calculations are
significantly faster than the velocity gauge calculations as
needed to characterize the properties of laser-dressed mate-
rials using realistic models.

V. CONCLUSIONS

To summarize, we developed a general strategy to capture
Floquet engineering in solids in the velocity gauge using
realistic Hamiltonians. Floquet considerations in the velocity
gauge require a very large number of bands for convergence.
Further, when the Hamiltonian for the realistic solid is con-
structed from first-principles, the non-local pseudopotential
introduces non-linear light-matter coupling terms in the ve-
locity gauge that are challenging to evaluate. As shown, these
issues inherent to the velocity gauge make the Floquet engi-
neering computations for realistic solids challenging.

We showed that it is possible to overcome these issues by
explicitly taking into account the truncation of the Hilbert
space in the light-matter interactions and by describing the
material in terms of a generalized tight-binding model in the
formulation of the theory for Floquet engineering. Hilbert
space truncation replaces the momentum operator by a trun-
cated momentum operator defined in terms of the nested
commutator of position and material Hamiltonian. We exem-
plified the approach in the challenging case where there is
both a drive and probe laser at play. Specifically, we applied
this methodology to our theory of non-equilibrium optical
absorption of laser-dressed solids and developed analytical

expression for its optical absorption coefficient. The final for-
mula is reminiscent to the optical absorption of pristine matter
but with the Floquet-Bloch modes playing the role of pristine
eigenstates of solid. Our results clarify how to effectively
capture Hilbert space truncation in Floquet engineering in the
velocity gauge.

To illustrate the methodology, we performed computations
of the optical absorption spectrum of laser-dressed trans-
polyacetylene with both the usual velocity gauge and the
truncated velocity gauge introduced here. While the velocity
gauge required 140 bands for convergence, the truncated ve-
locity gauge yielded accurate results with just 6 bands. For
strong driving amplitudes and (≈ Ed = 0.3 V/Å in our case),
in practice, velocity gauge computations can only be consid-
ered approximate due to the large number of bands needed
and the additional non-linear terms in light-matter interactions
introduced by the non-local pseudopotential. By contrast, the
truncated velocity gauge calculations based on generalized
tight-binding models, provide converged results in models of
reduced dimensionality and fully capture the light-matter in-
teractions. Overall, using our proposed strategy, we were able
to satisfactorily integrate the Floquet engineering in velocity
gauge with a realistic description of a solid.

The methodology introduced here can also be extended
to material Hamiltonian described through other implementa-
tions of DFT such as linearized-augmented plane-wave [74]
or hybrid functionals [75]. This is because, even in such
cases the Wannier interpolation of the DFT band structure
can be performed and the light-matter interaction Hamilto-
nian in truncated velocity gauge can be expressed in the
Wannier function basis. Our work can motivate the use of
velocity gauge in the community as an accessible option and
an alternative to Peierls’ substitution [26] to study Floquet
engineering in realistic materials.
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APPENDIX: MATRIX ELEMENTS OF THE NESTED COMMUTATORS

The matrix elements to be evaluated in Eq. (37) are of the form

μ f f ′k = 1

i

〈
ψ

(W)
f k

∣∣[r̂, Ô]
∣∣ψ (W)

f ′k

〉
, (A1)

where Ô is a space-periodic operator. The Bloch-like states can be expressed as a Fourier series in the MLWF basis as |ψ (W)
f k 〉 =

1√
N

∑
R eik·R| f R〉 which yields

μ f f ′k = 1

N

∑
R,R′

1

i
eik·(R′−R)

⎛
⎝ ∑

f ′′,R′′
〈 f R|r̂| f ′′R′′〉〈 f ′′R′′|Ô| f ′R′〉 − 〈 f R|Ô| f ′′R′′〉〈 f ′′R′′|r̂| f ′R′〉

⎞
⎠, (A2)
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where we have used
∑

f ′′R′′ | f ′′R′′〉〈 f ′′R′′| = 1̂ assuming a complete Wannier basis. We consider the position operator matrix
elements in the Wannier function basis given by 〈 f R|r̂| f ′R′〉 = Rδ f f ′δRR′ + 〈 f 0|r̂| f ′R′ − R〉 [65]. Substituting these matrix
elements into Eq. (A2) yields

μ f f ′k = 1

N

∑
R,R′

(−i)eik·(R′−R)

[ ∑
f ′′,R′′

(RδR,R′′δ f , f ′′ + 〈 f 0|r̂| f ′′R′′ − R〉)〈 f ′′R′′|Ô| f ′R′〉

− 〈 f R|Ô| f ′′R′′〉(R′δR′′,R′δ f ′′, f ′ + 〈 f ′′0|r̂| f ′R′ − R′′〉)

]

= 1

N

∑
R,R′

i(R′ − R)eik·(R′−R)〈 f R|Ô| f ′R′〉 + 1

N

∑
R,R′

(−i)eik·(R′−R)

⎛
⎝ ∑

f ′′,R′′
〈 f 0|r̂| f ′′R′′ − R〉〈 f ′′R′′|Ô| f ′R′〉 − 〈 f R|Ô| f ′′R′′〉〈 f ′′0|r̂| f ′R′ − R′′〉

⎞
⎠. (A3)

In the above equation, we substitute i(R − R′)eik·(R−R′ ) = ∇keik·(R−R′ ) and define the matrix elements of the periodic operator
as O(W)

f f ′ (k) = 1
N

∑
R eik·R〈 f 0|Ô| f ′R〉 = 1

N

∑
R,R′ eik·(R′−R)〈 f R|Ô| f ′R′〉 to get

μ f f ′k = ∇kO(W)
f f ′ (k) − i

∑
R,R′, f ′′,R′′

(〈 f 0|r̂| f ′′R′′ − R〉eik·(R′′−R)O(W)
f ′′ f ′ (k) − O(W)

f f ′′ (k)〈 f ′′0|r̂| f ′R′ − R′′〉eik·(R′−R′′ ))

= ∇kO(W)
f f ′ (k) − i

⎛
⎝∑

f ′′
A f f ′′ (k)O(W)

f ′′ f ′ (k) − O(W)
f f ′′ (k)A f ′′ f ′ (k)

⎞
⎠ = ∇kO(W)

f f ′ (k) − i[Â, Ô] f f ′k (A4)

which is right hand side of Eq. (37), and where A f f ′′ (k) ≡ ∑
R eik·R〈 f 0|r̂| f ′′R〉 is the Fourier-transformed position operator.
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[30] C. C. Chirilǎ and M. Lein, Strong-field approximation for
harmonic generation in diatomic molecules, Phys. Rev. A 73,
023410 (2006).

[31] H. M. Dong, K. Han, and W. Xu, Dynamic optical properties
in graphene: Length versus velocity gauge, J. Appl. Phys. 115,
063503 (2014).

[32] L. Yue and M. B. Gaarde, Structure gauges and laser gauges
for the semiconductor Bloch equations in high-order harmonic
generation in solids, Phys. Rev. A 101, 053411 (2020).

[33] L. Yue and M. B. Gaarde, Introduction to theory of high-
harmonic generation in solids: tutorial, J. Opt. Soc. Am. B 39,
535 (2022).

[34] D. Kim, D. Shin, A. S. Landsman, D. E. Kim, and A. Chacón,
Theory for all-optical responses in topological materials: The
velocity gauge picture, Phys. Rev. B 106, 214314 (2022).

[35] J. Mattiat and S. Luber, Comparison of length, velocity, and
symmetric gauges for the calculation of absorption and elec-
tric circular dichroism spectra with real-time time-dependent
density functional theory, J. Chem. Theory Comput. 18, 5513
(2022).

[36] Q. Xu, M. Del Ben, M. Sait Okyay, M. Choi, K. Z. Ibrahim, and
B. M. Wong, Velocity-gauge real-time time-dependent density
functional tight-binding for large-scale condensed matter sys-
tems, J. Chem. Theory Comput. 19, 7989 (2023).

[37] A. F. Starace, Length and velocity formulas in approximate
oscillator-strength calculations, Phys. Rev. A 3, 1242 (1971).

[38] R. Girlanda, A. Quattropani, and P. Schwendimann, Two-
photon transitions to exciton states in semiconductors. Appli-
cation to CuCl, Phys. Rev. B 24, 2009 (1981).

[39] S. Ismail-Beigi, E. K. Chang, and S. G. Louie, Coupling of
nonlocal potentials to electromagnetic fields, Phys. Rev. Lett.
87, 087402 (2001).

[40] D. J. Passos, G. B. Ventura, J. M. V. P. Viana Parente Lopes,
J. M. B. L. dos Santos, and N. M. R. Peres, Nonlinear optical
responses of crystalline systems: Results from a velocity gauge
analysis, Phys. Rev. B 97, 235446 (2018).

[41] G. B. Ventura, D. Passos, J. M. V. P. Lopes, and J. M. B. L. dos
Santos, A study of the nonlinear optical response of the plain
graphene and gapped graphene monolayers beyond the Dirac
approximation, J. Phys.: Condens. Matter (2019).

[42] A. R. Puente-Uriona, M. Modugno, I. Souza, and J. Ibanez-
Azpiroz, Computing Floquet quasienergies in finite and
extended systems: Role of electromagnetic and quantum-
geometric gauges, Phys. Rev. B 110, 125203 (2024).

[43] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Maximally localized Wannier functions: Theory and
applications, Rev. Mod. Phys. 84, 1419 (2012).

[44] C. Wang, X. Liu, L. Kang, B.-L. Gu, Y. Xu, and W. Duan, First-
principles calculation of nonlinear optical responses by Wannier
interpolation, Phys. Rev. B 96, 115147 (2017).

[45] J. Ibañez-Azpiroz, F. de Juan, and I. Souza, Assessing the role
of interatomic position matrix elements in tight-binding calcu-
lations of optical properties, SciPost Phys. 12, 070 (2022).

[46] A. Taghizadeh and T. G. Pedersen, Gauge invariance of exci-
tonic linear and nonlinear optical response, Phys. Rev. B 97,
205432 (2018).

[47] D. Go, H.-W. Lee, P. M. Oppeneer, S. Blügel, and Y.
Mokrousov, First-principles calculation of orbital Hall effect
by Wannier interpolation: Role of orbital dependence of the
anomalous position, Phys. Rev. B 109, 174435 (2024).

[48] J. L. Cabellos, B. S. Mendoza, M. A. Escobar, F. Nastos, and
J. E. Sipe, Effects of nonlocality on second-harmonic genera-
tion in bulk semiconductors, Phys. Rev. B 80, 155205 (2009).

[49] V. Chernyak and S. Mukamel, Gauge invariant formulation
of molecular electrodynamics and the multipolar Hamiltonian,
Chem. Phys. 198, 133 (1995).

[50] S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Ox-
ford Series in Optical and Imaging Sciences (Oxford University
Press, Oxford, UK, 1995).

085139-12

https://doi.org/10.1038/s41467-022-34973-4
https://doi.org/10.1038/s41586-023-05850-x
https://doi.org/10.1103/PhysRevA.56.748
https://doi.org/10.1103/PhysRevB.74.115406
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1103/PhysRevB.108.064308
https://doi.org/10.1103/PhysRevB.76.035213
https://doi.org/10.1016/j.cpc.2017.04.010
https://doi.org/10.1103/PhysRevB.96.195413
https://doi.org/10.1103/PhysRevB.96.035431
https://doi.org/10.1103/PhysRevB.103.155409
https://doi.org/10.1103/PhysRevB.96.035112
https://doi.org/10.1103/PhysRevB.98.235202
https://doi.org/10.1103/PhysRevB.99.045121
https://doi.org/10.1103/PhysRevA.73.023410
https://doi.org/10.1063/1.4864467
https://doi.org/10.1103/PhysRevA.101.053411
https://doi.org/10.1364/JOSAB.448602
https://doi.org/10.1103/PhysRevB.106.214314
https://doi.org/10.1021/acs.jctc.2c00644
https://doi.org/10.1021/acs.jctc.3c00689
https://doi.org/10.1103/PhysRevA.3.1242
https://doi.org/10.1103/PhysRevB.24.2009
https://doi.org/10.1103/PhysRevLett.87.087402
https://doi.org/10.1103/PhysRevB.97.235446
https://doi.org/10.1088/1361-648x/ab62bc
https://doi.org/10.1103/PhysRevB.110.125203
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevB.96.115147
https://doi.org/10.21468/SciPostPhys.12.2.070
https://doi.org/10.1103/PhysRevB.97.205432
https://doi.org/10.1103/PhysRevB.109.174435
https://doi.org/10.1103/PhysRevB.80.155205
https://doi.org/10.1016/0301-0104(95)00122-5


FIRST-PRINCIPLES-BASED FLOQUET ENGINEERING OF … PHYSICAL REVIEW B 112, 085139 (2025)

[51] Y. Mizumoto, Y. Kayanuma, A. Srivastava, J. Kono, and
A. H. Chin, Dressed-band theory for semiconductors in a high-
intensity infrared laser field, Phys. Rev. B 74, 045216 (2006).

[52] B. Gu and I. Franco, Optical absorption properties of laser-
driven matter, Phys. Rev. A 98, 063412 (2018).

[53] H. Haug and S. W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors (World Scientific,
Singapore, 2009).

[54] G. Floquet, Sur les équations différentielles linéaires à coeffi-
cients périodiques, Ann. Sci. École Norm. Sup. 12, 47 (1883).

[55] H. Sambe, Steady states and quasienergies of a quantum-
mechanical system in an oscillating field, Phys. Rev. A 7, 2203
(1973).

[56] J. H. Shirley, Solution of the Schrödinger equation with a
Hamiltonian periodic in time, Phys. Rev. 138, B979 (1965).

[57] M. Dresselhaus, G. Dresselhaus, S. Cronin, and A. G. S. Filho,
Solid State Properties (Springer, Berlin, 2018).

[58] FloqticS (Floquet optics in Solids) – Code for computing
the optical absorption spectrum of laser-dressed solids, https:
//github.com/ifgroup/floqtics.

[59] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M.
Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de
Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G.
Fratesi, G. Fugallo et al., Advanced capabilities for materials
modelling with QUANTUM ESPRESSO, J. Phys.: Condens. Matter
29, 465901 (2017).

[60] W. E. Pickett, Pseudopotential methods in condensed matter
applications, Comput. Phys. Rep. 9, 115 (1989).

[61] D. Vanderbilt, Soft self-consistent pseudopotentials in a gener-
alized eigenvalue formalism, Phys. Rev. B 41, 7892 (1990).

[62] H. Kageshima and K. Shiraishi, Momentum-matrix-element
calculation using pseudopotentials, Phys. Rev. B 56, 14985
(1997).

[63] J. Tóbik and A. Dal Corso, Electric fields with ultrasoft pseudo-
potentials: Applications to benzene and anthracene, J. Chem.
Phys. 120, 9934 (2004).

[64] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G.
Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune,
J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A.
Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura,

L. Paulatto et al., Wannier90 as a community code: new features
and applications, J. Phys.: Condens. Matter 32, 165902 (2020).

[65] T. G. Pedersen, K. Pedersen, and T. B. Kriestensen, Optical
matrix elements in tight-binding calculations, Phys. Rev. B 63,
201101 (2001).

[66] X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Ab initio
calculation of the anomalous Hall conductivity by Wannier
interpolation, Phys. Rev. B 74, 195118 (2006).

[67] R. E. F. Silva, F. Martín, and M. Ivanov, High harmonic gener-
ation in crystals using maximally localized Wannier functions,
Phys. Rev. B 100, 195201 (2019).

[68] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T.
Auckenthaler, A. Heinecke, H.-J. Bungartz, and H. Lederer,
The ELPA library: scalable parallel eigenvalue solutions for
electronic structure theory and computational science, J. Phys.:
Condens. Matter 26, 213201 (2014).

[69] J. P. Perdew and A. Zunger, Self-interaction correction to
density-functional approximations for many-electron systems,
Phys. Rev. B 23, 5048 (1981).

[70] A. Dal Corso, Pseudopotentials periodic table: From H to Pu,
Comput. Mater. Sci. 95, 337 (2014).

[71] A. Ferretti, G. Mallia, L. Martin-Samos, G. Bussi, A. Ruini,
B. Montanari, and N. M. Harrison, Ab initio complex band
structure of conjugated polymers: Effects of hydrid density
functional theory and GW schemes, Phys. Rev. B 85, 235105
(2012).

[72] G. Leising, Anisotropy of the optical constants of pure
and metallic polyacetylene, Phys. Rev. B 38, 10313
(1988).

[73] C. R. Fincher, M. Ozaki, M. Tanaka, D. Peebles, L. Lauchlan,
A. J. Heeger, and A. G. MacDiarmid, Electronic structure of
polyacetylene: Optical and infrared studies of undoped semi-
conducting (CH)x and heavily doped metallic (CH)x , Phys. Rev.
B 20, 1589 (1979).

[74] O. K. Andersen, Linear methods in band theory, Phys. Rev. B
12, 3060 (1975).

[75] A. D. Becke, A new mixing of Hartree–Fock and local density-
functional theories, J. Chem. Phys. 98, 1372 (1993).

[76] V. Tiwari and I. Franco, Data for: First-principle based Floquet
engineering of solids in the velocity gauge, figshare (2025),
doi: https://doi.org/10.6084/m9.figshare.28208117.v1.

085139-13

https://doi.org/10.1103/PhysRevB.74.045216
https://doi.org/10.1103/PhysRevA.98.063412
https://doi.org/10.24033/asens.220
https://doi.org/10.1103/PhysRevA.7.2203
https://doi.org/10.1103/PhysRev.138.B979
https://github.com/ifgroup/floqtics
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1016/0167-7977(89)90002-6
https://doi.org/10.1103/PhysRevB.41.7892
https://doi.org/10.1103/PhysRevB.56.14985
https://doi.org/10.1063/1.1729853
https://doi.org/10.1088/1361-648X/ab51ff
https://doi.org/10.1103/PhysRevB.63.201101
https://doi.org/10.1103/PhysRevB.74.195118
https://doi.org/10.1103/PhysRevB.100.195201
https://doi.org/10.1088/0953-8984/26/21/213201
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1016/j.commatsci.2014.07.043
https://doi.org/10.1103/PhysRevB.85.235105
https://doi.org/10.1103/PhysRevB.38.10313
https://doi.org/10.1103/PhysRevB.20.1589
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1063/1.464304
https://doi.org/10.6084/m9.figshare.28208117.v1

