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ABSTRACT: Recent advances in numerically exact quantum dynamics methods have
brought the dream of accurately modeling the dynamics of chemically complex open
systems within reach. Path-integral-based methods, hierarchical equations of motion, and
quantum analog simulators all require the spectral density (SD) of the environment to
describe its effect on the system. Here, we focus on the decoherence dynamics of
electronically excited species in solution in the common case where nonradiative electronic
relaxation dominates and is much slower than electronic dephasing. We show that the
computed relaxation rate is highly sensitive to the choice of SD representation�such as
the Drude−Lorentz or Brownian modes�or strategy used to capture the main SD features, even when early−time dephasing
dynamics remains robust. The key reason is that electronic relaxation is dominated by the resonant contribution from the high-
frequency tails of the SD, which are orders of magnitude weaker than the main features of the SD and can vary significantly between
strategies. This finding highlights an important, yet overlooked, numerical challenge: obtaining an accurate SD requires capturing its
structure over several orders of magnitude to ensure correct decoherence dynamics at both early and late times. To address this, we
provide a simple transformation that recovers the correct relaxation rates in quantum simulations constrained by algorithmic or
physical limitations on the shape of the SD. Our findings enable a comparison of different numerically exact simulation methods and
expand the capabilities of analog simulations of open quantum dynamics.

1. INTRODUCTION
Accurate calculations of the quantum dynamics of open
quantum systems with chemically complex environments
would advance our understanding of many problems of
interest in chemistry, biology, and quantum information
science. Tuning of the coherence times of molecular qubits,1

learning from efficient energy transfer in photosynthesis,2 and
in silico design of molecular engines3 - these are just select
examples of the many new possibilities that would open up.
Due to the inherent complexity of the open quantum
dynamics, there is not a single universal approach to solve it.
Instead, a great variety of methods has been developed, each of
them with a different regime of applicability.

The main challenge in open quantum dynamics is to
accurately describe the effect of a large environment on a small
system of interest. The unitary dynamics of system plus
environment is intractable owing to the large (possibly
macroscopic) environment. Historically, two main strategies
to make the problem tractable without the introduction of
uncontrolled approximations have emerged; we will refer to
these two strategies as “unitary” and “reduced” for brevity. In
the unitary approach, finite number of degrees of freedom of
the environment are included and the total dynamics (of both
system and truncated environment) is unitary. Multiconfigura-
tional time-dependent Hartree (MCTDH),4,5 and its multi-
layer extension,6 the density matrix renormalization group
(DMRG),7 the time-evolving density matrix using the
orthogonal polynomials algorithm (TEDOPA),8 the time-
dependent Davydov ansatz,9 and the effective-mode (EM)

approach10 all utilize this strategy. Only a finite number of
environment modes can be included, meaning that the overall
dynamics is reversible. Thus, the system cannot reach the
thermal state even in principle and instead will experience
recurrences in long-time dynamics. On the other hand, these
methods are applicable to “tough” cases, such as anharmonic
environment modes,11 failure of the Born−Oppenheimer
approximation,12 or strong,13 possibly nonlinear5 coupling to
the environment.

Hierarchical equations of motion (HEOM)14 and its
variants15−17 as well as real-time path integral (PI)
methods18−24 utilize the reduced strategy to make open
quantum dynamics numerically tractable. “Reduced” here
refers to the fact that only system dynamics is followed
explicitly; the effect of the environment is captured implicitly
by introducing a bath of large (usually uncountably infinite)
number of harmonic degrees of freedom, each bilinearly
coupled to the system. The effect of this harmonic bath on the
system dynamics on one hand can be captured exactly within
an effective description,25,26 and on the other hand it can
mimic27,28 the effect of a complex environment through
Gaussian response. For example, recently, the relaxation in

Received: February 11, 2025
Revised: March 17, 2025
Accepted: March 20, 2025

Articlepubs.acs.org/JPCA

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jpca.5c00943
J. Phys. Chem. A XXXX, XXX, XXX−XXX

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
R

O
C

H
E

ST
E

R
 o

n 
A

pr
il 

8,
 2

02
5 

at
 1

3:
50

:3
3 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roman+Korol"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xinxian+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ignacio+Franco"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.5c00943&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.5c00943?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.5c00943?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.5c00943?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.5c00943?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.5c00943?fig=tgr1&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpca.5c00943?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


bacterial light harvesting chromophore has been simulated29

using the small matrix decomposition of the path integral
algorithm.21 Similarly, HEOM was used to model the FMO
complex.30

Recent advances at the intersection of quantum information
science and theoretical chemistry opened up a radically new set
of approaches to obtain accurate open quantum dynamics −
using digital quantum computation31,32 or analog quantum
simulation, where the dynamics of interest is mapped onto a
highly controllable experimental system.33−36 The former has
many of the strengths and weaknesses of the unitary methods,
since quantum computers are naturally suited to describe
unitary quantum dynamics. In contrast, quantum analog
simulators can be used to realize open system dynamics with
macroscopically large environments,34,35 which groups them
together with the reduced methods.

Both the PI and HEOM methods are numerically exact,
meaning the dynamics of the system can be described as
accurately as needed by tightening the convergence parameters
appropriately. Assuming the dynamics is converged, the model
we formulate to describe a process is the only remaining source
of discrepancies between a numerically exact simulation and
physical reality. In this paper, we analyze the importance of
faithful representation of a structured bath, illustrating our
findings using HEOM simulations.17 However, we emphasize
that our findings extend to any reduced approach (all HEOM
variants, all real-time PI methods, and quantum analog
simulators of open quantum dynamics).

The properties of any harmonic bath bilinearly coupled to
the system are fully captured25 by the bath spectral density
(SD) defined in the frequency domain as

= | | +J g( ) ( ( ) ( ))
j

j j j
2

(1)

with each bath mode ωj characterized by the system-bath
coupling constant gj and ℏ denoting the reduced Planck’s
constant. The spectral density enters the equations of motion
of the open quantum system via the bath correlation function
(BCF) also known as bath response function,25

= +C t J n e( ) d ( )(1 ( )) i t
(2)

where as usual β = (kBT)−1 is the inverse temperature
multiplied by the Boltzmann constant, and n denotes the
Bose−Einstein distribution n(x) = (ex − 1)−1.

Obtaining an accurate SD for a system that interacts with a
structured environment is highly nontrivial. Molecular
dynamics (MD) or hybrid quantum mechanics/molecular
mechanics (QM/MM) methods can be used to calculate
classical (i.e., real only) BCF and the SD can be constructed
from it.37−41 Experimental data, such as fluorescence line
narrowing spectra40,42 or resonance Raman scattering spec-
tra,43 can also inform the construction of SD for a pure
dephasing process. However, both experimental and theoreti-
cal approaches have a limited regime of validity and imperfect
accuracy.44 The low frequency end of the spectrum (that is,
limω→0+ J(ω) ∝ ωs) is known to sensitively affect the
dynamics,26 leading to qualitatively distinct features in the
ohmic (s = 1), subohmic (s < 1) and superohmic (s > 1) cases.
In contrast, the details of the high-frequency end of the
spectrum are believed to be largely inconsequential with the
notable exception of the polaronic dressing of charge carriers.45

Indeed, it is common to see simulations employing different
high-frequency cutoff functions46−49 decaying as fast as
exponential29 (limω→∞ J(ω) ∝ e−ω/ωc) or as slow as inverse
polynomial (limω→∞ J(ω) ∝ ω−p) with p = 1 (Lorentzian),44,50

p = 3 (Brownian),51 and p > 3.49 The precise form of the high-
frequency cutoff is motivated by the exact results in limiting
cases (for example the underdamped Brownian peaks),46,48,49

or by numerical efficiency considerations. In fact, HEOM
simulations are frequently performed with the Drude-Lorentz
form of the SD cutoff, as it is particularly efficient;48,49

oppositely, the exponential form of the cutoff function is
preferred for MCTDH52 and other methods that require
discretization of the SD and, therefore, have a maximum
frequency. Physical constraints can similarly limit the choice of
the peak functional form in quantum analog simulators.34 It is
widely assumed that the precise choice of the cutoff is
irrelevant and only the total contribution of the high-frequency
tails to the reorganization energy should be considered to
recover the correct dynamics.

In this study, we reexamine this assumption with a focus on
the dynamics of coherent electronic excitation in condensed
phase. The decoherence dynamics typically proceeds in two
steps: initial fast loss of phase information, followed by the
much slower population relaxation. We aim to accurately
capture both the fast and the slow components of the
decoherence dynamics. We focus on the HEOM method,
requiring that the BCF is written as a finite sum of
exponentials,15−17,53,54

C t c e( )
j

j
i tj

(3)

with complex prefactors cj and complex Ωj = ωj + iγj, whose
real and imaginary parts are related to the central frequency
and broadening of the peak in spectral density. This
requirement prevents us from directly analyzing the SD with
exponential cutoff. Nonetheless, we emphasize that our
conclusions about the impact of the high-frequency tails of
the spectral density extends beyond the HEOM method with
implications for quantum analog simulation as well as other
numerically exact methods that employ alternative high-
frequency cutoff strategies, including the exponential cutoff.
In what follows, we will analyze the effect of using different
functional forms to describe the features (i.e., peaks) of a given
SD.

The paper is organized as follows. In Section 2.1 we describe
the Hamiltonian model and summarize the HEOM method. In
Section 2.2, we discuss representations of the spectral density
peaks and, in Section 2.3, we detail the model system
parameters. Then, in Section 3, we analyze the impact of the
SD tails on the dephasing (Section 3.1) and population
relaxation (Section 3.2) of an illustrative model system
(electronic excitation of a molecule in water) and suggest
the way to connect simulations with different SD basis
functions (Section 3.3). In Section 3.4 we discuss the
implications and limitations of our findings. We summarize
our observations in Section 4.

2. METHODS
We consider a quantum system coupled to harmonic bath and
described by the total Hamiltonian split into the system Hs,
bath Hb and the system-bath interaction Hsb = S ⊗ B parts,
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where σ̂z = |1⟩⟨1| − |0⟩⟨0| and σ̂x = |0⟩⟨1| + |1⟩⟨0| are the usual
Pauli matrices with |0⟩ and |1⟩ denoting the ground and
excited electronic state in the bra-ket notation. The system is
characterized by the transition frequency between the ground
and excited electronic states Ω. The bath is assumed to be a
collection of harmonic oscillators with frequencies ωj, so that
aĵ

† and aĵ are the usual bosonic creation and annihilation
operators. Note that the dagger symbol is used throughout to
denote the adjoint of an operator. Finally, the system-bath
interaction term couples the collective bath coordinate
(displacement-like bath operator) to the nondiagonal system
operator weighted by αx and αz, + =z x

2 2 1
4
.

In eq 4 we consider the two-level system for simplicity, but
the multistate generalization is straightforward and the
conclusions of our analysis carry over. Note that the
assumption of harmonic bath does not restrict our
considerations to the chemical environments that are
harmonic, since the effects of an arbitrary anharmonic
environment can be taken into account within eq 4 by using
an appropriate spectral density, provided the coupling to any
one degree of freedom is sufficiently weak,26 which is expected
for the macroscopically large environment in the thermody-
namic limit, where interaction is distributed over many degrees
of freedom.55

2.1. HEOM. We describe the dynamics of the system with
the HEOM.17 Initially the system is assumed to be in a
separable state with the bath at inverse temperature β, such
that the total density matrix at time 0 is

= = e Z(0) (0) (0) /s
H

b s b
b (5)

where Zb = Trbe−βĤb is the bath partition function and Trb
denotes a partial trace, taken over all bath degrees of freedom.
To simplify the notation, we omit the hats over density
operators and reserve ρ with appropriate subscripts to denote a
(possibly reduced) density matrix throughout.

The total dynamics of the system and environment is unitary
and is generated by eq 4. However, if only the system dynamics
is of interest, the environment degrees of freedom can be
traced out to yield the reduced density matrix

=t t( ) Tr ( )s b (6)

This reduced density matrix has nonunitary dynamics given
by15

=t t( ) ( , 0) (0)s s (7)

where tilde denotes that the density operator is written in the
interaction picture of H0 = Hs + Hb, such that Õ(t) = eiH0tO(t)
e−iH0t. Here is the time-ordering superoperator and
connects the system operator S̃ from eq 4 but in the interaction
picture to the bath correlation function from eq 2

= × ×t sS s u C s u S u( , 0) exp d ( ) d ( ( ) ( ))
t

o

s

0

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ

(8)

The × symbol used in the superscript of the operators is the
shorthand notation defined as follows:

× †A B AB BA (9)

The bath correlation function depends on the interaction term
in eq 4 (note that the bath operator is written in the
interaction picture with respect to H0 as well):

=C t B t B( ) Tr ( ( ) (0) )b b (10)

and determines the spectral density (eq 1) that appropriately
describes the environment’s influence on the system dynamics.
2.2. Spectral Density Decompositions. We consider a

situation where the spectral density of the environment is
known from experiment, simulation, or a combination of the
two, and, moreover, this known spectral density consists of a
broad low-frequency (<300 cm−1) feature and a finite number
of sharp peaks in the 300−4000 cm−1 frequency range. This is
a typical situation for molecules in solution, where the
electronic energy levels are affected by several vibrational
peaks, as well as the low-frequency collective motion of the
solvent.

We therefore approximate the full spectral density as a sum
of discrete peaks, each characterized by the peak position
(frequency) ωk, peak width (broadening) γk, and peak intensity
(reorganization energy) λk, resulting in the functional form
Jk(ω;ωk, γk, λk).

The displaced Drude oscillator has Lorentzian shape

=
+

+
+ +

=
+ +

[ + ][ + + ]

J ( )
1

( )
1
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k
k k

k k k k
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k k k k

Dr
2 2 2 2

3 2 2

2 2 2 2

i
k
jjjjjj

y
{
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(11)

For low frequency ω → 0 and Taylor expanding eq 11 around
ω = 0 yields first order (Ohmic) behavior at low frequencies,

=
+

+J ( )
2

( )
( )k

k k

k k
,0

Dr
2 2

3

(12)

In turn, for high frequency the lowest order dependence from a
Taylor expansion in 1/ω around 0 is ω−1,

= +J ( )
2 1

k
k k

,
Dr

3
i
k
jjj y

{
zzz (13)

The sum in the first line of eq 11 ensures the odd symmetry of
the fit function. The integral of Jk

Dr/ω over the entire frequency
range is the reorganization energy of the kth peak, λk. Note that
the ubiquitous Drude-Lorentz (DL) form =

+
J ( )DL 2

( )2 2

is a special case of the displaced Drude oscillator (eq 11) when
the displacement ωk is equal to 0. It corresponds to one
summand in BCF (eq 3), which does not oscillate (ωk = 0) but
has a pure exponential decay with rate γk, a special case for
which HEOM simulations are particularly efficient.

Performing a similar analysis for the underdamped Brownian
oscillator (UBO) yields the functional form given in eq 14.
Note that the UBO SD has Ohmic behavior at low frequency
(eq 15) with a coefficient that is double that of the displaced
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Drude oscillator [compare with eq 12]. However, high-
frequency tails fall off faster than in the Drude case, that is,
as ω−3 vs ω−1.

=
+

[ + ][ + + ]
J ( )

4 ( )

( ) ( )k
k k k k

k k k k

Br
2 2

2 2 2 2
(14)

=
+

+J J( )
4

( )
( ) 2 ( )k

k k

k k
k,0

Br
2 2

3
,0

Dr

(15)

=
+

+J ( )
4 ( )

(1/ )k
k k k k

,
Br

2 2

3
5

(16)

The UBO SD is physically motivated, as it corresponds to a
situation where the system is directly and linearly coupled to a
single (nuclear) mode of frequency ωk, which in turn is
coupled to a bath of modes undergoing Brownian motion with
friction γk.

56

The recent proposal for the quantum analog simulator
device34 utilizes RLC circuits connected to the gate defined
quantum dots to simulate a two-level system linearly coupled
to a bosonic bath. Harmonic oscillators are mechanical analogs
of the LC (inductor-capacitor) circuits and the resistive
element “R” introduces broadening of discrete peaks to yield a
spectral density of a functional form very similar to the UBO
[compare eqs 17 and 14], but the low-frequency behavior is
superohmic (eq 18) and the high-frequency tail falls off as
slowly as the Drude peak, that is, as ω−1 but with double the
prefactor [compare eqs 19 and 13].

=
[ + ][ + + ]

J ( )
4

( ) ( )k
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k k k k

RLC
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2 2 2 2
(17)
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4
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2 2 2
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(18)

= +J J( )
4

(1/ ) 2 ( )k
k k

k,
RLC 3

,
Dr

(19)

Each of the three functional forms of the SD (eqs 11, 14, 17)
affects the dynamics of an open quantum system by adding two
summands to the BCF (eq 3), that decay exponentially with
rate γk and oscillate with frequency ωk. Taking λk, γk, and ωk to
be the same in all three cases presents a natural point of
comparison between the three functional forms. In such a
comparison the difference between the three SD functional
forms is fully contained within BCF coefficients cj (eq 3).

In addition to the spectral density basis functions described
above, we also tested more complicated functions that can be
seen as generalizations of the UBO modes.49 Each of these 2-
peak functions corresponds to two pairs of terms in the BCF,
which oscillate at frequencies {ωk1, ωk2} respectively and
exponentially decay with rates {γk1, γk2} respectively:

=
[ + ][ + + ]={ }

J ( )
( ) ( )k

n
n k

n

i ki ki ki ki

2,
,

1,2
2 2 2 2

(20)
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,

1,2
2 2 2

2

(21)

= +J ( ) (1/ )k
n

n k
n n

,
2,

,
(8 ) 10

(22)

where the frequency scaling at the low- and high-frequency
ends are ωn and ω−(8−n) respectively for n ∈ {1, 3, 5, 7}. Here
we employ the first two of the four possible basis functions of
this form and refer to them as “Ohmic with 2 peaks” (n = 1)
and “Superohmic with 2 peaks” (n = 3). The corresponding
normalization constants Λn,k are given in the SI. These
functions can have second order poles, but for the present
discussion we will choose parameters that ensure the poles are
simple.

Another form of the cutoff function − exponential − is often
used in path-integral as well as master-equation based open
quantum dynamics simulations, but cannot be directly
addressed with HEOM since the exponential function has a
pole of infinite order, which violates the requirement of eq 3.
Therefore, we did not include the exponential cutoff function
in our numerical simulations. Nonetheless, our analysis is
general and has implications for simulations performed with
the exponential cutoffs as we discuss in Section 3.3.

Rather than concentrating on the low-frequency behavior of
Jk (i.e., ohmic, subohmic, superohmic), we focus our attention
on the decay of high-frequency tails at the opposite end of the
spectrum. Figure 1a shows a single peak at 1500 cm−1 for each
of the functional forms considered in this study. The five
functional forms with identical peak parameters show near
perfect agreement in the vicinity of the peak (Figure 1b,c). The
last two panels highlight the low- (Figure 1d) and high-
(Figure 1e) frequency behavior of the different functional

Figure 1. Fit functions for spectral density peaks considered in this
study. (a) A single peak at ωk = 1500 cm−1 with width γk = 10 cm−1

represented using different functional forms Jk. The peak intensity
(reorganization energy) is set to λk = 20 cm−1 so that the peak height
is ∼1000 cm−1 for ease of comparison across the panels. For the two-
peak functions ωk1 = ωk2 = ωk, Λ2p,k = λk and γk1 = γk2 = 2γk. The
range of frequencies shown from 0 to 4000 cm−1 covers most
chemical environments. (b, c) difference of each peak shown in (a)
with respect to the displaced Drude oscillator peak. (d) log−log plot
of the low frequency tail (up to 200 cm−1) of each functional form
shown in (a). (e) Semilog plot of the high-frequency tail around
35,000 cm−1.
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forms. Note that panel (d) is a log−log plot, while panel (e)
has a linear x-axis and a logarithmic y-axis.
2.3. Model System. We consider the simplest model to

describe molecular decoherence in aqueous solution. The
system consists of two electronic levels separated by a
frequency Ω = 35,650 cm−1 (4.42 eV), corresponding to the
wavelength of 280 nm.57 We construct the bath using the
recently reported SD parameters obtained based on resonance
Raman spectra of thymine in aqueous solution.43 While these
parameters are obtained in the pure dephasing limit, we wish
to explore the regime where bath-assisted population relaxation
is also possible. We therefore couple the bath via both σ̂z with
αz = 0.37 and σ̂x with αx = 0.34. The precise choice of
coefficients is somewhat arbitrary, but to allow for both
dephasing and population relaxation, they are chosen to be of
comparable magnitude. We use the frequencies and reorgan-
ization energies obtained in ref 43 (see Table 1). We

emphasize that this paper does not aim to faithfully describe
the dynamics of a particular molecule (thymine), but rather to
study the general phenomenon with realistic model parame-
ters.

Resonance Raman experiments do not inform the widths of
the peaks γk, so we have to make a reasonable choice. The
simplest option would be to pick a single width (say 10 cm−1)
for all peaks in the spectral density. This works well for the
displaced Drude oscillator, the underdamped Brownian, and
the RLC circuit functional forms, where the intensity of each
peak is controlled by the corresponding reorganization energy
parameter λk. However, for ohmic and superohmic 2-peak
functions, the reorganization energy parameter Λ2p,k sets the
total peak intensity of a pair of peaks (eqs S1 and S2). The
peak widths in Table 1 are chosen (as described in the SI) to
ensure that the Ohmic 2-peak functions yield the individual
peak intensities λk obtained from the resonance Raman. Note
that the peaks in Table 1 are ordered such that neighboring
peaks (e.g., 1 and 2) form a single 2-peak function.

We use all five functional forms presented in Figure 1 to
include the eight modes (peaks) of the spectral density,
resulting in five similar SDs (see Figure 2). The solvent is
included via DL functional form [that is, setting ωk = 0 in eq
11] in each of the five spectral densities. Because the low-
frequency range of the spectral density is dominated by this DL
solvent feature, this ensures that it is virtually identical for the
five SDs we are testing. The SD peaks appear between ∼300
and ∼4000 cm−1. Here the SD’s obtained with single-peak

functional forms (displaced Drude, the UBO and the RLC
circuit) display nearly perfect agreement in the vicinity of each
peak, while deviating slightly more at the peak edges. The
tallest peaks of the SD extend to J(ω2) ≈ 13,000 and J(ω1) ≈
18,000 respectively; we chose not to show the full y-range of
the SD’s, as this would make the small differences between
different functional forms shown on Figure 2 indistinguishable.
The two-peak functions (both Ohmic and Superohmic)
visually display more pronounced deviations from the other
three, but still match the peak positions, widths and intensities.
The high-frequency range of the spectral density is shown in
the inset and displays large relative differences between the
SD’s constructed with RLC circuit, the displaced Drude and
the UBO peaks, as we have seen on Figure 1e. Note that UBO
and both of the two-peak functions yield virtually identical
high-frequency tails since all three functional forms decay
faster than the DL solvent peak.

The simulation is initialized in the product state ρ(0) =
ρs(0) ⊗ ρb

β, where = | + | | + |(0)s
( 0 1 )( 0 1 )

2
is the reduced

density matrix of the system at the initial time and the bath is
initially in the thermal state at 300 K. We integrate the master
equation obtained based on the time-dependent variational
principle using the fourth order Runge−Kutta integrator with
the fifth order error estimator, also known as the Dormand-
Prince algorithm.58 The time step is set by the absolute and
relative tolerance bounds of 10−8 and 10−5 respectively. We use
the hierarchy cutoff of 25 for each HEOM term, and add 8 low
temperature correction Pade ́ terms.59

3. RESULTS AND DISCUSSION
We present the HEOM simulation results over 0.5 ps at room
temperature (T = 300 K) in Figure 3.
3.1. Dephasing Dynamics. We first focus on the

dephasing in the system, shown in Figure 3a, where the
absolute value of the off-diagonal element of the reduced

Table 1. Spectral Density Parameters for Our Model
Systema

feature ωk, cm−1 λk, cm−1 γk, cm−1

Solvent 0 715.7 54.5
Peak 1 1663 330 10
Peak 2 1243 161.6 36.55
Peak 3 1416 25.6 10
Peak 4 784 26.5 33.77
Peak 5 1376 186 10
Peak 6 1193 77.3 32.01
Peak 7 665 31.9 10
Peak 8 442 14.9 48.46

aThe first two columns are obtained from Ref 43., the third is
constructed based on the behavior of Ohmic 2-peak function as
described in the SI.

Figure 2. Spectral density built with different functional forms. The
parameters are shown in the Table 1. The Drude, Brownian and RLC
circuit functional forms result in virtually identical spectral density at
the peaks with relative difference in intensity in the vicinity of the
peak of less than 0.5%. The two-peak functions yield more
pronounced differences, but overall still adequately approximate the
spectral density peaks. The left inset zooms in to the range of
frequencies of 1340−1440 cm−1, where the peaks are congested; the
right inset shows the high-frequency tails in the vicinity of electronic
transition frequency Ω = 35,650 cm−1.
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density matrix of the system is plotted as a function of time
with different functional forms of the SD peaks. The solvent
alone (solid black curve in Figure 3a) sets dephasing timescale
at ∼30 fs. Inclusion of the eight vibrational modes in addition
to the DL solvent feature increases the initial dephasing rate,
but also introduces additional structure to the dephasing
dynamics. More precisely, the addition of sharp peaks in the
range of frequencies between 300 and 2000 cm−1 results in
recurrences at ∼20 and ∼35 fs, which are not present with the
solvent-only DL bath. All of these observations echo the
findings presented in ref 43.

More significantly for this study, the dephasing is insensitive
to the choice of the functional form of the vibrational modes in
the SD, at least for the five functional forms we tested. The
dephasing dynamics up to ∼20 fs is determined by the peak
positions, widths, and intensities43�all of which are the same
for all functional forms tested. At later times the decay of
coherence is determined by the low-frequency end of the
spectral density. This is because the narrow high-frequency SD
features alone lead to significant coherence recurrences after
the initial fast decay (Figure 3B of ref 43) due to wavepacket
evolution in alternative potential energy surfaces. In contrast,
the broad low-frequency solvent feature provides an irrever-
sible decay path for the coherence that suppresses these
recurrences and dictates the overall coherence loss. Although
different functional forms have different low-frequency
behaviors [see eqs 12, 15, 18, 21], their difference in
contribution to the low-frequency end of the SD is masked
by the DL solvent feature, which dominates in this frequency
range (see Figure 2).

In summary, we find that dephasing is insensitive to the
precise functional form of the structured vibrational peaks in
condensed phase dynamics both at early times (controlled by

molecular vibrations) and at later times (controlled by the
solvent).
3.2. Population Relaxation. Population relaxation

(Figure 3b) is about 3 orders of magnitude slower than
dephasing for our model system. This corresponds to the
nonradiative relaxation time of several picoseconds�signifi-
cantly slower than dephasing, yet fast enough that the radiative
mechanism (i.e., fluorescence) can be ignored.60 The solvent
alone causes excited state population to decay with a lifetime
(inverse of exponential decay rate) of 10.5 ps. We observe that
the rate of population relaxation is in some cases increased
significantly by adding sharp peaks in the range of frequencies
between ∼300 and ∼2000 cm−1. The key finding of this study
is that this effect differs substantially depending on the
functional form chosen to represent the peaks. The addition of
the RLC circuit peaks yields the fastest population decay with a
lifetime of 5.4 ps, followed by the displaced Drude oscillator
peaks with a lifetime of 7.0 ps. Brownian and 2-peak Ohmic
functions yield similar population lifetimes of 9.8 ps, just a little
faster than that caused by only the DL solvent feature.

To explain these differences, we refer back to Figure 1. The
different functional forms that represent each peak in the SD
have identical reorganization energies, peak widths, and
characteristic frequencies, resulting in tiny absolute deviations
in the vicinity of the peaks (panels a,b). However, these small
differences in the functional form of the peaks significantly
affect population relaxation rates. We interpret this to be
caused by the large relative differences in the high-frequency
tails of the five functional forms. The population relaxation rate
within the Born-Markov approximation61 is mainly determined
(eq 24) by the SD value in the vicinity of the frequency of
electronic transition J(Ω), which is significantly higher than
molecular vibrations. Thus, for the model system we study,
representing a typical electronic transition, the resonant
contribution to electronic relaxation comes from the high-
frequency tails of the SD.

The Brownian and 2-peak Ohmic as well as superohmic tails
decay rapidly (as ω−3, ω−7 and ω−5 respectively, see eqs 16 and
22). For these functional form choices the decay rate at the
high-frequency end of the spectrum is higher than that of the
DL solvent feature, which decays as ω−1, see eq 13. Therefore,
the presence of these peaks does not significantly influence the
high-frequency tails of the overall SD (see the right inset of
Figure 2), yielding the population lifetime that is only
marginally smaller than the 10.5 ps mark dictated by the
solvent alone. This result is expected from mathematical
considerations, but counterintuitive, and perhaps that is why
unappreciated by the quantum dynamics community. To
reiterate, the DL functional form used ubiquitously to
represent the low-frequency solvent features in the spectral
density not only determines the overall time scale for
dephasing, but also has a dominant effect on the overall rate
of population relaxation over molecular vibrations when they
are represented in the SD via the UBO functional form, as is
customary.

In contrast to the UBO, both the displaced Drude oscillator
and the RLC circuit functional forms have peak tails that decay
as ω−1, the same rate as the solvent feature. Therefore,
vibrations represented with these functional forms can have a
significant contribution to the overall SD at the high-frequency
end of the spectrum. The relative importance of the solvent vs
vibrations represented with either Drude or RLC functional
forms depends also on the frequency of electronic transition,

Figure 3. Dynamics of the model system in water using different
spectral density basis functions. (a) Dephasing is insensitive to the
choice of the spectral density basis functions. (b) Population
relaxation is dominated by the high-frequency tails of the spectral
density (SD). The color-coded rates of decay of SD peaks are shown
for the different functional forms. Number 2 in the numerator of the
RLC circuit scaling is to emphasize that it has a prefactor that is
double that of the displaced Drude oscillators (see eq 19). The inset
shows that even at early times (after ∼25 fs) the population dynamics
deviates significantly depending on the choice of the functional form
of SD peaks.
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positions of vibrational peaks, and the difference between both
reorganization energies and peak widths of the solvent vs
vibrations. Note that the RLC circuits yield a faster decay rate
compared to the displaced Drude oscillators because the
prefactor of the dominant (ω−1) term at high frequency is two
times larger for the former [see the inset of Figure 2 and eqs 13
and 19].

Thus, for the population relaxation calculation presented
here to be accurate, the precise functional form of the
vibrational peaks is needed in addition to the standard peak
parameters (widths, positions, and intensities). The peak
parameters can be obtained experimentally40,42,43 or computa-
tionally,37−39,41 but extracting the precise functional form from
noisy data appears unfeasible at present. Moreover, even if the
functional form of J(ω) is known, its representation within the
numerically exact simulation can be challenging. For example,
discretization of the SD or a high-frequency cutoff can
introduce error from mishandling the high-frequency end of
the SD. Additionally, efficiency considerations within the
HEOM calculations limit the choice of functional forms of the
peaks. Finally, quantum analog simulator devices rely on
quantum hardware to construct the bath, which sets the
functional form of the simulatable SD peaks. In the following
section, we suggest a recipe to account for the difference
between the real and the simulatable SD functional forms.
3.3. Correcting for the Difference in High-Frequency

Tails of the SD. We consider a situation in which true open
quantum dynamics with real SD cannot be simulated due to
physical or numerical constraints on the simulation, as is the
case for HEOM, MCTDH, quantum analog simulation, and
many other numerically exact methods. Instead, we have access
to the simulated dynamics, which differs from the true
dynamics only by the functional form of the SD peaks.
Therefore, our goal is to recover the true population dynamics
from the simulation results.

The most straightforward way to account for the difference
in population relaxation rate is to add more flexibility to the fit
by increasing the number of fit functions, that is, to add more
features to the simulated SD. Since the functional form of any
added feature in the simulated SD does not match that of the
true SD, we do not expect this “brute force” strategy to yield a
significant improvement in either the overall quality of the fit
or in the resulting population relaxation dynamics.

Another potential approach would be to perform a weighted
fitting of the real SD, such that the simulated SD is more
accurately fit for some frequency ranges at the cost of larger
errors elsewhere. For example, in the analog simulation given
in ref 62, only near-resonance regions of the SD are fitted. This
is justified since the effect of the environment on the dynamics
of the system is not expected to be uniform across the
frequency range. Such a fit could yield a better agreement in
population relaxation dynamics, but it can be tricky to identify
the optimal fitting weights for more complex dynamics.

Instead, we propose a simple, physically motivated, and
universal approach, which can be used to adjust the results of
the simulation after it has been completed. Our key
assumption is that the dephasing dynamics is faster than the
population relaxation dynamics by at least an order of
magnitude, ensuring a separation of time scales between the
two. We return with the justification of this assumption in
models of realistic systems shortly. For now, we remark that
this time scale separation means that the two processes are
(essentially) independent. In this limit, differences in

population relaxation rates due to the different functional
forms in the SD peaks can be accounted for using eq 23.

+p t p p t p e( ) ( ( ) ) t
real eq simulated eq

( )real simulated
(23)

Here p(t) is the population of excited state as a function of
time with real and simulated SD; peq = preal(∞) = psimulated(∞)
is the population at thermal equilibrium, and

= J2 ( )coth
2x

2 i
k
jjj y

{
zzz (24)

is the overall population decay rate, obtained for both real and
simulated SD within Born-Markov approximation (eq 24).61

This rate only depends on temperature, the frequency of
electronic transition Ω and the value of the spectral density at
that frequency. Eq 23 is strictly true only when the real and
simulated SD’s only differ by the overall population decay rate
and this difference grows exponentially with time. However, we
find it to be an accurate approximation as long as the
population relaxation is much slower than dephasing. We
derived eq 23 for population relaxation obtained via Lindblad
equation (see the SI), which predicts a simple exponential
decay of initial condition to approach thermal equilibrium. For
our model system the Lindblad prediction fails at short times,
but accurately captures the long-time dynamics and approaches
the exact (thermal equilibrium) result peq as time tends to
infinity. This suggests that we can use eq 23 together with
population relaxation rates calculated based on eq 24 to
accurately approximate the long-time trends in population
relaxation dynamics for any known SD.

This is a useful result in the context of the recently proposed
quantum analog simulator device,34 which uses gate-defined
double quantum dots and the series of RLC circuits to simulate
the system and bath parts of the spin-boson problem. As noted
by the authors, the use of RLC circuits to represent the SD of
the bath yields the functional form of eq 17, which is similar
(but not identical) to the UBO functional form (eq 14). The
ability to establish a simple connection between the functional
form obtained from RLC circuits in quantum analog simulators
and other target functional forms of the SD peaks is required to
simulate systems, whose spectral density peaks do not decay as
ω−1.

We illustrate this by taking the result of the HEOM
simulation with the RLC circuit bath and adjusting it using eqs
23 and 24. Figure 4 shows the RLC circuit results adjusted to
reproduce the displaced Drude and UBO peaks as black dotted
lines. The population dynamics with RLC circuit peaks differs

Figure 4. RLC circuit result adjusted using eq 23 to reproduce excited
state population dynamics with displaced Drude and uderdamped
Brownian functional forms of the peaks. The inset shows perfect
agreement at early times (first 50 fs).
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substantially from the other two. However, upon adjustment
through eq 23 we recover excellent agreement with both
HEOM target results. Note that the early time accuracy of the
adjusted result does not suffer from the inability of the
Lindblad equation [used to derive eq 23] to capture early time
oscillations in the excited-state population. This is because the
oscillations in the early time dynamics are accurately captured
by either of the functional forms, leaving only the overall
population decay rate to be adjusted by eq 23.
3.4. Implications and Limitations of Our Findings. In

Section 3.2, we showed and rationalized the importance of the
high-frequency tails in the SD for electronic population
relaxation in an instructive model system. Based on this
analysis, we concluded that the high-frequency tails will
dominate the nonradiative relaxation when the corresponding
spectral density has no features in the vicinity of the system
transition frequency. That is, when

+max( )
k

k k (25)

In this regime, the precise functional form of the SD becomes
important to correctly predict the relaxation dynamics. The
natural question is when do these findings become relevant to
predict the relaxation behavior of molecules?

We limit our considerations to electronic transitions that
preserve spin symmetry, such that there are only two
competing relaxation mechanisms�the radiative (fluores-
cence) and the nonradiative (internal conversion). Our
analysis does not impact the description of radiative relaxation,
as the spectral density for radiation fields J(ω) ∝ ω3 does not
feature a cutoff frequency, so condition eq 25 cannot be
satisfied.

For the nonradiative mechanisms, our analysis pertains to
multiphonon electronic relaxation processes in molecules.
These processes proceed via phonon-mediated near-resonant
transitions from the low vibrational energy levels of the excited
electronic state to multiple highly excited vibrational levels of
the ground electronic state. The excess vibrational energy
subsequently relaxes due to rapid intramolecular vibrational
energy redistribution and collisions with the solvent.60,63−65

These processes can be effectively modeled as a two-level
system bilinearly coupled to a bosonic bath.60 That is, they are
encoded in the bath SD and fall within the scope of our
analysis.

Our considerations do not apply to electronic relaxation
promoted by strong coupling to anharmonic degrees of
freedom of the bath, for instance, via conical intersections. In
such cases, alternative computational approaches that can
handle non-Gaussian environments are required such as the
Multi-Configurational Time Dependent Hartree,4 semiclassical
methods66 and the Automated Compression of Environments
method.67

When constructing the model described in Section 2.3 we
also made several simplifying assumptions, which we do not
expect to affect the validity of our conclusions. First, we
truncated the electronic space to two states. Higher excited
states can be added as needed, in which case the condition
described by eq 25 must be fulfilled for the dominant
relaxation path. Additionally, to reduce the numerical cost, we
used the spectral density extracted from pure dephasing
experiments to induce both dephasing and relaxation by
coupling the system to a single bath of harmonic oscillators.
We do not expect the split into two independent baths to

change our conclusions, since the effects of the σx and σz
couplings for the set of parameters we have considered are
essentially decoupled via separation of time scales. Further-
more, while the dissipative SD is expected to be different from
that responsible for pure dephasing, we expect that it will also
satisfy eq 25 since it originates from the same environment.

To summarize, we expect our finding to be applicable to real
molecules with slow nonradiative relaxation. That is, if: (i) the
assumption of Gaussian environment holds; and (ii) electronic
and vibrational energy scales are separated as described in eq
25. In practice, these conditions are fulfilled by many
molecules that relax nonradiatively with time scales of
picosecond or longer.60 In these cases, eq 23 provides a
convenient way to compare simulations of the same system
obtained by using different spectral density functions.

4. CONCLUSIONS
The precise structure of the high-frequency tails of the spectral
density (SD) peaks is typically considered to be incon-
sequential for open quantum dynamics. In contrast, here we
show that different peak shapes lead to identical dephasing
dynamics but different relaxation rates in a spin-boson
calculation when the transition frequency of the system is
significantly larger than the highest frequency of the bath.
These discrepancies arise because in this regime the population
relaxation is controlled by the high-frequency tails, which are
several orders of magnitude smaller than the main SD features.
In such cases the full decoherence dynamics requires an
accurate representation of the high-frequency tails, in addition
to the main features and the low-frequency behavior of the
spectral density.

These findings have several implications for the calculations
of such tail-dominated population relaxation, for instance,
when calculating nonradiative relaxation rates of realistic
molecules. First, the methods that truncate the spectral density
at high frequencies will completely miss this phenomenon.
Second, proper care must be taken to discretize the high-
frequency range of the spectrum for the methods that require
discretization. Third, we reveal that the Drude-Lorentz solvent
feature sets the overall time scale for the population relaxation
if the underdamped Brownian functional form is chosen to
represent vibrational peaks, as is commonly done.

We give a simple recipe for adjusting for this difference in
the decay rates of high-frequency spectral density tails and
discuss its application in analog simulation when the precise
functional form of the target peaks is unattainable on the
device. This adjustment expands the reach of such simulators
to an arbitrary form of SD tails, provided the time scales of
dephasing and population relaxation are separated. Addition-
ally, under the same requirement of time scale separation, the
adjusted results can be used to directly compare simulations
performed with different functional forms of the peaks. One
apt example is the adjustment of an HEOM simulation
performed with the (numerically advantageous) Lorentzian
cutoff to the exponential cutoff, which is challenging for
HEOM calculations, but common in MCTDH and other
methods.
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