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ABSTRACT
In this work, we examine how the structure of system–bath interactions can determine commonly encountered temporal decoherence pat-
terns, such as Gaussian and exponential decay, in molecular and other qubits coupled to a thermal bosonic bath. The analysis, based on
a pure dephasing picture that admits analytical treatment, shows that decoherence, in general, is neither purely Gaussian nor exponential
but rather the exponential of oscillatory functions, with periods determined by the bath’s frequencies. For initially unentangled qubit-bath
states, Gaussian decay is always present at early times. It becomes increasingly dominant with increasing temperature, qubit–bath interac-
tion strength, and bath correlation time. Initial system–bath entanglement that arises due to displacement in the position of the bath states
preserves the Gaussian decay. By contrast, strict exponential decay arises only in very specific models that we isolate. However, it becomes
dominant for times longer than the bath correlation time or for early times when there is initial entanglement due to momentum displace-
ment of the bath states. For molecular electronic decoherence, the long-time exponential regime plays a limited role as it emerges after most
coherence is lost. Thus, the Gaussian decay provides a more suitable (albeit imperfect) model of such decoherence. Furthermore, we discuss
the connection between electronic decoherence dynamics and electronic spectroscopic line shape theory, where Gaussian spectral peaks cor-
respond to Gaussian coherence decay and Lorentzian peaks correspond to exponential coherence decay. We find that Gaussian spectral peaks,
usually associated with inhomogeneous broadening, can emerge from the entangling unitary system–bath dynamics even when there is no
inhomogeneity in the initial conditions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0246970

I. INTRODUCTION

Quantum coherence refers to the ability of matter to sustain
superposition of states as required for matter to exhibit quantum
features, such as its ability to interfere or be entangled. For this
reason, quantum coherence is an essential element in quantum
information science (QIS) and necessary for exerting quantum con-
trol over matter.1–6 Molecules, in particular, are highly compact
and configurable quantum systems. They offer a range of chemi-
cally tunable energy levels across the UV/Vis (electronic/vibronic),
infrared (vibrational), and microwave (rotational/spin) regions of
the electromagnetic spectrum, enabling quantum operations from
femtoseconds to milliseconds.

Despite this promise, molecular qubits are currently not pri-
mary candidates for QIS. This is because molecular quantum

coherence is particularly fragile to decoherence (or quantum
noise) processes that arise due to the unavoidable and uncon-
trollable interactions of the molecules with their surrounding
environment or bath.7–12 In fact, electronic ( ∼10 fs) and vibra-
tional (∼1000 fs) decoherence in molecules is typically remarkably
fast.12–14

To harness the potential of molecular qubits in QIS, it is
important to identify robust molecular design principles to gener-
ate quantum subspaces with protected quantum coherence.7,10,15–18

Achieving this requires understanding how the molecule–bath inter-
actions dictate the qubit decoherence dynamics, as needed to inform
strategies to tune the bath to control decoherence. Understand-
ing decoherence is also central in our elementary description of
photophysics,19 photochemistry,20 multidimensional optical spec-
troscopies,21 in designing quantum control strategies,5,6 and in
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developing methods to approximately capture quantum molecular
dynamics.

Throughout, we focus on pure dephasing processes that arise
due to the interaction of a qubit with a thermal harmonic bath for
which decoherence function can be isolated analytically.9,22,23 While
the approach does not capture relaxation, it remains highly informa-
tive of decoherence in molecular qubits where the pure dephasing
processes usually occur on faster time scales than overall relax-
ation, thereby dominating the decoherence dynamics.24,25 In turn,
the harmonic description of the bath is widely applicable because
any system–bath problem can be rigorously mapped onto a sys-
tem linearly coupled to a harmonic oscillator environment, provided
the interaction can be dealt with up to second order in perturba-
tion theory.26–30 This situation is expected in molecular qubits where
qubit–bath interactions are usually diluted over a macroscopic num-
ber of degrees of freedom.31–33 While our focus is on molecular
systems, the pure-dephasing model in harmonic baths is extensively
used to model decoherence in other qubit platforms,34–37 making
our insights of broad applicability.

A central quantity in this analysis is the spectral density, J(ω),
characterizing the nuclear bath’s frequencies, ω, and their coupling
strength with the qubit. Here, we show how the structure of the
spectral density leads to commonly used and observed temporal
decoherence decay patterns in molecular qubits, such as Gaussian
and exponential decay. We find that decoherence, in general, is nei-
ther strictly Gaussian nor exponential but the exponential of oscil-
latory functions with periods determined by the bath’s frequencies.
For initially unentangled qubit–bath states or initial entanglement
due to displacement in the position of the bath states, we find that
Gaussian decay is always present at early times and can become
dominant as the temperature and the molecule–bath interactions
strength. For initially unentangled states, the Gaussian regime also
becomes increasingly dominant as the correlation time of the bath
increases. In turn, we find that strict exponential coherence decay
only occurs for very specific shapes of the spectral density that we
isolate. However, it can dominate for times longer than the bath
correlation time or for early times when there is initial entangle-
ment due to displacement in the momentum of the bath states.
While other models of initial qubit–bath entanglement can lead
to different temporal decoherence patterns, the models employed
here clearly demonstrate that initial qubit–bath entanglement, while
often neglected in decoherence studies, can significantly affect the
decoherence dynamics.

We then investigate the relevance of Gaussian and exponen-
tial decoherence decay models in realistic systems, such as elec-
tronic decoherence in thymine derivatives in water at 300 K, where
the spectral densities for initial separable system–bath states are
known.12 We observe that the Gaussian decay is dominant at early
times. However, it overestimates the overall decoherence by a fac-
tor of ∼2. By contrast, the exponential decay is only observed after
most of the molecular coherence has been lost. Thus, the Gaus-
sian decoherence model provides a more suitable (albeit imperfect)
description of electronic decoherence dynamics for molecules in
condensed-phase baths.

Last, we reexamine the connection between decoherence and
the theory of spectroscopic line shapes. It is well known that
electronic decoherence patterns and time scales can be estimated
from absorption and emission line shapes in the pure dephasing

limit.38–40 In particular, Lorentzian-shaped spectral peaks, referred
to as the homogeneous limit, indicate exponential coherence decay.
By contrast, Gaussian-shaped spectral peaks, known as the inho-
mogeneous limit, indicate Gaussian coherence decay. It is com-
monly believed that the homogeneous component captures dynamic
processes intrinsic to the molecular system, while the inhomoge-
neous component emerges only from ensemble averaging effects.
As a result, only the homogeneous part is typically considered
to represent actual system–bath entanglement processes. Here,
we demonstrate that Gaussian spectral peaks, generally associated
with inhomogeneous effects, can arise from the entangling unitary
system–bath dynamics even when there is no inhomogeneity in the
initial conditions.

This paper is structured as follows: in Sec. II, we present
the theoretical background for quantum decoherence functions.
Sections III A–III E, are focused on initially unentangled qubit–bath
states. In particular, in Secs. III A–III C, we discuss the requirements
on the spectral density that lead to oscillatory, strictly exponen-
tial, and Gaussian temporal decay. In Sec. III D, we examine the
connection between decoherence and spectroscopic line shapes.
In Sec. III E, we investigate electronic decoherence in realistic
molecules. Finally, in Sec. III F, we examine the role of initial entan-
glement due to displacement in momentum and position of the
bath states in the decoherence dynamics. We summarize our main
findings in Sec. IV.

Overall, this manuscript provides an analysis of coherence
behavior crucial in quantum information problems that draws inspi-
ration from the rich body of work on quantum dynamics and
spectroscopy in physical chemistry. We recapitulate known results
such as early time Gaussian and long-time exponential coherence
decay and isolate interesting and useful conditions for exclusive
Gaussian or exponential decay and their applicability in electronic
decoherence, the influence of initial-state entanglement in coher-
ence loss, and demonstrate that Gaussian line shapes in spectroscopy
can arise from unitary entangling system–bath dynamics beyond the
inhomogeneous limit.

II. THEORETICAL BACKGROUND: QUANTUM
DECOHERENCE FUNCTION

We divide the molecular Hamiltonian H = HS +HB +HSB into
a system (qubit) HS, a bath HB, and their interaction HSB. The
pure dephasing condition requires that [HS, HSB] = 0, thus guaran-
teeing that the system energy is conserved even in the presence of
a bath. While this condition is not strictly satisfied in molecules,
the pure dephasing effects still dominate when there is a dispar-
ity in time scales between the dephasing and subsequent relaxation.
That is the common case when energy dissipation occurs at a
much slower rate than pure dephasing phenomena.41,42 For this
reason, the pure dephasing limit has been useful in understand-
ing electronic decoherence in molecules,12,43 line shapes in laser
spectroscopy,19,44 vibrational dephasing in solvents,45 and the
central spin problem.46

The system–bath dynamics can be described by the
Liouville–von Neumann (LvN) equation,

i
d
dt

ρ̃(t) = [H̃SB(t), ρ̃(t)], (1)
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where Õ(t) = U†
0 (t)ÔU0(t) is the operator Ô in the interaction

picture of H0 = HS +HB, and U0(t) = exp(−iH0t). We use atomic
units throughout, where h = 1. As customary in open quantum
dynamics, we assume that the system and bath are not correlated
at the initial time (we relax this assumption in Sec. III F). The initial
total density matrix can thus be written as

ρ(0) = ρS(0)⊗ ρB(0), (2)

where ρS is the reduced density matrix of the system and ρB is that of
the bath. The formal solution to the LvN equation is

ρ̃(t) = Ũ(t)ρ(0)Ũ †
(t), (3)

where Ũ(t) = T exp{−i∫
t

0 dτH̃SB(τ)} is the propagator in the
interaction picture and T is the time-ordering operator.

For pure dephasing, the system–bath interaction term in the
Hamiltonian can be written as HSB = ∑ j ∣ j⟩⟨j∣⊗ B j , where {∣ j⟩}
are the eigenstates of HS and Bj is a bath operator. It follows that
H̃SB(t) = ∑ j ∣ j⟩⟨j∣⊗ B̃ j(t) and

Ũ(t) = T
∞

∑
n=0

(−i)n

n!
⎛

⎝
∫

t

0
dτ∑

j
∣ j⟩⟨j∣⊗ B̃ j(τ)

⎞

⎠

n

=∑
j
∣ j⟩⟨j∣⊗ T

∞

∑
n=0

(−i)n

n!
(∫

t

0
dτB̃ j(τ))

n

=∑
j
∣ j⟩⟨j∣⊗ Vj(t), (4)

where we have defined V j(t) = T exp{−i∫
t

0 dτB̃ j(τ)}. Inserting
Eqs. (2) and (4) into Eq. (3), and tracing out the bath degrees of
freedom (TrB[⋅ ⋅ ⋅]) leads to

[ρ̃S]ji(t) = ⟨ j∣TrB[ρ̃(t)]∣i⟩ = [ρ̃S]ji(0)Φji(t) (5)

for the off-diagonal part of the reduced density matrix of the system.
Here,

Φji(t) = TrB[ρB(0)V†
i (t)Vj(t)] = ⟨V†

i (t)Vj(t)⟩ (6)

is the quantum decoherence function characterizing decoherence
between states ∣ j⟩ and ∣i⟩ due to system–bath interactions.

The decoherence function can be expressed as Φ ji(t)
= exp{−χ(t) + iϕ(t)},19,35,36,47 where χ(t) and ϕ(t) are real func-
tions. In this paper, we focus on the magnitude of the decoher-
ence function ∣Φ ji(t)∣ = exp{−χ(t)} as it signals coherence loss
since ∣[ρ̃S]ji(t)∣ = ∣[ρ̃S]ji(0)∥Φ ji(t)∣. For Gaussian environments,
this does not lead to information loss as χ(t) and ϕ(t) are related
through the fluctuation–dissipation theorem, making χ(t) sufficient
to extract all relevant information.34

III. RESULTS AND DISCUSSIONS
Gaussian and exponential temporal coherence decay have been

identified as common models for decoherence. For example, expo-
nential coherence decay is usually used for spin-1/2 chains in
Markovian baths48 or, more generally, in the long-time limit49–54

with discussions in the contexts of Gaussian stochastic models,40

spectroscopy,19,39,55 the theory of liquids,56 and in quantum infor-
mation science.22,23 However, it is unclear if this long-time limit is
of relevance in molecular-based qubits. Does the exponential regime
emerge when there is still appreciable coherence in the molecular
system? Moreover, the specific conditions that lead to strict expo-
nential coherence decay have not been clarified. By contrast, the
Gaussian form dominates at the early stage of decoherence,43,57,58

which can be seen as arising due to the quantum Zeno effect.59–61

This initial Gaussian decay is well-known, appearing in theo-
ries of early time decoherence time scales57,62 and the theory of
line-broadening functions in spectroscopy.19,40,44,55,63 However, the
validity regime of this Gaussian decay remains unclear in molecular-
based qubits and as a function of qubit–bath interaction strength,
temperature, and bath’s correlation time.

More recently, studies based on perturbation theory and semi-
classical analyses64 have proposed that the decay of coherence is
a convolution of Gaussian and exponential decay. However, for
molecular-based qubits where a molecular transition is strongly cou-
pled to a few selected vibrational modes and weakly coupled to a
macroscopic number of solvent/lattice modes, the correct temporal
pattern of the decoherence remains unclear.

In this section, we seek to clarify how these Gaussian and expo-
nential temporal decay patterns arise as a function of the structure
of the bath or, more precisely, its spectral density and their relevance
in electronic decoherence in molecules.

A. Decoherence, in general, is neither Gaussian nor
exponential

The displaced harmonic oscillator is the standard model used to
understand molecular qubit decoherence.65–68 In the pure dephasing
limit, the model is defined by the Hamiltonian,

H = H0∣0⟩⟨0∣ +H1∣1⟩⟨1∣, (7)

where ∣0⟩ and ∣1⟩ denote the ground and excited qubit state.

Here, H0 = ∑α (
p2

α
2mα
+ 1

2 mαω2
αx2

α) is the ground-state bath Hamil-

tonian, where xα and pα are the position and momentum oper-
ators, respectively, of the αth bath mode with frequency ωα. In
turn, the excited-state Hamiltonian, H1, consists of the same set
of bath modes but displaced in conformational space, i.e., H1 =

ω01 +∑α (
p2

α
2mα
+ 1

2 mαω2
α(xα + dα)

2
), where ω01 is the qubit excita-

tion energy. The displacement dα along the αth mode determines
the strength of the qubit–bath interaction, as measured by the
reorganization energy λα =

mαω2
αd2

α
2 . This becomes more transparent

when the Hamiltonian is expressed in the form H = HS +HB +HSB,
for which

HSB = ∣1⟩⟨1∣⊗∑
α

√
2mαλαωαxα. (8)

Inserting the bath operator Bα =
√

2mαλαωαxα in Eq. (6), we
obtain the decoherence function,

∣Φ01(t)∣ = exp{−∑
α
[λαωα coth(

ωα

2kBT
)

1 − cos (ωαt)
ω2

α
]} (9)

associated with a discrete environment, where kBT represents the
thermal energy.
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To generalize Eq. (9) to the continuous limit, we introduce the
spectral density28 J(ω) = ∑α λαωαδ(ω − ωα), a quantity that sum-
marizes the frequencies of the bath and their coupling strength to
the qubit. This allows us to express ∣Φ01(t)∣ as

∣Φ01(t)∣ = exp{−∫
∞

0
dω J(ω) coth(

ω
2kBT

)
1 − cos (ωt)

ω2 }. (10)

Consequently, the loss of electronic coherence is given by ∣ [ρ̃S]01(t)
[ρ̃S]01(0)

∣

= ∣Φ01(t)∣. As is evident in Eq. (10), the qubit decoherence does
not follow a simple Gaussian or exponential decay. In turn, it is
determined by the exponential of oscillatory functions, with periods
determined by the bath’s frequencies.

B. Requirements for strict exponential decay
When is the decoherence strictly exponential? Consider first the

case when there is only a finite number of modes, α, whose decoher-
ence function is described by Eq. (9). In this case, the decoherence
function is expected to have a Poincaré recurrence time of 2τ, which
can be long or short depending on the bath. Thus, we suppose that
the decoherence function has a periodicity of 2τ and impose the con-
dition that the coherence decays exponentially at initial times. That
is, ln ∣Φ01(t)∣ = −γ∣t∣, for −τ < t < τ and ln Φ01(t + 2τ) = ln ∣Φ01(t)∣
for all t. Here, γ > 0 is a real constant that quantifies the exponential
decoherence rate.

Since ln ∣Φ01(t)∣ is an even function and has a period of 2τ, the
Fourier series of ln ∣Φ01(t)∣ will consist only of cosine terms,

ln ∣Φ01(t)∣ =
a0

2
+
+∞

∑
n=1

an cos(
nω0t

2
), (11)

where ω0 = 2π/τ is the fundamental frequency that dictates the
overall recurrence time. The Fourier coefficients are given by

an =
1
τ∫

τ

−τ
∣Φ01(t)∣ cos(

nω0t
2
)dt

=
4(1 − (−1)n

)γ
πn2ω0

for n > 0, (12)

and

a0 =
1
τ∫

τ

−τ
∣Φ01(t)∣dt = −

2πγ
ω0

. (13)

This leads to

ln ∣Φ01(t)∣ = −
πγ
ω0
+

2γω0

π

+∞

∑
n=1

cos ((n − 1
2)ω0t)

((n − 1
2)ω0)

2 . (14)

By comparing Eqs. (9) and (14), we observe that to achieve
purely exponential decay, one requires

ωα = (α −
1
2
)ω0, α = 1, 2, . . . , (15a)

λα =
2γ

π(α − 1
2) coth (ωα/(2kBT))

, (15b)

where we have used ∑
∞
α=1 − 2γ/(π(α − 1/2)2ω0) = −πγ/ω0.

That is, for purely exponential decay, all temperature-weighted
qubit–bath couplings λαωα coth (ωα/(2kBT)) need to be the
same, and all frequencies need to be evenly spread and span all
frequencies.

The zero-temperature case can be obtained in the ωα/(2kBT)
→ +∞ limit of Eq. (15),

λα =
2γ

π(α − 1
2)

. (16)

In this limit, purely exponential decay emerges when λαωα are all the
same and evenly distributed across all frequencies.

In turn, for high temperatures kBT ≫ ωα and
coth(ωα/(2kBT)) ≈ 2kBT/ωα. In this limit, to achieve a purely
exponential decay, it is necessary that

λα =
γω0

πkBT
. (17)

This implies that equally spaced frequencies and constant reorga-
nization energy are required at the high-temperature limit. Thus,
the requirements for strict exponential decoherence to emerge are
very specific and thus rare in actual baths at zero, finite, and infinite
temperatures.

We now extend this discussion to the continuous limit with
τ →∞ and ω0 → 0. To obtain the strict exponential decay, we need:
(i) a constant spectral density J(ω) at the zero temperature limit
or (ii) a purely Ohmic spectral density, J(ω) = ηω, with η being
a constant, at the high-temperature limit. The later requirement
is unphysical as it leads to infinite overall reorganization energy
λ = ∫

∞

0 dω J(ω)/ω.
To avoid the infinite overall reorganization energy, we next

discuss the case with a cutoff frequency ωc for the spectral den-
sity J(ω) such that for ω→∞, J(ω)→ 0. In this way, the overall
reorganization energy is finite. In this case, the exponential behav-
ior for the continuous limit Eq. (10) becomes apparent as time
approaches infinity (t →∞). To see this, we express 1−cos (ωt)

ω2

= 1
2

sin2
(ωt/2)
(ω/2)2 , which converges to πtδ(ω) as ωt →∞ for 0 < ω < ωc.

Consequently,

∣Φ01(t)∣ = exp{−πt∫
∞

0
dω J(ω) coth(

ω
2kBT

)δ(ω)}

= exp{−πt lim
ω→0+
[J(ω) coth(

ω
2kBT

)]}. (18)

Then, an exponential decay dominates in the long-time limit if
limω→0+ Jα(ω) coth ( ω

2kBT ) is finite and non-zero.
Two Ohmic models of the spectral density are predominantly

used in the literature, namely, the Ohmic with exponential cutoff,
JEXP(ω), and the Ohmic with Lorentzian cutoff (Drude–Lorentz),
JDL(ω). They are defined as

JEXP(ω) =
2
π

λω
ωc

e−ω/ωc , (19a)

JDL(ω) =
2
π

λω
ωc

ω2
+ ω2

c
. (19b)
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These two spectral densities yield a purely Ohmic form when
ω≪ ωc. In this range, J(ω) = 2λω/(πωc) and the decoherence
function for long times Eq. (18) becomes ∣Φ01(t)∣ = e−rt, where
r = 4kBTλ/ωc. Thus, exponential decoherence can be obtained
when t ≫ 1/ωc.

To numerically illustrate these observations, Fig. 1 shows the
decoherence dynamics induced by a Drude–Lorentz bath [Eq. (19b)]
for varying cutoff frequencies. Figure 1(a) depicts the decoher-
ence function and Fig. 1(b) its natural logarithm. We fix the ratio
λ/ωc = 0.5 to have the same exponential decay rate for different ωc.
As the cutoff frequency increases, the decoherence function begins
to exhibit exponential decay more rapidly. This is more distinctly
observed as a linear trend in the natural logarithm. For exam-
ple, with 1/ωc = 106.2 fs (blue line), the exponential regime only
becomes dominant for t ∼ 150 fs, when almost all electronic coher-
ence has already been lost. By contrast, at 1/ωc = 26.5 fs (green line),
the exponential regime appears after ∼35 femtoseconds, when the
electronic coherence is around 0.4. As the cutoff frequency fur-
ther increases to 1/ωc = 6.6 fs (purple line), the exponential regime
starts to dominate even at initial times, where the decoherence
function is ∼1.

In summary, purely exponential coherence decay is expected
at zero temperature for a constant spectral density and at the
high-temperature limit for a purely Ohmic spectral density. At
finite temperatures, the exponential regimes dominate at times
longer than the bath correlation (t ≫ 1/ωc). In the latter case,
as the bath correlation time increases, it becomes increasingly
difficult to observe the exponential regime as it arises when
most of the coherence has been lost. We explore the rele-
vance of the exponential regime in realistic chemical systems in
Sec. III E.

FIG. 1. Decoherence due to an Ohmic bath with varying cutoff frequency ωc .
(a) Decoherence function and (b) its natural logarithm with T = 300 K and
λ = 0.5ωc . It should be noted how the decoherence becomes purely exponential
as t ≫ 1/ωc .

C. Gaussian decay is always present at early times
We now seek to isolate conditions that result in a purely Gaus-

sian decay. To this end, our starting point is Eq. (10). Expanding
the cosine function using a Taylor series around t = 0 in time
yields

∣Φ01(t)∣ = exp{∫
∞

0
dω

J(ω)
ω2 coth(

ω
2kBT

)
∞

∑
n=1

(−1)n
(ωt)2n

2n!
}.

(20)
From this expression, it is clear that the Gaussian decay, arising for
n = 1, is universally present at early times for initially separable states
(provided that the integral converges).

This initial Gaussian decay is well-known; what remain unclear
is to understand when it is dominant and its degree of applicability in
molecular qubits. To obtain conditions that yield a purely Gaussian
decay for all times, we numerically evaluate the importance of higher
order terms, n > 1, in Eq. (20) as a function of the reorganization
energy, temperature, and the cutoff frequency.

The validity of the Gaussian region for a Drude–Lorentz spec-
tral density is shown in Fig. 2. It is clear that increasing the reorga-
nization energy [Fig. 2(a)] and the temperature [Fig. 2(b)] improves
the validity of the Gaussian regime. This is because increasing these
parameters makes the decoherence decay faster and the early time
approximation more accurate. By contrast, as the cutoff frequency
is increased [Fig. 2(c)], the accuracy of the Gaussian approximation
deteriorates as the decoherence decays slower, leading to a smaller
validity range for the short-time expansion.

That is, Ohmic baths with short correlation time (or high
cutoff frequencies) yield exponential decay, while those with long
correlation times yield Gaussian decay.

D. Decoherence and line shapes in spectroscopy
Decoherence is closely tied to the theory of spectroscopic line

shapes. In fact, it is known that electronic temporal decoherence
patterns and time scales can be estimated by performing a Fourier
transform on the line shapes observed in electronic absorption
and fluorescence spectra in the pure dephasing limit.38,40 This is
because for a Hamiltonian in the form of Eq. (7) and under the
Born–Oppenheimer and Condon approximation, the absorption
and fluorescence line shapes are given by

σA(ω) =
1
π

Re{∫
∞

0
dt exp{i(ω − ω01)t} exp{−g(t)}}, (21)

σF(ω) =
1
π

Re{∫
∞

0
dt exp{i(ω − ω01 + 2λ)t} exp{−g∗(t)}},

(22)
where ω01 is the electronic energy gap, 2λ is the Stokes shift, and

g(t) = ∫
∞

0
dω J(ω) coth(

ω
2kBT

)
1 − cos (ωt)

ω2

+ i∫
∞

0
dω J(ω)

sin (ωt) − ωt
ω2 (23)

the line-broadening function. It should be noted that the real
part of g(t) is related to the decoherence function as ∣Φ01(t)∣
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FIG. 2. Relevance of the Gaussian regime as a function of: (a) reorganization
energy (for ωc = 100 cm−1 and T = 300 K), (b) temperature (for ωc = 100 cm−1

and λ = 300 cm−1), and (c) cutoff frequency (for λ = 400 cm−1 and T = 300 K)
for a Drude–Lorentz spectral density. The dashed lines represent the short-time
Gaussian approximation. The solid lines represent the exact with all higher orders
included. As the reorganization energy and temperature increase and the bath
correlation time decreases, the Gaussian regime becomes more accurate because
the coherence is lost more rapidly.

= exp{−Re{g(t)}}. Thus, by Fourier transforming σA(ω) or σF(ω),
one can extract g(t) and thus the decoherence function.

By inspecting the line shape of an absorption or fluorescence
spectra, it is possible to determine if the decoherence is Gaussian,
exponential, or neither of them. To show this, we apply the short-
time approximation to Eq. (23), to get

g(t) =
t2

2 ∫
∞

0
dω J(ω) coth(

ω
2kBT

), (24)

as the imaginary term vanishes up to O(t3
). Introducing Eq. (24)

into Eqs. (21) and (22),

σA(ω) =
1
π

Re{∫
∞

0
dt exp{i(ω − ω01)t}∣Φ01(t)∣}

=

√
1

2π⟨ω2
⟩

exp{−
1
2
(ω − ω01)

2

⟨ω2
⟩
}, (25)

σF(ω) =
1
π

Re{∫
∞

0
dt exp{i(ω − ω01 + 2λ)t}∣Φ01(t)∣}

=

√
1

2π⟨ω2
⟩

exp{−
1
2
(ω − ω01 + 2λ)2

⟨ω2
⟩

}, (26)

where we have defined ⟨ω2
⟩ = ∫

∞

0 dω J(ω) coth ( ω
2kBT ). It should be

noted that the Gaussian limit in decoherence function produces an
absorption and fluorescence line shape that is Gaussian and iden-
tical but separated by a Stokes shift given by 2λ (as long as ⟨ω2

⟩

converges). From a quantum perspective, this Gaussian limit arises
from entanglement between the system and the bath.

To obtain Lorentzian-like line shapes, following Skinner,39,55

we let ωt →∞ in the line-broadening function Eq. (23), to get

g(t) = πt lim
ω→0+
[J(ω) coth(

ω
2kBT

)] − it∫
∞

0
dω

J(ω)
ω

= tC0
− iλt. (27)

Here, C0
= πlimω→0+[J(ω) coth ( ω

2kBT )]. Introducing Eq. (27) into
Eqs. (21) and (22),

σA(ω) = σF(ω) =
1
π

C0

(ω − ω01)
2
+ (C0

)
2 . (28)

In this case, the Stokes shift between absorption and fluorescence
vanishes as the bath motion is very fast such that the radiation field
observes an averaged two-level system (as long C0 converges).19

Thus, an exponential decay of coherence leads to Lorentzian line
shapes.

In general, pure dephasing processes can be mimicked by
classical noise.43 In the Gaussian limit, which gives Gaussian line
shapes, this is achieved by introducing static noise under the initial
conditions, which leads to the interpretation that this is an inhomo-
geneous process. By contrast, exponential decoherence decay, which
produces Lorentzian line shapes and is commonly known as the
homogeneous limit, requires colored noise.39,43 This distinction was
first recognized through Kubo’s stochastic model;44,63 see Ref. 69 for
a summary.

However, even when classical noise processes can effectively
mimic decoherence behavior in the pure dephasing limit, from a
quantum perspective, decoherence arises from system–bath entan-
glement and not from classical noise. The influence of inhomo-
geneities under the initial condition can be effectively distinguished
from decoherence through spin-echo experiments,70–72 where a fil-
ter can eliminate the influence of classical noise under the initial
conditions but not quantum decoherence due to system–bath entan-
glement. The consequence of this observation is that Gaussian
spectral peaks, usually associated with inhomogeneous broadening,
can emerge from quantum decoherence due to the entangling uni-
tary system–bath dynamics, even when there is no inhomogeneity
under the initial conditions.

E. Decoherence using realistic spectral densities
We now examine the relevance of the Gaussian and exponen-

tial coherence decay models for electronic decoherence in realistic
molecules immersed in condensed phase baths. This is important
since the Gaussian and exponential decoherence time scales are
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often employed to quantify electronic decoherence in molecular
systems.38,42,75

In the condensed phase, the spectral density of molecules has a
wide low-frequency component that accounts for interactions with
solvent modes. In addition, a series of N sharp peaks capture the
influence of intramolecular vibrations. The total spectral density can
be expressed as

J(ω) = (
N

∑
α=0

Jα(ω)), (29)

where the solvent is represented through a Drude–Lorentz model,

J0(ω) =
2
π

λ0
ωωc

ω2
+ ω2

c
, (30)

while the contribution of the αth (α ≥ 1) vibrational modes is
modeled through a Brownian oscillator spectral density,

Jα(ω) =
2
π

λαω2
α

ωγα

(ω2
α − ω2

)
2
+ ω2γ2

α
, (α ≥ 1). (31)

Here, λα is the reorganization energy of the solvent (α = 0) or the αth
vibrational mode (α ≠ 0), γα are the vibrational lifetimes, and 1/ωc
is the solvent correlation time. The decoherence function in this case
yields

∣Φ01(t)∣ = exp{
N

∑
α=0
∫

∞

0
dω Jα(ω) coth(

ω
2kBT

)
1 − cos (ωt)

ω2 }.

(32)
The Gaussian regime can be achieved when the short-time limit

is considered, such that 1 − cos (ωt) ≈ ω2t2

2 . This results in

∣Φ01(t)∣ = exp{
N

∑
α=0

t2

2 ∫
∞

0
dω Jα(ω) coth(

ω
2kBT

)}. (33)

By contrast, the exponential behavior becomes important for long
times (t →∞); see Eq. (18). For the spectral density in Eqs. (30) and
(31), such exponential decay becomes

∣Φ01(t)∣ = exp{−4kBTt(
λ0

ωc
+

N

∑
α=1

γαλα

ω2
α
)}. (34)

While the theoretical framework suggests that both a Gaussian
and exponential regime always emerge in electronic decoherence,
their quantitative importance in realistic molecular qubits remains
unclear. To evaluate this, Fig. 3 compares the exponential and Gaus-
sian decay and the overall decoherence dynamics of thymine, its
nucleoside, and nucleotide immersed in 300 K water. The spectral
densities for these molecules were recently reconstructed from reso-
nance Raman spectroscopy,12 opening the opportunity to investigate
its decoherence with realistic complexity. As shown, the exponen-
tial regime is only relevant when all electronic coherence has already
been lost. In turn, the Gaussian decay accurately reproduces the
overall decoherence dynamics at initial times but fails to capture
coherence recurrences and overestimates the overall decoherence by
a factor of ∼2 (ratio of the time need for the exact and Gaussian
approximation to reach ∣Φ01(t)∣ = 0.01). Thus, the Gaussian deco-
herence model is a more appropriate (albeit imperfect) description

FIG. 3. Electronic decoherence dynamic in (a) thymine, (b) its nucleoside, and (c)
its nucleotide. The solid lines indicate the decoherence dynamics reconstructed
from spectral densities extracted from experiments.12,73,74 The Gaussian initial
decay is represented by purple and the exponential by orange. The parameters
used in this simulation can be found in the supplementary information of Ref. 12.

of electronic coherence dynamics for molecules in condensed phase
baths.

We note that in thymine, Fig. 3(a), the decoherence profile does
not show recurrences. These recurrences arise from the wavepacket
evolution of intramolecular vibrations. In this case, the visibility of
the effect is suppressed because the solvent-induced decoherence is
accelerated by the additional hydrogen bond of thymine in water
with respect to its nucleoside and nucleotide.12

F. Influence of initial entanglement on quantum
decoherence

In decoherence studies, it is customary to use initially separa-
ble states. However, in nature, these separable states are exotic and
difficult to prepare. For example, for electronic decoherence, these
states arise only in the limit where the Born–Oppenheimer approx-
imation is exact and, as such, represent an idealization.76 While
in some situations, these separable states can be a useful approx-
imation to the true eigenstates (e.g., when the diabatic electronic
ground state is effectively decoupled from higher-lying electronic
states), strictly speaking, they are rare.77,78 Furthermore, the prepa-
ration of superposition states using laser pulses can also lead to
additional electron-nuclear entanglement when non-Condon effects
are important for impulsive excitation or when the photoexcitation
is not in the impulsive limit.79 Thus, initial entanglement is common

J. Chem. Phys. 162, 064106 (2025); doi: 10.1063/5.0246970 162, 064106-7

Published under an exclusive license by AIP Publishing

 10 February 2025 14:13:28

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

in molecular systems. How does this initial qubit–bath entanglement
influence the decoherence dynamics?

A partial answer to this question was offered at zero temper-
ature for electronic decoherence, where the decoherence arises due
to nuclear wavepacket evolution in alternative electronic potential
energy surfaces (PES).80,81 In this context, it was shown that if the
initial nuclear wavepackets in the two surfaces involved coincide
spatially but differ in initial momentum (and thus represent an ini-
tially entangled state), then the initial time decoherence transitions
from Gaussian to exponential for early times.

To understand this problem in a more general framework, we
consider the qubit and bath to be entangled as

∣Ψ(0)⟩ = c0∣0⟩∣χ0⟩ + c1∣1⟩∣χ1⟩. (35)

Here, ∣χn⟩ is the bath wavepacket evolving in the ground n = 0 or
excited n = 1 qubit state. To relate ∣χ1⟩ and ∣χ0⟩, we introduce the
displacement operator,

D̂α(z) = exp (za†
α − z∗aα), (36)

where aα =
√mαωα

2 xα +
i√

2mαωα
pα. This displacement operator

reduces to the position translation operator when z is real D̂α(z)
= T̂xα→xα+

√
2/(mαωα)z

, and to the momentum translation operator

when z is purely imaginary D̂α(z) = T̂pα→pα+
√

2mαωαz/i. In general, to
create an initial entanglement, we let

∣χ1⟩ =∏
α

D̂((rα + isα)/
√

2)∣χ0⟩. (37)

That is, the wavepacket on the excited state is displaced by
some momentum sα

√
mαωα and position rα/

√
mαωα for mode α

with respect to ∣χ0⟩. The quantum decoherence function, ∣Φ01(t)∣
= ∣⟨χ0(t)∣χ1(t)⟩∣, for this initially entangled state can be obtained by
using the same steps described in Sec. II to get

ln ∣Φ01(t)∣ = −∑
α

⎡
⎢
⎢
⎢
⎢
⎣

1
4
(s2

α + r2
α) +

⎛

⎝

λα

ωα
+ rα

√
λα

2ωα

⎞

⎠
(1 − cos (ωαt))

− sα

√
λα

2ωα
sin (ωαt)

⎤
⎥
⎥
⎥
⎥
⎦

. (38)

This equation can be extended to finite temperatures (see
supplementary material) to yield.

ln ∣Φ01(t)∣ = −∑
α

coth(
ωα

2kBT
)

⎡
⎢
⎢
⎢
⎢
⎣

1
4
(s2

α + r2
α)

+
⎛

⎝

λα

ωα
+ rα

√
λα

2ωα

⎞

⎠
(1 − cos (ωαt))

− sα

√
λα

2ωα
sin (ωαt)

⎤
⎥
⎥
⎥
⎥
⎦

. (39)

The entanglement due to displacement in position (rα ≠ 0)
retains the same functional form of Eq. (9) and thus pre-
serves the initial Gaussian decay. By contrast, the entangle-
ment due to displacement in momentum (sα ≠ 0) introduces
oscillatory terms in Eq. (39) proportional to sin(ωαt) that break
the initial Gaussian decay and introduce a term that decays linearly

in time for initial times that are consistent with exponential decay.
In particular, for early times now ln ∣Φ01(t)∣ = ln ∣Φ01(0)∣ − γ1t
− γ2t2

− O(t3
),

γ1 = −∑
α

sα

√
λα

2ωα
coth(

ωα

2kBT
), (40)

and

γ2 =
1
2∑α

⎛

⎝

λα

ωα
+ rα

√
λα

2ωα

⎞

⎠
coth(

ωα

2kBT
). (41)

If we neglect higher-order terms, ∣Φ01(t)∣/∣Φ01(0)∣ ≈ e−γ1te−γ2t2

and thus γ1 lead to initial exponential decay and γ2 to Gaussian
decay. As seen, γ1 ≠ 0 when sα ≠ 0. Increasing the initial entangle-
ment due to displacement in the momentum space makes the initial
exponential part increasingly dominant. By contrast, entanglement
due to displacement in position (rα ≠ 0) retains the Gaussian shape
but modifies the decoherence rate. As the initial entanglement
increases (∣rα∣, ∣sα∣ increase), the initial time coherence is reduced
to ∣Φ01(0)∣ = exp (− 1

4∑α (s
2
α + r2

α) coth ( ωα
2kBT )) ≤ 1, with the equal-

ity holding for the initially unentangled case. This reflects the decay
of initial coherence due to qubit–bath entanglement.

In principle, Eq. (39) could be extended to the continuous limit
by defining new spectral densities associated with rα and sα. How-
ever, the precise form of these spectral densities remains unclear, as
existing formulations in the literature have been developed exclu-
sively for unentangled initial conditions. Furthermore, qubit–bath
entanglement may emerge from interactions that are more com-
plex than displacement in the position and momentum of the bath
states. However, the model remains highly informative when these
entanglements dominate the decoherence dynamics and serve to
demonstrate that initial entanglement has an important effect on the
decoherence dynamics.

IV. CONCLUSION
In conclusion, we provided an in-depth analysis of decoher-

ence dynamics in molecular and other34–37 qubits caused by thermal
bosonic baths. Our analysis reveals that, in general, decoherence is
neither purely Gaussian nor exponential but rather the exponen-
tial of oscillatory functions with periods determined by the bath
frequencies. As shown, for initially unentangled qubit-bath states
or initial entanglement due to displacement in the position of the
bath states, the Gaussian decay is always present at early times. We
find that it becomes increasingly dominant with increasing temper-
ature, molecule–bath interactions, and bath correlation time (the
latter applies only to unentangled initial conditions). By contrast,
we find that strict exponential decay arises in very restrictive models
of the spectral density that we isolate. However, it becomes domi-
nant for times longer than the bath correlation time or, as shown
here, for early times as we increase the initial entanglement due to
momentum displacement of the bath states.

We examined the applicability of the Gaussian and exponen-
tial coherence decay models for initial separable states in realistic
molecules, i.e., thymine derivative in water at 300 K. We find that the
exponential regime only becomes relevant once the molecules lose
most of their quantum coherence, and thus, it is not a good decoher-
ence model for these molecules. In turn, Gaussian decay accurately
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reproduces the coherence loss at initial times but overestimates the
overall decoherence by a factor of ∼2. Thus, the Gaussian deco-
herence model is more appropriate, although imperfect, to describe
electronic decoherence in condensed phase baths.

In addition, we revisited the rich literature in molecular spec-
troscopy to show that the presence of Gaussian-shaped peaks in
absorption and emission spectroscopy, commonly referred to as the
static or inhomogeneous limit, does not imply the absence of quan-
tum entanglement as widely believed. While Kubo’s work linked
Gaussian spectroscopic line shapes to classical noise processes, this
viewpoint overlooks the fact that from a quantum perspective, these
line shapes result from system–bath entanglement generated by the
unitary evolution of the composite system. Therefore, even though
classical noise processes can effectively mimic decoherence behav-
ior in the pure dephasing limit, this mimicry does not negate the
presence of underlying quantum entanglement.

SUPPLEMENTARY MATERIAL

See the supplementary material for the derivation of Eq. (39).
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DERIVATION OF EQUATION (39)

To derive Eq. (39), we write the pure-dephasing displaced harmonic oscillator model in second quantization as

H = HS +HSB +HB, (1)

HS = ω01|1⟩⟨1|, (2)

HSB = |1⟩⟨1| ⊗
f∑

α=1

√
λαωα

(
a†α + aα

)
, (3)

HB =

f∑
α=1

ωα

(
a†αaα +

1

2

)
. (4)

Here, aα = xα

√
mαωα/2 + ipα/

√
2mαωα. For pure dephasing, one can show that Vj(t) in Eq.(4) of the main text

satisfies[1, 2]

V0(t) = 1, and (5)

V1(t) = eiφ(t)
⊗
α

D̂α (ηα(t)) . (6)

Here D̂α(z) = exp(zaα
† − z∗aα) is the displacement operator on the α-th mode, ηα =

√
λα/ωα

(
1− eiωαt

)
, and φ(t)

a time-dependent phase factor.
We now consider the system and bath to be entangled from a separable reference state

ρref = ρrefS (0)⊗ ρrefB , (7)

and the initial entanglement is introduced as ρ(0) = SρrefS† with

S =
∑
j

|j⟩⟨j| ⊗ Sj , (8)

where S0 = 1 and S1 =
⊗

α D̂α(zα) with zα = (rα + isα)/
√
2. That is, the bath associated with the excited state |1⟩

is displaced by some momentum sα
√
mαωα and position rα/

√
mαωα for mode-α with respect to the bath associated

with the ground state |0⟩. In this case, the quantum decoherence function Φji(t) is related to the decay of the matrix
elements in the reduced density matrix of the system compared to the reference one ρrefS as

[ρ̃S]ji(t) = [ρrefS ]jiΦji(t). (9)

Since S has a similar form as Ũ in Eq.(4) of the main text, we can use a similar approach to the unentangled case,
and the decoherence function

Φ10(t) = TrB(V1(t)S1ρ
ref
B S†

0V
†
0 (t)) (10)
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2

Let |n⟩α, n = 0, 1, . . ., be the eigenstate of the operator a†αaα for mode-α with eigenvalue nωα. Plugging the
expressions of Vj(t) and Sj into Eq. (10),

Φ10(t) = eiφ(t)
∏
α

(1− e−βωα)

∞∑
n=0

e−nβωα
α⟨n| D̂α(ηα(t))D̂α(zα) |n⟩α

= eiφ(t)
∏
α

eiϕα(t)(1− e−βωα)

∞∑
n=0

e−nβωα
α⟨n| D̂α(ηα(t) + zα) |n⟩α

(11)

Here iϕα(t) = (ηα(t)z
∗
α − η∗α(t)zα)/2 is purely imaginary. Therefore, eiϕα(t) can be merged into eiφ(t) as eiφ

′(t) =
ei(φ(t)+

∑
α ϕα(t)) with φ′(t) to be the new phase. Hence,

|Φ10(t)| =
∏
α

(1− e−βωα)

∞∑
n=0

e−nβωα
α⟨n| D̂α(ηα(t) + zα) |n⟩α . (12)

Further notice that α⟨n| D̂α(z) |n⟩α = e−|z|2/2Ln(|z|2) where Ln(x) is the n-th order Laguerre polynomial,[3] and the
generating function of the Laguerre polynomials is

+∞∑
n=0

tnLn(z) =
e−tz/(1−t)

1− t
, for |t| < 1. (13)

Hence,

|Φ10(t)| =
∏
α

e−|ηα(t)+zα|2/2(1− e−βωα)

+∞∑
n=0

e−nβωαLn(|ηα(t) + zα|2) =
∏
α

e−|ηα(t)+zα|2/2 exp

(
|ηα(t) + zα|2

1− eβωα

)
. (14)

Use the equality − 1
2 coth

x
2 = − 1

2 + 1
1−ex , and we have

|Φ10(t)| =
∏
α

exp

(
−|ηα(t) + zα|2

2
coth

(
βωα

2

))
. (15)

Plugging the expressions of ηα(t) and zα into Eq. (15) yields

ln |Φ01(t)| = −
∑
α

coth

(
ωα

2kBT

)[
1

4

(
s2α + r2α

)
+

(
λα

ωα
+ rα

√
λα

2ωα

)(
1 − cos(ωαt)

)
− sα

√
λα

2ωα
sin(ωαt)

]
. (16)

With the fact |Φ01(t)| = |Φ10(t)|, we get the Eq. (39) in the main text.
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