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ABSTRACT
In the previous paper [C. W. Kim and I. Franco, J. Chem. Phys. 160, 214111-1–214111-13 (2024)], we developed a theory called MQME-D,
which allows us to decompose the overall energy dissipation process in open quantum system dynamics into contributions by individual
components of the bath when the subsystem dynamics is governed by a Markovian quantum master equation (MQME). Here, we contrast
the predictions of MQME-D against the numerically exact results obtained by combining hierarchical equations of motion (HEOM) with a
recently reported protocol for monitoring the statistics of the bath. Overall, MQME-D accurately captures the contributions of specific bath
components to the overall dissipation while greatly reducing the computational cost compared to exact computations using HEOM. The
computations show that MQME-D exhibits errors originating from its inherent Markov approximation. We demonstrate that its accuracy
can be significantly increased by incorporating non-Markovianity by exploiting time scale separations (TSS) in different components of the
bath. Our work demonstrates that MQME-D combined with TSS can be reliably used to understand how energy is dissipated in realistic open
quantum system dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0202862

I. INTRODUCTION

In Paper I1 of our two-paper series, we introduced a new
theoretical framework that can be used to decompose the energy dis-
sipated in the open quantum system dynamics into contributions
from individual components of the bath. The new framework,
referred to as MQME-D, targets the second-order Markovian
quantum master equations derived from the Nakajima–Zwanzig
projection operator technique.2,3 By using it, we recovered the
formulas for quantifying dissipation pathways reported in our
earlier work,4 which were developed in the context of Förster
resonance energy transfer (FRET). We also derived and presented
the expressions for other types of subsystem–bath interactions,
such as linearly coupled spin environment. In addition, the frame-
work also allowed us to construct rigorous analytical proofs on

thermodynamic principles, such as energy conservation and detailed
balance.

Here, we investigate the accuracy and computational efficiency
of MQME-D as a method to decompose the overall dissipation dur-
ing the open quantum system dynamics. An initial assessment of
the strategy done in Ref. 4 is based on a comparison with a mixed-
quantum classical (MQC) method.5 However, the accuracy of the
MQC method was limited by the zero-point energy leak and partial
neglect of the interplay between the subsystem and bath,6,7 which
both originate from the classical treatment of the trajectories.

Such an experience led us to develop alternative methods that
do not rely on classical description of the bath. As a result, we suc-
cessfully constructed a computational method8 to quantify dissipa-
tion by individual bath modes based on numerically exact simulation
methods, such as hierarchical equations of motion (HEOM)9,10 or
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quasi-adiabatic propagator path integral (QUAPI).11,12 Using this
method, we can now systematically assess the reliability of MQME-D
by employing a numerically exact benchmark.

In this paper, we thoroughly examine the performance of
MQME-D in various Hamiltonian models and simulation condi-
tions with different subsystem–bath coupling strengths and tem-
peratures. We find that even when the subsystem dynamics is quite
accurate, the dissipation predicted by MQME-D exhibits some dis-
agreements with the benchmark calculation. Careful analysis reveals
that a significant portion of the error is caused by the Markov
approximation behind MQME, which does not properly reflect the
response of the bath during the dynamics. We then incorporate
non-Markovianity in the simulation by combining MQME-D with
the time scale separation (TSS) method13 and demonstrate that the
combination can substantially enhance the accuracy of the decom-
position of the dissipation in some cases. In TSS, one separates the
bath modes into slow and fast components depending on their char-
acteristic frequencies. Only the fast component directly participates
in the dynamics, while the effect of the slow component manifests
as the static disorder that introduces the non-Markovianity. In the
end, MQME-D with TSS (MQME-D+TSS) achieves nearly quanti-
tative resolution of the dissipated energy in the frequency domain,
demonstrating its capability of elucidating the key degrees of free-
dom (DOFs) that govern the dynamics of realistic systems, such as
photosynthetic complexes or extended molecular aggregates.

The structure of this paper is as follows. Section II provides
a brief overview of MQME-D and the Hamiltonian models used
in this work. Section III applies the bare MQME-D to the Hamil-
tonian of a molecular dimer and contrasts the results against a
numerically exact method. Section IV introduces the TSS strategy
and benchmarks the accuracy of MQME-D+TSS by using different
types of Hamiltonian models, such as molecular dimer and spin-
boson model. Section V presents a brief comparison between the
computational efficiencies of MQME-D+TSS and numerically exact
methods. Finally, Sec. VI concludes the paper by summarizing the
main findings and discussing conceivable research directions for the
future.

II. THEORETICAL BACKGROUND
The MQME-D theory was developed and discussed in Paper

I.1 For convenience, we summarize the main ideas below as needed
to introduce the simulation strategy and subsequent discussion.
First, Sec. II A introduces the Hamiltonian models used in this
work. Then, Sec. II B presents the key equations of MQME-D for
simulating the dissipation in the models presented in Sec. II A.

A. Model Hamiltonian
To test the numerical accuracy of the theory, we study the

dissipation in prototypical models of open quantum systems involv-
ing harmonic bath modes. However, as discussed in Ref. 1, the
MQME-D framework is applicable to any (harmonic or anhar-
monic) environment as long as it is composed of independent bath
degrees of freedom. The Hamiltonian of an open quantum system is
written as

Ĥ = Ĥsub + Ĥbath + Ĥint, (1)

where Ĥsub, Ĥbath, and Ĥint are the Hamiltonian components
describing the subsystem, the bath, and the subsystem–bath inter-
action, respectively. By denoting the subsystem states as {∣A⟩}, Ĥsub
is written as

Ĥsub =∑
A

EA∣A⟩⟨A∣ +∑
A
∑
B<A

VAB(∣A⟩⟨B∣ + ∣B⟩⟨A∣), (2)

where EA is the energy of the subsystem state ∣A⟩ and VAB is the
coupling between the subsystem states ∣A⟩ and ∣B⟩. The harmonic
bath modes and their interaction with the subsystem are described
by

Ĥbath =∑
j
(

p̂2
j

2
+

ω2
j x̂

2
j

2
), (3)

Ĥint =∑
A

⎡
⎢
⎢
⎢
⎢
⎣

∣A⟩⟨A∣⊗∑
j
(−ω2

jdAj x̂j +
ω2

jd
2
A j

2
)

⎤
⎥
⎥
⎥
⎥
⎦

. (4)

In the above-mentioned equation, ωj is the characteristic frequency
of the jth bath mode, whose momentum and position are described
by operators p̂j and x̂j , respectively. The state-dependent parameter
dAj quantifies the strength of the subsystem–bath coupling and cor-
responds to the location of the minimum in the potential energy
surface (PES) ĥA = ⟨A∣Ĥ∣A⟩ along the coordinate xj. Overall, Eq. (4)
assumes that the bath only couples to the diagonal part of Ĥsub (Con-
don approximation) with linear dependence in {x̂ j}. The strength of
the subsystem–bath interaction is collectively described by the bath
spectral density (BSD), which is defined as

JAB(ω) =∑
j

ω3
jdAjdBj

2
δ(ω − ωj), (5)

which is related to the generalized reorganization energy ΛAB via

ΛAB =∑
j

ω2
jdAjdBj

2
= ∫

∞

0

JAB(ω)
ω

dω. (6)

Analytical expressions of the BSD are frequently used as approxi-
mate models for describing realistic systems. One widely used form
of the BSD is the Drude–Lorentz distribution expressed as

JDL(ω) =
2Λ
π

ωcω
ω2
+ ω2

c
, (7)

which is often used to model the slow relaxation of the solvent due
to the exponential form of the corresponding bath time correlation
function in the high-temperature limit.14 In Eq. (7), Λ is the total
reorganization energy of the bath and ωc is the cutoff frequency
that determines the relaxation time of the bath. Another model that
will be used in this work is the Brownian oscillator whose BSD is
expressed as

JBO(ω) =
2Λγ

π
2ω2

0ω
(ω2
− ω2

0)
2
+ 4γ2ω2 . (8)

Here, ω0 is the characteristic frequency of the oscillator and γ is the
strength of the damping. The time correlation function associated
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with Eq. (8) resembles the behavior of a damped harmonic oscilla-
tor,14 which makes JBO(ω) a realistic model for describing molecular
vibrations and photonic cavities.

B. MQME-D for a bath of harmonic oscillators
According to Eq. (15) of Paper I,1 the populations of the sub-

system states in MQME are governed by a set of coupled first-order
rate equations,

ṖA(t) =∑
B≠A
[−KBAPA(t) + KABPB(t)], (9)

where PA(t) is the population of the state ∣A⟩ and KBA is the rate
constant for the population transfer from ∣A⟩ to ∣B⟩, whose explicit
expression is

KBA =
2∣VAB∣

2

h̵2 Re∫
∞

0

× exp(−
it′(EB − EA +ΛAA − 2ΛAB +ΛBB)

h̵
)

× exp [−gAA(t′) + 2gAB(t′) − gBB(t′)] dt′. (10)

Here, gAB(t
′
) is the line broadening function defined as

gAB(t′) =
1
h̵∫

∞

0
JAB(ω)[coth(

βh̵ω
2
)

1 − cos (ωt′)
ω2

+ i
sin (ωt′) − ωt′

ω2 ] dω, (11)

where β = 1/kBT is the inverse temperature. With the state popula-
tions propagated according to Eq. (10), the rate of dissipation Ė j(t)
into the jth bath mode can be evaluated by

Ėj(t) =∑
A
∑
B<A
[K j

BAPA(t) + K j
ABPB(t)], (12)

where the dissipation rate constants {K j
BA} are calculated as

K j
BA =

2∣VAB∣
2

h̵2 (λ j
AA − 2λ j

AB + λ j
BB)

× Re∫
∞

0
exp(−

it′(EB − EA +ΛAA − 2ΛAB +ΛBB)

h̵
)

× exp [−gAA(t′) + 2gAB(t′) − gBB(t′)]

× [cos (ωjt′) − i coth(
βh̵ωj

2
) sin (ωjt′)] dt′. (13)

In the above equation, λ j
AB = ω2

jdA jdB j/2 is the reorganization
energy associated with the jth bath mode. At this point, we intro-
duce specific Hamiltonian models that will be employed in the
simulations in Secs. III and IV.

1. Local bath model
In this model, each bath mode only couples to a single subsys-

tem state, and the Hamiltonian can be derived from Eqs. (1)–(4) by

setting dAjdBj = 0 when A ≠ B. As a result, Ĥbath and Ĥint are reduced
to

Ĥbath =∑
A
∑
j∈A
(

p̂2
j

2
+

ω2
j x̂

2
j

2
), (14)

Ĥint =∑
A

⎡
⎢
⎢
⎢
⎢
⎣

∣A⟩⟨A∣⊗∑
j∈A
(−ω2

jdAj x̂j +
ω2

jd
2
A j

2
)

⎤
⎥
⎥
⎥
⎥
⎦

, (15)

where we have introduced the notation j ∈ A to express that the
jth bath mode exclusively belongs to ∣A⟩. For this model, the
frequency-resolved rate of dissipation can be calculated by Eq. (75)
of Paper I,1

DA(ω, t) =∑
B≠A
[JA

BA(ω)PA(t) + JA
AB(ω)PB(t)]. (16)

With this, DA(ω, t) dω becomes the rate of dissipation through the
frequency window [ω, ω + dω] at time t for the vibrational modes
coupled to molecule A. For future reference, we also define the
cumulative dissipation density as

EA(ω, t) = ∫
t

0
DA(ω, t′) dt′, (17)

which yields the total dissipated energy at t when integrated over
the frequency axis. We note that the subscript A in DA(ω, t) and
EA(ω, t) will be omitted when it is not needed for clarity.

The frequency-dependent profiles {J C
BA(ω)} in Eq. (16) are

given by

J C
BA(ω) =

2∣VAB∣
2

h̵2
JCC(ω)

ω
IBA(ω), (18)

where C is either A or B. This quantity, which was called “dissipative
spectral density” in our earlier work,4 captures how the energy dissi-
pated by the transfer of state population from ∣A⟩ to ∣B⟩ is distributed
among the bath modes coupled to ∣C⟩. Moreover, as JCC(ω)/ω is
the density of reorganization energy along the frequency domain
[Eq. (6)], the quantity IBA(ω) in Eq. (18) reflects the ability of
the bath to induce dissipation per unit reorganization energy. For
this reason, IBA(ω) was named as “dissipative potential” and is
expressed as

IBA(ω) = Re∫
∞

0
exp(−

it′(EB − EA +ΛAA +ΛBB)

h̵

− gAA(t′) − gBB(t′))

× [cos (ωt′) − i coth(
βh̵ω

2
) sin (ωt′)] dt′. (19)

An interesting consequence of Eqs. (16)–(19) is that for two-level
subsystems, the dissipation by both molecules become completely
identical when JA(ω) = JB(ω). This is because J A

BA(ω) = J B
BA(ω)

and J A
AB(ω) = J B

AB(ω) under such a condition [Eq. (18)], and
inserting these relations in Eq. (16) gives DA(ω, t) = DB(ω, t). The
validity of this corollary will be scrutinized in Sec. III D.
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2. Spin-boson model
In this model, a two-level subsystem is coupled to a single

group of bath modes in an anti-correlated fashion. If we denote the
two subsystem states as ∣+⟩ and ∣−⟩, the Hamiltonian components
Ĥsub and Ĥint are written as

Ĥsub =
E
2

σ̂z + V σ̂x, (20)

Ĥint = σ̂z ⊗

⎡
⎢
⎢
⎢
⎢
⎣

∑
j
(−ω2

jdj x̂j +
ω2

jd
2
j

2
)

⎤
⎥
⎥
⎥
⎥
⎦

, (21)

where we have used the Pauli spin operators σ̂x = ∣+⟩⟨−∣ + ∣−⟩⟨+∣

and σ̂z = ∣+⟩⟨+∣ − ∣−⟩⟨−∣.

III. MARKOVIAN DISSIPATION
We now assess the accuracy of MQME-D by comparing its pre-

dictions to those obtained by using the numerically exact HEOM
method.9,10 Our aim is to conduct a quantitative and systematic
study on the extent to which the second-order perturbation theory
and Markov approximation underlying MQME-D affect its reliabil-
ity. In analogy with MQME-D, we call the decomposition of the
dissipation into individual bath components based on HEOM as
“HEOM-D.” In HEOM-D, the dissipation induced by a particular
bath mode is indirectly elucidated by the introduction of an addi-
tional “probe mode,” whose Hamiltonian closely resembles that of
the mode we are interested in Ref. 8. The introduction of the probe
mode enables us to extract the dissipation by using the conventional
protocol based on the extended subsystem,15–17 without disturbing
the analytical BSD required to construct HEOM. The details of this
exact method are included in Appendix A.

For definitiveness, we focus on the dynamics of the local bath
model (Sec. II B 1) whose subsystem just consists of two states, which
we will denote as ∣1⟩ and ∣2⟩. This model can be used to describe
the dynamics within the single-excitation manifold of a molecular
dimer by mapping ∣1⟩ (∣2⟩) onto the instance in which molecule
1 (2) is in its excited state while molecule 2 (1) remains in the ground
state. When the electronic coupling arises from weak dipole–dipole
interaction between the chromophores, the migration of excitation
between them is referred to as Förster resonance energy transfer
(FRET).18

A. Simulation procedure for the molecular
dimer model

We use Planck atomic unit system for which h = kB = 1. Table I
presents the simulation conditions employed for the molecular
dimer model. We examine the accuracy of MQME-D by either vary-
ing Λ while keeping the temperature constant as T = 1.0 [conditions
(i)–(iv) presented in Table I] or varying T for a fixed reorgani-
zation energy Λ = 0.2 [conditions (ii), (v), and (vi) presented in
Table I]. From now on, we will refer these two sets of simu-
lation conditions as “const-T” and “const-Λ” series, respectively.
For each simulation condition presented in Table I, we also stud-
ied the effect of the energy gap ΔE = E1 − E2 on the accuracy by
varying ΔE as 0, 1, and 2, generating a total of 18 different simula-
tion conditions. We fix V12 = 0.25 for the electronic coupling and
ωc = 0.5 for the cutoff frequency of the Drude–Lorentz BSDs
[Eq. (7)] that couple to the chromophores. We also assume that the
electronic excitation is initially localized at molecule 1 unless noted
otherwise.

For MQME and MQME-D simulations, each BSD was dis-
cretized into 2000 harmonic oscillator modes by using the scheme
described in Appendix B, which was originally reported in Ref. 19.
We used ωmax = 15 as the upper limit of frequency, which recovered
97.9% of the pristine reorganization energy of the analytical BSD.
The time integrals required for calculating the electronic [Eq. (10)]
and dissipation [Eq. (18)] rate constants were evaluated by using
the trapezoidal method with an integration grid size of 0.01 and
the upper limit of integration of 5 × 103. The rate equations for
electronic populations [Eq. (9)] and dissipation [Eq. (16)] were
propagated by using the fourth-order Runge–Kutta method with the
time step of 0.01.

Numerically accurate benchmarks for dissipation were
extracted by combining HEOM with the approach described in
Ref. 8, along with the efficient low-temperature correction scheme
recently reported in Ref. 20. Table I presents the number of
hierarchy tiers Nhier, the number of Matsubara low-temperature
correction terms NMatsu, and the Huang–Rhys (H–R) factor of the
probe mode sbp [Eq. (A7)] used for individual simulation condi-
tions. For HEOM calculations, larger Nhier and NMatsu are required
for stronger subsystem–bath interaction and lower temperature,
respectively, while sbp is exclusively used for HEOM-D and must
be small enough to satisfy the weak-coupling limit [Eq. (A6)]. We
scanned the frequency of the probe mode in the range of [0.1, 3.0]
with a constant spacing of 0.05. For all data points ω ≥ 0.2, the

TABLE I. Summary of the simulation conditions used for the molecular dimer model. The quantities Λ and T define the subsystem–bath interaction. The other parameters
specify the HEOM procedure. Each of the six simulation conditions in the table was combined with three different values of the energy gap ΔE = E1 − E2 to yield 18 different
conditions in total.

Simulation condition (i) (ii) (iii) (iv) (v) (vi)

Reorganization energy (Λ) 0.05 0.2 1.0 2.0 0.2 0.2
Temperature (T) 1.0 1.0 1.0 1.0 0.5 0.25
Maximum time step (Δtmax) 0.02 0.1 0.05 0.05 0.1 0.1
Number of hierarchy tiers (Nhier) 4 7 10 13 7 7
Number of Matsubara terms (NMatsu) 30 30 30 30 100 100
H–R factor of the probe mode (sbp) 2 × 10−6 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5
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number of vibrational quantum states used for describing the probe
mode8 was determined to make the initial bath density captures
99.9% of the total Boltzmann population. In the case of ω < 0.2, the
above-mentioned criterion was slightly relaxed to 99.0% to cope
with the steeply increasing computational burden of HEOM-D as
ω decreases (Sec. V).

The steady state limits (t →∞)were practically chosen as some
finite time tsim, which is differently defined for each simulation con-
dition by visually inspecting the evolution of electronic population.
The reduced density matrix (RDM) of the subsystem and the auxil-
iary density matrices (ADMs) in HEOM are propagated by using the
adaptive RKF45 integrator.21 The error function used for tuning the
time step was determined as how much the trace of the RDM devi-
ates from unity, which must be maintained as naught in the exact
dynamics. To further improve the stability of the calculation near the
steady state, we also prevented the time step from increasing beyond
a pre-determined maximum value Δtmax, which is also presented in
Table I for all the simulation conditions.

When the dynamics approaches the steady state, we observe
that the total amount of dissipated energy computed with HEOM-
D artificially increases at a constant rate for HEOM-D simula-
tions even after the electronic dynamics has become stationary,
violating energy conservation. Such a spurious behavior tends to
become more severe when Λ increases. A detailed numerical anal-
ysis of the drift is presented in the supplementary material for
the case of Λ = 1.0 [condition (iii)]. As shown, the drift cannot
be eliminated by simply increasing Nhier or NMatsu or decreasing
Δtmax or sbp. Therefore, we conclude that the dissipation does not
arise from insufficient numerical convergence. In our results, we
removed this artificial drift by applying a procedure similar to the
one described in Ref. 4 [Eq. (S1) in the supplementary material].
This correction scheme assumes the linearity of the drift through-
out the entire simulation, whose validity is also discussed in the
supplementary material. Figure S4 of the supplementary material
demonstrates that the corrected dissipation is robust to the choice of

the simulation parameters, as long as the state population achieves
convergence.

B. Electronic dynamics
We first assess the reliability of MQME on describing the evolu-

tion of the state populations, which is the prerequisite for accurately
calculating the dissipation. Before we present the results from the
simulation, it is worthwhile to address how the applicability of
MQME depends on the parameters related to the dynamics. Accord-
ing to Sec. II A of Paper I,1 MQME is based on the assumption
that the inter-state coupling is sufficiently weak so that it can be
treated to second-order in perturbation. This implies that MQME
will become accurate either when ∣ΔE∣≫ ∣V12∣ in Ĥsub or when
Ĥint induces strong thermal fluctuation arising from high T or large
Λ.13

We now analyze the accuracy of MQME based on the results
obtained from the simulations. Figures 1 and 2 show the time-
dependent population inversion ⟨σ̂z(t)⟩ = P1(t) − P2(t) calculated
for the const-T and const-Λ series, respectively, by using both
MQME and HEOM. For Fig. 1, most of the cases [Figs. 1(c)–1(l)]
show good agreement between MQME and HEOM results, even
though MQME slightly overestimates the rate of population trans-
fer when ΔE ≥ 1 [Figs. 1(e)–1(l)]. The most noticeable disagreement
between MQME and HEOM is observed for Λ = 0.05 and ΔE = 0
[Fig. 1(a)], for which HEOM shows oscillations in ⟨σ̂z(t)⟩ while
MQME does not. Such oscillations occur when the eigenstates of
Ĥsub undergo significant delocalization due to low ∣ΔE∣, and the
coherence between these eigenstates can persist for a relatively long
time due to weak subsystem–bath interaction [Figs. 1(a) and 1(b)].
It is easily expected that the accuracy of MQME will deteriorate
under such conditions if we recall the discussions made above. The
observed lack of oscillation actually shows a fundamental limita-
tion of the MQME, as it can only predict monotonous, exponential
dynamics. This can be explicitly shown by solving the coupled dif-

FIG. 1. Comparison between the dynamics of the state population represented as the population inversion ⟨σ̂z⟩, calculated by MQME (solid black) and HEOM (dashed
purple) for the const-T series (T = 1.0). The results calculated by combining MQME with the time scale separation (gray) is also presented, which will be discussed in
Sec. IV B 1.
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FIG. 2. Same as shown in Fig. 1, but for the const-Λ series (Λ = 0.2).

ferential equations for the state populations [Eq. (9)] for our dimer
model. As a result, we can derive the analytical expression for the
population inversion as

⟨σ̂z(t)⟩ = ⟨σ̂z(∞)⟩ + [⟨σ̂z(0)⟩ − ⟨σ̂z(∞)⟩]e−(K12+K21)t. (22)

As the rate constants KAB calculated by Eq. (10) are always real, the
state populations in MQME can only undergo a simple exponential
decay without any oscillations.

The results for const-Λ series shown in Fig. 2 exhibit a similar
trend as observed in Fig. 1. Namely, MQME accurately describes the
population transfer when ΔE ≥ 1 [Figs. 2(d)–2(k)] with slight over-
estimations in the rate, although the performance becomes poor for
the cases with ΔE = 0 [Figs. 2(a)–2(c)]. The discrepancy between
MQME and HEOM becomes more provoked as the temperature
decreases due to the reduced strength of the thermal fluctuation
induced by the subsystem–bath interaction.

C. Dissipation dynamics
Having confirmed the reliability of MQME for the electronic

dynamics, we now examine the dissipation. Figure 3 shows how
the dissipated energy is distributed along the frequency axis for the
const-T series, calculated by using both MQME-D and HEOM-
D. As given in Sec. II B, MQME-D predicts the dissipation into
both molecules to be exactly identical when J1(ω) = J2(ω).4 With
HEOM-D, we can now put this statement under a close inspec-
tion, which was not attempted in Ref. 4 due to the limited accuracy
of the benchmark simulation method employed therein. Therefore,
we avoid the redundancy by plotting the dissipation for only one
molecule for MQME-D simulations, while separately plotting for
either molecules for HEOM-D simulations.

The dissipation can be conveniently visualized in the frequency
domain by using the cumulative dissipation density defined in
Eq. (17). Figure 3 shows E(ω,∞) for the const-T series obtained
by both MQME-D and HEOM-D. When ΔE = 0 [Figs. 3(a)–3(d)],
MQME-D predicts vanishing dissipation for all ω, although the
HEOM-D results clearly demonstrate net energy transfer from the
subsystem to bath for all the four values of Λ. Such an incor-
rect behavior of MQME-D arises because EA = EB makes J A

BA(ω)
= J A

AB(ω) [Eqs. (18) and (19)], while the detailed balance condition
also imposes J A

BA(ω) = −J A
AB(ω) (Sec. II C of Paper I1). These two

conditions can be simultaneously met only when both J A
AB(ω) and

J A
BA(ω) vanish for all ω, leading to the absence of dissipation, as

shown in Figs. 3(a)–3(d). In reality, however, energy is dissipated
from the subsystem to the bath due to the population relaxation
between the eigenstates of Ĥsub. While such an aspect is naturally
incorporated in HEOM-D, MQME-D cannot handle the effects
arising from delocalized eigenstates due to its focus on the pro-
jected system density under second-order perturbation (Sec. II A of
Paper I1).

When ΔE becomes larger, we observe a much better qualita-
tive agreement between the predictions of MQME-D and HEOM-D.
Of particular interest are the cases with ΔE = 2, for which MQME-
D exhibits semi-quantitative accuracy [Figs. 3(i)–3(l)] with a slight
overestimation (underestimation) of the dissipation when ω is small
(large). With a relatively small reorganization energy of Λ = 0.05

FIG. 3. Steady-state cumulative dissipation density E(ω,∞) calculated for the const-T series by using both MQME-D and HEOM-D. For MQME-D, the results for both the
molecules are identical and, therefore, plotted as a single profile. For HEOM-D, the results for the two molecules are plotted separately.
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FIG. 4. Same as shown in Fig. 3 but for the const-Λ series.

[Fig. 3(i)], we observe that a substantial portion of the dissipa-
tion occurs through the region around hω = ΔE, which can be
related to the vibronic resonance. Increasing Λ makes the contri-
bution of this channel gradually disappear, while the dissipation
becomes more concentrated near ω = 0. However, the MQME-
D calculations predict that E(ω,∞) monotonously increases as
ω approaches zero, which contradicts the steep drops observed in
the HEOM-D counterparts [Figs. 3(k) and 3(l)]. Our previous study4

clarified that the discrepancy at the low frequency is caused by the
Markov approximation behind MQME-D, which neglects the quasi-
static nature of the bath modes that delays their participation in the
dynamics.

Finally, we inspect the effect of temperature on dissipation
by looking at Fig. 4, which summarizes E(ω,∞) for the const-
Λ series calculated by both MQME-D and HEOM-D. As shown
in Fig. 3, MQME-D erroneously predicts zero dissipation for
ΔE = 0 [Figs. 4(a)–4(c)]. Nevertheless, the accuracy of MQME-D
increases with ΔE and reaches a semi-quantitative level for ΔE = 2
[Figs. 4(g)–4(i)]. Apparently, lowering T from 1.0 to 0.25 enhances
the influence of the vibronic resonance in dissipation, which is
due to the reduction in the thermal fluctuation induced by the
subsystem–bath interaction. Similar to what is shown in Fig. 3, the
dissipation calculated by MQME-D tends to be concentrated toward
a slightly lower frequency compared to the HEOM-D results. Again,
this is because MQME-D is based on Markov approximation and,
therefore, overestimates the contribution of the low-frequency bath
modes on the dissipation.

D. Asymmetry of the dissipation between molecules
As we have stated earlier, MQME-D predicts the dissipation

into the two molecules in a dimer to be exactly identical.4 Accord-
ing to Figs. 3 and 4, this prediction is satisfied for large ω and small
Λ. However, the HEOM-D calculations also show that some asym-
metry does exist between E1(ω,∞) and E2(ω,∞), especially when
ΔE is small [Figs. 3(a)–3(d)] or Λ is relatively large [Figs. 3(k) and
3(l)]. The most dramatic cases are the conditions with ΔE = 0 [Figs.
3(b)–3(d) and Figs. 4(a)–4(c)], where the directions of dissipation
in the two molecules become completely opposite for low-frequency
bath modes. This shows that the low-frequency modes of molecule 1
only lose energy from the reorganization, while those of molecule 2

actively absorb energy from the subsystem. It would be meaningful
to conduct a further inspection about the origin of this asymme-
try to clarify how it is connected to the approximations underlying
MQME-D.

As the asymmetry becomes more pronounced when ω is
small, we can speculate that the phenomenon is related to non-
Markovianity. A possible source of the non-Markovianity in our
dimer system is the non-equilibrium motion of the bath triggered
by Franck–Condon transition to the excited state PES. To elaborate
further on this phenomenon, we separately examine the behavior of
the bath density in MQME and HEOM dynamics. In Sec. II B of
Paper I,1 we explained that MQME focuses only on the projected
component of the density matrix for the system ρ̂(t),

P̂ρ̂(t) =∑
A
(PA(t)∣A⟩⟨A∣⊗

exp (−βĥA)

Trb[exp (−βĥA)]
), (23)

where ĥA = ⟨A∣Ĥ∣A⟩ and Trb denotes the trace over the subspace
spanned by the bath DOFs. If we combine this condition with the
explicit expressions for Ĥ and its components [Eqs. (1)–(4)], we can
observe that the molecular vibrational modes in MQME dynamics
are always in the thermal equilibrium associated with the PES of the
relevant electronic state. As the shape of the PES for the ground and
excited states are identical in our Hamiltonian model [Eqs. (14) and
(15)], the excited state bath density is identical to the ground state
density except its center is shifted to the minimum of the excited
state PES. Under such a condition, the relative dissipation rates for
the vibrational modes are solely determined by the distance between
the minima of the ground and excited state PESs. Because these
distances are identical for both the molecules when their spectral
densities [Eq. (5)] are the same, the dissipation by the two molecules
must be symmetric, as already proven in Sec. II B.

In contrast to MQME, HEOM assumes that the initial system
density to be in the direct product form ρ̂(0) = σ̂(0)⊗ R̂g, where
σ̂(0) is the initial subsystem density and

R̂g =
exp (−βĤbath)

Trb[exp (−βĤbath)]
(24)

is the equilibrium bath density on the PES of the electronic ground
state.22 Because we have set the initial electronic populations as
P1(0) = 1 and P2(0) = 0, the bath modes coupled to molecule
1 undergo Franck–Condon excitation and start oscillating in the
excited state PES while those coupled to molecule 2 do not. We
can easily expect that such a difference in the dynamics of the bath
density would cause asymmetry in the dissipation by affecting the
microscopic energy flows between vibronic quantum states.

To corroborate our explanation further, we directly calculate
and visualize how the asymmetry in the dissipation is affected by the
initial electronic populations. For this purpose, we have specifically
chosen the case of ω = 0.2 and Λ = 1.0, which exhibits a notice-
able difference between E1(ω,∞) and E2(ω,∞) [Fig. 3(k)]. We
calculated the time-dependent dissipation E(0.2, t) for two differ-
ent initial conditions: (i) P1(0) = 1 and P2(0) = 0 and (ii) P1(0)
= P2(0) = 0.5. The results plotted in Fig. 4 show that the asymmetry
under the original initial condition [Fig. 5(a)] disappears as expected
when we induce the same amount of Franck–Condon excitation for
both the molecules by setting their initial electronic populations as
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FIG. 5. Densities of accumulated dissipation at ω = 0.2, separately obtained for
both molecules by using HEOM-D under simulation condition (iii) (Table I) for ΔE
= 2. Two different initial electronic populations were employed to demonstrate that
the asymmetry between the two molecules is related to non-equilibrium motion of
the bath modes.

equal [Fig. 5(b)]. Hence, it supports our claim that the asymmetry in
the dissipation is indeed linked to the difference between the non-
equilibrium motion of the bath. Intriguingly, although E1(0.2, t)
in the early stage of the dynamics clearly exhibits oscillations aris-
ing from nuclear motions, such a feature is not visible in E2(0.2, t)
even with some amount of excitation initially residing in molecule 2
[Fig. 5(b)].

IV. NON-MARKOVIAN DISSIPATION VIA TIME SCALE
SEPARATION (TSS)

In this section, we conduct extensive tests on MQME-D+TSS.
Section IV A introduces the principles of TSS. Section IV B uses
MQME-D+TSS to compute the dissipation in different types of
Hamiltonian models with a wide range of simulation parameters.
The results are then compared to HEOM-D to appraise the accuracy
of our theory.

A. Introduction to time scale separation
In Sec. III C, we have seen that one source of inaccuracy in

MQME-D is the Markov approximation. This suggests that the reli-
ability of MQME-D may be increased if we can somehow include
non-Markovianity in the simulation. This task can be accomplished
by employing TSS,13,23 which divides the BSD J(ω) into “slow”
Jslow(ω) and “fast” Jfast(ω) components, respectively. The desired
non-Markovianity is introduced in the simulation by prohibiting the
bath modes in Jslow(ω) from directly participating in the dynamics.
This is practically achieved by defining the BSD components as

Jslow(ω) = S(ω, ω∗)J(ω), (25a)

Jfast(ω) = [1 − S(ω, ω∗)]J(ω). (25b)

Here, S(ω, ω∗) is the splitting function that monotonically decays
as ω increases, with the speed of decay controlled by the cutoff

frequency ω∗. In our simulations, by following the similar approach
as in Ref. 13, we use the splitting function of the form,

S(ω, ω∗) =
⎧⎪⎪
⎨
⎪⎪⎩

η[1 − (ω/ω∗)2
]

2, ω < ω∗,

0, ω ≥ ω∗,
(26)

where we have added an extra scaling factor η < 1 to the original
expression to ensure the numerical convergence of the improper
integrals [Eqs. (10) and (19)].

We now treat Jslow(ω) as a source of static disorder and mod-
ulate the state energies of the subsystem {EA} by adding Gaussian
random noise, whose standard deviation is

σslow =
1
h̵∫

∞

0
Jslow(ω) coth(

βh̵ω
2
) dω, (27)

while Jfast(ω) governs the dissipation in individual realizations of
the disorder. The final result is calculated by averaging over suffi-
ciently large number of realizations. Each noise trajectory follows
MQME whose BSD is Jfast(ω) and, therefore, exhibits the charac-
teristics of the bare MQME, such as exponential time-dependence
and detailed balance PA(ω)/PB(ω) = exp[β(EB − EA)]. However,
because the static disorder induces variation in the state energies,
such properties are not satisfied after averaging over the entire set of
trajectories.

B. Dissipation dynamics
We now benchmark the accuracy of MQME-D+TSS against

different types of model Hamiltonians for open quantum systems.
In Sec. IV B 1, we first explore the performance of MQME-D+TSS
for the molecular dimer model, which was already employed to
benchmark the original MQME-D in Sec. III. Section IV B 2 applies
MQME-D to the spin-boson Hamiltonian with Brownian oscillator
BSD.

1. Molecular dimer
We examine the same molecular dimer model used in Sec. III C,

defined by the local bath Hamiltonian [Eqs. (2), (14), and (15)].
We apply TSS by constructing the splitting function [Eq. (26)]
with η = 0.99 and ω∗ = 0.2 and averaging over 103 noise trajec-
tories for conditions (ii)–(vi) presented in Table I. For the con-
dition (i) with Λ = 0.05, the number of trajectories was increased
to 104 to ensure numerical convergence. Figure 6 shows how TSS
splits the Drude–Lorentz BSD used in our simulations. All the
other simulation procedures remain the same as those explained in
Sec. III A.

We first examine the effect of TSS in population dynamics.
Figure 1 plots ⟨σ̂z(t)⟩ obtained from both the bare MQME and
MQME+TSS obtained for the const-T series. It is observed that TSS
modifies the rate of population relaxation, although the direction
and magnitude of the influence show complicated dependence on
both Λ and ΔE. Nevertheless, there are cases for which TSS substan-
tially increases the accuracy of MQME. In particular, nearly perfect
matches between MQME-TSS and HEOM are observed for Figs. 1(i)
and 1(j). In Figs. 1(e) and 1(f), TSS also leads to better agreements
with the HEOM-D results by prolonging the relaxation. Neverthe-
less, the accuracy of MQME-D+TSS may become further improved
by using different values of ω∗. On the other hand, Figs. 1(c) and 1(d)
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FIG. 6. Split of the Drude–Lorentz BSD [Eq. (7)] into slow and fast components by
employing Eqs. (25) and (26) with η = 0.99 and ω∗ = 0.2.

also show that TSS does not always positively affect the accuracy.
Similar trends are observed for the const-Λ series (Fig. 2).

We now examine the dissipation predicted by MQME-D+TSS
to see how the added non-Markovianity affects the accuracy of the
method. We note that TSS does not save the lack of asymmetry in
MQME, as we are applying the same S(ω, ω∗) to the BSDs of the two
molecules. Therefore, we compare the resolved dissipation against
the HEOM-D results averaged over the two molecules.

Figures 7 and 8 show E(ω, t) calculated by MQME-D+TSS,
along with the averaged E(ω, t) obtained from HEOM-D simula-
tions. Compared to the results obtained without TSS (Figs. 2 and 3),
it is apparent that TSS improves the accuracy of MQME-D for
both the const-T (Fig. 7) and const-Λ (Fig. 8) series, especially for
the cases with ΔE = 2 [Figs. 7(i)–7(l) and 8(g)–8(i)]. In particu-
lar, the agreement near ω = 0 became remarkably better as Jfast(ω)
does not exhibit strong subsystem–bath interaction anymore in that
region. The dissipation originally in this region is redirected toward
higher frequencies, which alleviates the underestimation of E(ω, t)
near ω = 2 by MQME-D. Such an effect is also pronounced for
ΔE = 1 [Figs. 7(e)–7(h) and 8(d)–8(f)], although some discrepancy
still remains.

FIG. 8. Similar to that shown in Fig. 7 but for the const-Λ series. In this case, the
benchmark is the averages of the HEOM-D results shown in Fig. 4.

Finally, for the homodimer case of ΔE = 0 [Figs. 1(a)––1(d) and
2(a)–2(c)], we observe some amount of dissipation in contrast to
the vanishing dissipation shown in Figs. 1 and 2. This is because
the individual noise trajectories exhibit nonzero ΔE due to the static
disorder arising from Jslow(ω). However, because MQME loses its
reliability when ΔE = 0, MQME-D is also not accurate enough to
make meaningful predictions of dissipation.

Overall, we can expect that MQME-D+TSS will accurately
decompose the dissipated energy when MQME qualitatively
accounts for the dynamics of state populations (large ΔE or Λ) and
TSS leads to an additional increase in the accuracy at the quantitative
level.

2. Spin-boson model with Brownian oscillator bath
We now test how MQME-D+TSS performs for the Hamilto-

nian models involving Brownian oscillator BSD JBO(ω) [Eq. (8)].
We examine the dissipation induced by an underdamped bath mode
whose frequency is tuned to achieve resonance with the subsystem.
By modulating the reorganization energy Λ and damping parameter
γ, we conduct a systematic investigation on how the strength of

FIG. 7. Cumulative dissipation density at the steady state E(ω,∞), calculated for the const-T series by combining MQME-D+TSS with the cutoff frequency ω∗ = 0.2. The
averages of the HEOM-D results (dashed purple) for both BSDs shown in Fig. 3 are plotted together to benchmark the accuracy of the results.
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TABLE II. Summary of the simulation conditions used for the spin-boson model with
Brownian oscillator bath. The first parameter is for both the MQME and HEOM cal-
culations, while the rest are specifically for HEOM. Each of the three simulation
conditions presented in the table was combined with three different values of the
damping constant ωc to yield nine different conditions in total.

Simulation condition (i) (ii) (iii)

Reorganization energy (Λ) 0.05 0.25 1.0
Maximum time step (Δtmax) 0.01 0.05 0.05
Number of hierarchy tiers (Nhier) 5 7 12
Secondary Nhier for ωc = 0.05 10 15 25
H–R factor of the probe mode (sbp) 2 × 10−6 1 × 10−5 1 × 10−5

subsystem–bath interaction and memory time of the bath affect the
accuracy of our method.

We simulate the dynamics of a spin-boson Hamiltonian
defined by Eqs. (3), (20), and (21). The subsystem parameters are
E = 2 and V = 0.25. For the BSD, we use three different values of
Λ as 0.05, 0.25, and 1.0, as presented in Table II, and vary the damp-
ing strength γ as 0.05, 0.25, and 1.0 (Fig. 9) for each value of Λ to
make a total of nine simulation conditions. The characteristic fre-
quency of the BSD was set as ω0 = 2.062 to match the difference
between the eigenenergies of Ĥsub. The temperature of the bath was
kept constant as T = 1 for all simulation conditions.

For MQME and MQME-D simulations, the rate constants for
population transfer and dissipation were calculated according to
Eqs. (10) and (13) by setting d±j = ±dj in Eq. (4). The BSD was dis-
cretized into 5000 harmonic oscillator modes based on the scheme
described in Appendix B for all the simulation conditions presented
in Table II except the case of Λ = 0.05 and γ = 0.05, which required

FIG. 9. Shapes of JBO(ω) used in the simulations of spin-boson model, for differ-
ent values of the damping strength γ. The inset in panel (c) shows how TSS splits
the BSD into Jslow(ω) (dashed red) and Jfast(ω) (dashed blue) when γ = 1.0.

20 000 oscillators to guarantee numerical convergence. The upper
limit of frequency ωmax and the integration scheme were the same
as what we used for the dimer model (Sec. III A). The TSS was
applied by using the same cutoff ω∗ = 0.2 as in the Drude–Lorentz
BSDs in the dimer model (Sec. IV B 1), while the scaling factor
η was reduced from 0.99 to 0.6 due to the increased difficulty of
achieving detailed balance condition for JBO(ω). The number of
individual noise trajectories was always kept as 1000.

For the HEOM and HEOM-D simulations, we implemented
the Brownian oscillator BSD based on the efficient framework
reported in Ref. 14 and combined it with the perturbative low-
temperature correction20 with NMatsu = 30. The depth of hierarchy
Nhier was adjusted depending on the reorganization energy, as pre-
sented in Table II. When γ = 0.05, deeper hierarchy was needed for
the numerical convergence near ω = ω0 due to the strong resonance
arising from the subsystem–bath interaction. We scanned the fre-
quency of the probe mode in the range of [0.2, 1.9] and [2.2, 3.0] with
a constant spacing of 0.05, while a finer grid of 0.005 was used for the
range of [1.9, 2.2] for capturing the detailed structure of E(ω, t) near
the resonance.

In Fig. 10, we have presented the calculated ⟨σ̂z(t)⟩ for all
nine simulation conditions presented in Table II. The results for
γ = 0.05 [Figs. 10(a)–10(c)] show that it is challenging for MQME
and MQME+TSS to describe the highly non-Markovian charac-
ter of the bath originating from the small damping. However,
the agreement becomes much better as γ increases and shows a
nearly quantitative match for [Figs. 10(d)–10(i)]. Meanwhile, in
contrast to the molecular dimer model coupled to Drude–Lorentz
BSD (Sec. IV B 1), there is almost no visible difference between
MQME and MQME+TSS. This is because JBO(ω) takes a relatively
small value near ω = 0, which makes Jslow(ω) have only a minute
contribution to the overall BSD [Fig. 9(c)] under our simulation
conditions.

We now examine Fig. 11 and discuss how the dissipation by
the Brownian oscillator BSD looks like. For small (γ = 0.05) and
intermediate (γ = 0.25) damping [Figs. 11(a)–11(f)], the HEOM-D
results show that most of the dissipation occurs through the res-
onant channel around ω = 2. What is interesting is that E(ω,∞)

FIG. 10. Comparison between the evolution of population inversion ⟨σ̂z⟩ for the
spin-boson model, calculated by MQME (solid black), MQME+TSS (solid gray),
and HEOM (dashed purple).
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FIG. 11. Steady-state cumulative dissipation density E(ω,∞) calculated for the
spin-boson model by using MQME-D (solid black), MQME-D+TSS (solid gray),
and HEOM-D (dashed purple). For the conditions with γ = 0.05, we increased the
hierarchy depth for HEOM-D (dashed red) in the frequency domain [1.9, 2.2] to
guarantee the convergence under strong resonance between the subsystem and
bath modes.

for γ = 0.05 [Figs. 11(a)–11(c)] does not form a single peak as in the
Brownian BSD (Fig. 10) but instead a pair of peaks closely lying
together. Such a structure arises from the interaction between
the upper subsystem state ∣+⟩ and the first excited state of the
underdamped bath mode, as in the formation of a polaritonic
state pair.24,25 Nevertheless, this behavior soon disappears as the
effect of resonance is diluted due to the increased damping
[Figs. 11(d)–11(i)]. For all panels shown in Fig. 11, both MQME-
D and MQME-D+TSS qualitatively reproduce the results from
the HEOM-D calculations. The predictability becomes better with
increasing Λ and γ, which enhances the adequacy of second-order
perturbation and Markov approximation, respectively.

In contrast to the population dynamics for which TSS had vir-
tually no effect, averaging over the TSS noise trajectories removes
rapid oscillations in the dissipation, which appears near the reso-
nance frequency (ω ≈ 2) in the bare MQME-D [Figs. 11(b)–11(e)].
These oscillations arise from incomplete numerical convergence,
and it is possible to mitigate them to some extent by extending the
upper limit of integration in Eq. (13). However, we found out that
the convergence without TSS was extremely slow and the oscillations
were still prevalent even after integrating up to 5 × 105 (100 times the
limit used in the main calculations). Therefore, TSS offers a conve-
nient way to achieve converged results under strong subsystem–bath
resonance, which can be also straightforwardly parallelized by dis-
tributing the propagation and averaging procedure over multiple
processors.

As shown in Figs. 11(d), 11(e), 11(g), and 11(h), MQME-
D+TSS tends to overestimate the dissipation near the region where
subsystem–bath resonance occurs. This is likely because the dissi-
pated energy cannot return to the subsystem in MQME due to the
second-order approximation, although such re-absorption of energy
by the subsystem does occur when the underdamped bath mode
exerts strong subsystem–bath resonance.5

V. COMPUTATIONAL EFFICIENCY OF MQME-D
In this paper, we obtained the exact decompositions of dissipa-

tion in our Hamiltonian models by combining the numerically exact
HEOM method9,14 with a technique for extracting the statistics of a
particular bath mode.8 However, such computations become expo-
nentially more costly as the number of subsystem DOFs increases.
Most of the other numerically exact simulation methods exhibit
similar exponential scaling for propagating the subsystem RDM,
although we are aware of a recently reported method that could
potentially overcome this issue.26

In addition, the computational cost of HEOM-D also depends
on the temperature of the bath and the characteristic frequency of
the harmonic bath mode whose dissipation we want to calculate.
As explained in Appendix A, HEOM-D extracts the dissipation by
merging the subsystem with an extra bath mode, which acts as a
probe for monitoring the dynamics of the bath mode of interest.
The probe mode must have the same frequency as the mode that
we want to monitor and should be described by a large enough
number of quantum states to represent the thermal properties dur-
ing the dynamics. Therefore, the number of required vibrational
quantum states drastically increases as we reduce the energy spacing
hω below kBT and move toward zero. If n quantum states are used to
describe the probe mode, the cost of propagating the reduced den-
sity matrix and auxiliary density matrices of the extended subsystem
would approximately depend on O(n3

), as it involves matrix–matrix
multiplications arising from commutators and anti-commutators.
Moreover, the perturbative low-temperature correction described
in Ref. 20 requires diagonalizations of the super-operators repre-
sented in the Liouville space, whose cost would exhibit the depen-
dence of O(n6

). Such a steep growth of the computational burden
was the reason why we always needed to terminate the HEOM-D
calculations at a certain lower limit for ω.

On the other hand, the aforementioned issues pose much less
difficulty for MQME-D. Namely, it is less problematic to apply
MQME-D to large systems as the cost for evaluation of the dissi-
pation rate constants and time propagation only grows as O(N2

)

where N is the dimension of the subsystem, if we assume that all
subsystem DOFs are coupled to an identical number of bath modes.
In addition, MQME-D can be trivially parallelized by distributing
the load of evaluating the rate constants and propagating TSS-based
noise trajectories across multiple processors. This is in contrast to
HEOM27,28 and tensor-train-based simulation methods29,30 whose
equations-of-motion are usually densely coupled and, therefore,
require substantial amounts of communication for propagation.
Furthermore, the cost of evaluating the dissipation rate constants
based on Eq. (13) does not depend on ω, which allows us to conve-
niently access the dissipation in low-frequency region without any
additional burden.

Finally, when one employs numerically exact simulation meth-
ods to calculate the dissipation into individual bath modes, only one
mode is usually monitored at a time to keep the dimension of the
subsystem RDM within a viable extent. As a result, the formation
and propagation of the extended subsystem needs to be repeated
for every bath mode to obtain a complete decomposition of the
dissipation. On the other hand, provided that the rate constants
have already been computed, MQME-D captures all the informa-
tion regarding the dissipation in a single propagation. Based on these
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observations, we expect MQME-D with TSS to have a promising
utility in studying the role of individual bath modes to the quantum
dynamics in large molecular systems, whose details cannot be easily
accessed by numerically exact simulation methods.

VI. CONCLUSION
In this paper, we investigated the accuracy of MQME-D, a the-

oretical method that enables us to decompose the dissipation under
MQME dynamics into contributions from individual bath modes.
The theory was applied to multiple types of Hamiltonian models and
the outcomes from the simulations were compared against numer-
ically exact results provided by HEOM. We have demonstrated
that the dissipation calculated by MQME-D offers a qualitatively
correct view of the dissipated energy by individual bath modes.
However, it can quantitatively differ from the exact results even in
the limit where MQME exhibits accurate population dynamics. We
have provided detailed arguments that support the Markovian origin
of the observed discrepancies and demonstrated that the accuracy
of the calculation is indeed significantly increased by the inclusion
of non-Markovianity via TSS. In the end, despite the inherent
limitation arising from second-order perturbation approximation,
MQME-D combined with TSS offers an efficient way to obtain
semi-quantitative decompositions of the dissipation in a wide range
of subsystem–bath couplings and temperatures. Even for the Brow-
nian oscillator bath for which TSS does not significantly affect the
BSD, TSS offered a useful way to improve the numerical convergence
of MQME-D. However, TSS could not reproduce the asymmetry
between the dissipation by two molecules, which becomes more
pronounced toward the low-frequency region. We expect that the
asymmetry may be realized in our method by using separate scaling
functions for different BSDs or extending our method to include
non-equilibrium motion of the bath modes.31

MQME-D shows quadratic scaling of the computational cost
with the size of the system, and its parallelization across multiple
processors is also straightforward. Moreover, the cost of MQME-D
does not depend on the characteristic frequency of the bath mode,
in contrast to HEOM-D, which shows a rapid increase in the
burden as ω decreases. We, therefore, expect the usefulness of
MQME-D to grow with larger systems for which the computational
costs of numerically exact methods become expensive due to their
exponential scaling and challenges in parallelization.

We anticipate that applying the framework outlined in Paper
I1 to a range of quantum master equations would lead us to cor-
responding dissipation theories in the near future. Upon rigorous
validation as demonstrated in this paper, these theories can be
integrated with realistic Hamiltonian models extracted by using
state-of-the-art experimental and computational techniques.32–36

We envisage that such efforts would lead us to deeper understand-
ings on the quantum dynamics in a wide range of systems, includ-
ing photosynthetic complexes,37–39 artificial excitonic systems,40–42

plasmonic systems,43,44 and molecular and solid-state qubits.45–47

SUPPLEMENTARY MATERIAL

See the supplementary material for comprehensive discussion
and analysis on the artificial drift in the cumulative dissipation

density E(ω, t), which demonstrates that E(ω, t) from HEOM can
be reliably used as a quantitative benchmark after calibrating the
drift.
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APPENDIX A: A BRIEF INTRODUCTION
TO THE HEOM-D METHOD

In this section, we present a minimal explanation about the
motivation and formulation of HEOM-D,8 a technique we used for
calculating the dissipation into a specific bath component in HEOM
simulations. In HEOM, the RDM of the subsystem σ(t) is propa-
gated by coupled equations of motion, which connect σ(t) to the
hierarchy of ADMs. It was reported that ADMs encode the con-
sequence of subsystem–bath interaction during the dynamics, and
therefore, one can extract the statistics related to the bath from the
ADMs.48–50 However, such methods could only handle the bath
modes in the entire BSD collectively and does not allow isolation
of the information regarding a single bath mode. Moreover, the
widely used approach that re-classifies the bath mode of interest
as the subsystem16,17,51 is not allowed for HEOM. This is because
the subtraction of a bath mode from a BSD converts its analytical
quantum time correlation function to a form that cannot be han-
dled by HEOM without drastically increasing the complexity of the
calculation.52

The HEOM-D method8 overcomes this challenge by intro-
ducing an extra bath mode (“probe mode”) that weakly couples to
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the subsystem through the same channel as the bath mode under
examination (“target mode”). Under such a setting, the dynamical
information regarding the target mode can be elucidated from that
of the probe mode. To formulate the method, we first divide the full
Hamiltonian [Eq. (1)] into contributions of the target mode and the
rest,

Ĥ = Ĥbt + Ĥrest, (A1)

respectively, where Ĥbt can be factorized as ŝ⊗ b̂ with ŝ and b̂
representing the subsystem and bath part of Ĥbt, respectively. For
example, if we want to examine the kth bath mode in the spin-boson
Hamiltonian [Eqs. (20) and (21)], ŝ and b̂ needs to be set as

ŝ = ∣+⟩⟨+∣ − ∣−⟩⟨−∣, b̂ =
p̂2

k
2
+

ω2
k

2
(x̂ k − dk)

2. (A2)

We now modify the system Hamiltonian according to

Ĥ ′ = Ĥ + Ĥbp, (A3)

where we added a new Hamiltonian component Ĥbp = αĤbt for the
probe mode. The scaling constant α is the ratio between the cou-
pling strengths of the target and probe modes, whose value should be
small enough to ensure that the dynamics under Ĥ ′ remains almost
identical to that under Ĥ. As Ĥbp was not a part of the original
BSD, and therefore, does not alter the structure of HEOM, it can
now be freely included in the subsystem and monitored over time.
At the start of the dynamics, the density matrix ρ̂bp(0) for the probe
mode is constructed as the same thermal equilibrium associated with
the target mode. Then, the initial density σ̂ ′(0) for the extended
subsystem Ĥsub + Ĥbp is set to be σ̂(0)⊗ ρ̂bp and propagated by the
same structure of HEOM used for the original subsystem RDM σ̂(t).
Practically, ρ̂bp is implemented by using a finite number n of bath
quantum states, which faithfully represent the thermal equilibrium.
The value of n should be chosen carefully so as not to excessively
increase the computational burden, as the time spent for apply-
ing perturbative low-temperature correction and RDM propagation
increases with the order of O(n6

) and O(n3
), respectively (Sec. V).

After propagating σ̂ ′(t) for a certain amount of time, the time-
dependent dissipation ΔEbp(t) induced by the probe mode can be
calculated by

ΔEbp(t) = Tr [Ĥbp{σ̂
′
(t) − σ̂ ′(0)}]. (A4)

In Ref. 8, we proved that ΔEbp(t) is related to the dissipation ΔEbt(t)
induced by the target mode via

ΔEbt(t) = lim
α→0

ΔEbp(t)
α2 . (A5)

For harmonic oscillator bath, Eq. (A5) can be converted to the dis-
sipation density by combining it with the definition of the BSD
[Eq. (5)],

E(ωbt, t) = lim
sbp→0

J(ωbp)

h̵ω2
bpsbp

ΔEbp(t), (A6)

where ωbt = ωbp is the frequency of the target and probe modes and
sbp is the H–R factor of the probe mode,

sbp =
ωbpd2

bp

2h̵
, (A7)

with the corresponding PES displacement dbp. Equation (A6) states
that sbp must be sufficiently small to mimic the sbp → 0 limit. In prac-
tice, however, reducing the value of sbp too much negatively affects
the accuracy of the calculation due to the limited machine preci-
sion. Therefore, it is required to seek the balance between these two
aspects by checking the convergence of the calculation with different
values of sbp.

As a final remark, we note that the applicability of the approach
illustrated in this Appendix is not limited to HEOM and is com-
patible with any numerically exact simulation methods for open
quantum system dynamics,12,26,53–56 whenever it is not possible
to construct the extended subsystem by directly using the target
mode.

APPENDIX B: DISCRETIZATION OF THE BATH
SPECTRAL DENSITIES

In this Appendix, we elaborate on how the BSDs are discretized
for the MQME and MQME-D simulations. For the Drude–Lorentz
spectral density [Eq. (7)], we follow Ref. 19, where the individual
bath modes are placed at the frequencies,

ωj =
j 2

N2 ωmax, j = 1, 2, . . . , N, (B1)

with N being the total number of bath modes in a spectral den-
sity and ωmax being the upper limit of the frequency. Equation (B1)
makes the bath modes more densely packed in the low-frequency
region to reflect the increase in the reorganization energy density
JDL(ω)/ω therein. If we now define a function fDL(ω), which con-
nects the discretized [Eq. (5)] and continuous [Eq. (7)] forms of the
BSD via

ω3
jd

2
j

2
=

JDL(ωj)

fDL(ωj)
, (B2)

its explicit expression becomes

fDL(ω) =
N

2
√

ωωmax
, (B3)

which renders the reorganization energies of the individual bath
modes as

λj =
ω2

jd
2
j

2
=

4Λ
jπ

ωcωj

ω2
j + ω2

c
. (B4)

Meanwhile, the reorganization energy arising from the correspond-
ing region of the continuous spectral density is

∫

(ω j+ω j+1)/2

(ω j−1+ω j)/2

JDL(ω)
ω

dω

≈
JDL(ωj)

ωj
[(

ωj + ωj+1

2
) − (

ωj−1 + ωj

2
)]

=
4Λ
jπ

ωcωj

ω2
j + ω2

c
, (B5)

J. Chem. Phys. 160, 214112 (2024); doi: 10.1063/5.0202862 160, 214112-13

Published under an exclusive license by AIP Publishing

 07 June 2024 15:42:33

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

where the approximation becomes exact at the limit of N →∞. The
equality between the last expressions of Eqs. (B4) and (B5) indicates
the validity of fDL(ω) defined by Eq. (B3).

For the Brownian oscillator [Eq. (8)], we set ω0 < ωmax and
calculate the frequency Ω, where the reorganization energy density
JBO/ω is maximized within [0, ωmax], which is

Ω =
√

max [0, ω2
0 − 2γ2

]. (B6)

If Ω = 0, we can apply the same scheme as the Drude–Lorentz BSD
[Eqs. (B1)–(B3)] with JDL(ω) in Eq. (B2) replaced by JBO(ω). Oth-
erwise, we divide the frequency domain into two separate windows,
[0, Ω] and (Ω, ωmax], and describe each region by using half of the
bath modes under separate discretization schemes. This is achieved
by setting the bath frequencies {ω1,j} ({ω2,j}) and the connecting
function fBO1(ω) [ fBO2(ω)] for the former (latter) window as

ω1,j = [1 − (1 −
2j
N
)

2
]Ω, fBO1(ω) =

N
√
(Ω − ω)Ω

,

j = 1, 2, . . . ,
N
2
− 1,

(B7a)

ω2,j = Ω +
4j 2

N2 (ωmax −Ω), fBO2(ω) =
N

√
(ω −Ω)(ωmax −Ω)

,

j = 1, 2, . . . ,
N
2

.
(B7b)

Equation (B7) lacks the case of ω = Ω where both fBO1(ω) and
fBO2(ω) diverge. Nevertheless, we can solve this issue by setting the
reorganization energy of the discrete bath mode at ω = Ω equal to
that calculated from the continuous BSD JBO(ω) [Eq. (8)] in the
frequency window [(Ω − ω1,N/2−1)/2, (ω2,1 −Ω)/2]. As a result, we
get

λω=Ω =
2Λ

πN2
ωmaxω2

0

γ(ω2
0 − γ2

)
. (B8)

The discretization scheme defined by Eqs. (B7) and (B8) makes
the bath modes more concentrated around ω = Ω compared to the
rest of the frequency domain. As a result, more emphasis is put
on the region that contributes larger to the overall subsystem–bath
coupling, as we did for JDL(ω).
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