
Learning Conductance: Gaussian Process Regression for Molecular
Electronics
Michael Deffner,* Marc Philipp Weise, Haitao Zhang, Maike Mücke, Jonny Proppe, Ignacio Franco,
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ABSTRACT: Experimental studies of charge transport through single molecules
often rely on break junction setups, where molecular junctions are repeatedly formed
and broken while measuring the conductance, leading to a statistical distribution of
conductance values. Modeling this experimental situation and the resulting
conductance histograms is challenging for theoretical methods, as computations
need to capture structural changes in experiments, including the statistics of junction
formation and rupture. This type of extensive structural sampling implies that even
when evaluating conductance from computationally efficient electronic structure
methods, which typically are of reduced accuracy, the evaluation of conductance
histograms is too expensive to be a routine task. Highly accurate quantum transport
computations are only computationally feasible for a few selected conformations and
thus necessarily ignore the rich conformational space probed in experiments. To
overcome these limitations, we investigate the potential of machine learning for
modeling conductance histograms, in particular by Gaussian process regression. We show that by selecting specific structural
parameters as features, Gaussian process regression can be used to efficiently predict the zero-bias conductance from molecular
structures, reducing the computational cost of simulating conductance histograms by an order of magnitude. This enables the
efficient calculation of conductance histograms even on the basis of computationally expensive first-principles approaches by
effectively reducing the number of necessary charge transport calculations, paving the way toward their routine evaluation.

1. INTRODUCTION
In molecular electronics, a single molecule bridges the gap
between two metallic electrodes. Understanding and exploiting
the unique electron transport properties of these molecular
junctions offer insights into fundamental physical processes such
as quantum interference1−3 or the behavior of molecules under
nonequilibrium conditions,4 help to improve the performance of
solar cells,5−10 and enable new approaches to designing
molecular-based devices such as sensors.11−13 Another intrigu-
ing idea is to exploit the spin degree of freedom of molecules to
overcome current challenges in the semiconductor industry,
such as heat dissipation.14−17 Studying these systems has
implications not only for molecules as electronic building
blocks18,19 but also for the fields of colloidal nanoparticles and
nanoparticle arrays,20−23 electrochemistry,24−27 or electro-
catalysis.28

After the first discussions dating back to the 1950s, the
proposal of a diode based on a single molecule demonstrated the
potential of the field of molecular electronics.29,30 With
experimental techniques such as scanning tunneling microscopy
or mechanically controlled break junction (MCBJ) setups,
measurements of the charge transport through single molecules,
connected by two macroscopic electrodes, have become widely
accessible.31 In break junction experiments,32,33 nanoscopic

electrodes are formed by pulling and eventually breaking a thin
gold wire or by crashing and retracting the STM tip into and
from the substrate. When performing this in a solution of
molecules of interest (or having molecules deposited on the
electrodes beforehand), these molecules can bridge the gap
between the two electrodes forming a molecular junction. Once
the junction is formed, a bias voltage is applied, and the current is
measured as the junction is elongated, leading to a so-called
conductance trace. Eventually, the junction breaks, and the
process is repeated 1000 times to gather a statistically significant
data set.
Each individual conductance trace is distinct, as the electrode

structures, molecule−electrode binding, and molecular con-
formation vary and fluctuate in and in between experi-
ments.34−36 Usually, these traces are reported in a conductance
histogram, from which the most probable conductance of the
molecule in the junction can be identified. These histograms are
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commonly broad, as the conductance of a molecular junction
can vary over several orders of magnitude. The shape of the
conductance histogram can potentially be used to identify
different configurations of the junction, to gain information
about the tunneling process, or to unveil cooperative
effects.37−41

The shape of the conductance histograms cannot be obtained
from calculations of a static junction in a minimum energy
conformation, as these calculations do not take into account the
conformational variability encountered in experiments. To
capture the histograms, it is necessary to perform molecular
dynamics (MD) simulations of junction formation and
evolution using techniques such as classical force fields,42−46

reactive force fields,47,48 or ab initio MD techniques.49−54 Even
for such simulations, complete sampling of the experimental
situation remains challenging.55 This is partly because of the
significant increase in the number of necessary conductance
calculations compared to the static case. In the coherent
tunneling regime, such electron transport calculations are
usually performed based on electronic structure calculations
such as the Landauer approach and the nonequilibrium Green’s
function formalism.56−59 Thus, to obtain meaningful histo-
grams, it is necessary to perform conductance calculations for
several hundred to a thousand snapshots and for relatively large
systems, since parts of the gold electrodes have to be included in
the calculations in order to correctly describe their interactions
with the molecules under study. This comes with a significant
computational cost, so, for simulating histograms, one usually
has to rely on cheaper and simpler methods of limited accuracy
to obtain information about the electron transport, such as
(extended) Hückel-based calculations.48,60

Recently, machine learning (ML) approaches have become an
alternative to traditional quantum chemical calculations, which
can bring down computational cost by an order of magnitude or
more.61−70 Examples involve the generation of force fields for
MD simulations,71−76 prediction of charge transfer inte-
grals,77,78 or even trying to directly solve the Schrödinger
equation.79 While artificial neural networks are attractive in
situations where large data sets are available for training [On the
flipside, this implies that artifical neural networks typically also
require more data points for training. The detailed required
number of training data depends on the construction of the
neural network, in particular its depth.80], other methods such as
Gaussian process regression (GPR) or kernel ridge regression
(KRR) can cope with smaller data sets62 and have been applied
successfully to predict, e.g., interatomic potentials.81 Others
have shown the applicability of GPR for studies of molecular
vibrations82,83 or molecular structure optimization84−86 and the
improvement of dispersion corrections,87 and some of us have
lately applied GPR to predict exchange spin couplings in
transition metal complexes.88 A valuable feature of GPR is the
straightforward accessibility of expected errors on the
predictions.
The efficiency of ML methods can be exploited in two ways:

To accelerate the computation of conductance histograms with
a given (low-accuracy) conductance method or to enable the
construction of conductance histograms with more sophisti-
cated (yet more expensive) approaches to conductance, which
so far were reserved for calculations on individual molecular
junction structures (such as GW89). Here, we focus on the first
aspect, since we need the full “traditionally evaluated”
conductance histograms as references. Related ML approaches
have recently been proposed, which focus on transport through

model systems (e.g., representing desoxyribonucleic acid
(DNA)90−92 or atomic wires93). The latter demonstrates the
application of a neural network in combination with the smooth
overlap of atomic positions (SOAP)94 descriptor (among
others) to encode the structural information for the prediction
of conductance values for atomic wires. Such systems are simpler
than molecular ones, as the conductance is a multiple of the

quantum of conductance , with e as the elementary
charge and h as the Planck constant. Topolnicki et al.95 employ a
neural network to predict the conductance of a biphenyl dithiol
junction. Their neural network is trained with structural
parameters as well as with parameters obtained from electronic
structure calculations, with its performance demonstrated by
predicting the change of conductance histograms with temper-
ature.
We show that Gaussian process regression can predict the

transport properties of a molecular junction and can be used to
reliably construct conductance histograms from simulated break
junction experiments, yielding a speed-up by 1 order of
magnitude. With problem-tailored descriptors, advantages in
speed and performance can be achieved compared with selected
general-purpose descriptors. We aim for a method-agnostic
approach concerning the MD and transport calculations, which
can be applied to small and medium sized data sets, including
situations in which the generation of large data sets is
computationally unfeasible. While we chose reactive force
fields96,97 and density functional tight−binding (DFTB)98

calculations for our simulations, any method which performs
the structural sampling of a molecular junction and provides
transport properties for selected snapshots may provide the basis
for our machine learning approach. MD simulations employing
reactive force fields have been successfully used in the past to
compute trajectories of MCBJ experiments for the same
molecule used here or similar systems.47,48,99 Since electronic
structure calculations are the most expensive component in the
construction of the conductance histograms, we aim to predict
conductance solely on structural information.

2. SIMULATION OF BREAK JUNCTION EXPERIMENTS
To simulate the break junction setup, 296 gold atoms are
arranged in 24 layers along the fcc(111) direction to form a gold
wire. Ten octanedimethylsulfide (C8H16(SMe)2) molecules are
added randomly close to the wire. This system is well
characterized by previous experimental and theoretical stud-
ies47,100 and poses a challenge for machine learning approaches,
since a huge variety of conformations or electrode-molecule
binding configuration can be encountered. Since we try to
capture the full evolution of the junction from the initial forming
to rupture, we can sample situations where, e.g., multiple
molecules form a junction, which is not included in MD
simulations based on already-formedmolecular junctions. Using
reactive force fields as implemented in LAMMPS,96,97 an initial
MD simulation is then performed, so that the molecules can
adsorb onto the gold wire. Reactive Force fields are required to
capture bond breaking and formation, processes inherent to the
experiment. Molecules which desorb from the wire are removed
from the simulation box.
To simulate the break-junction experiment, three MD

simulations are performed while pulling on one end of the
gold wire with a speed of 1 × 10−4 Å fs−1, and three more are
performed with a speed of 5 × 10−5 Å fs−1, yielding a total
simulation time of 2.4 ns. Structures were dumped every 500 fs
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resulting in a total of 9600 structures, for which transport
calculations were performed.
This extensive structural sampling limits the choice of

methods for evaluating conductance. This is why we employ
nonself-consistent DFTB calculations combined with a
Landauer coherent tunneling approach in a Green’s function
formulation, as implemented in DFTB+.98 A single MD step
takes around 14.5 ms, while evaluating the conductance for a
given structure requires 13−14 s on a single core of an Intel
Xeon Silver 4110 CPU with a clock speed of 2.10 GHz. The
resulting conductance traces and histograms are shown in Figure
1. They show a most probable conductance of around 10−5 G0,
which is in line with previous calculations and experiments.47,100

Several key properties of MCBJ experiments are captured in
our simulations. The stochastic nature of successful junction
formation is shown, as two out of our six trajectories do not
result in a stable junction (red and blue lines in Figure 1). They
both show a small peak between 10−6 and 10−7 G0, which stems
from a short period of time when a molecule is between the two
electrodes but not properly bound to the electrodes via the
anchoring group. One particular trajectory shows a distinct peak
at high conductance values between 10−2 to 10−3 G0, which is
caused by two molecules bridging the junction at the same time.

This was attributed before to a distinct shape of a conductance
histogram,38 but in our case, it leads to two separable peaks. The
elongation at which the molecular junction breaks depends on
how the gold atoms on the electrode tip are rearranged while
pulling and occurs after an elongation of 18 to 25 Å in our
simulations. For the successfully created junctions, low-
conductance shoulders (10−6 to 10−7 G0) can be observed in
the histogram. In these shoulders, gauche defects in the
molecules decrease the conductance of the system, compared
to structures without such effects. These molecules rearrange to
anticonformation, as they are further elongated.
Even though our approach performs structural sampling of a

break junction experiment, it does not take into account that
experiments average conductance over microseconds, averaging
over all molecular conformations accessible at every point
during the elongation. This aspect and its effects on the shape of
the resulting conductance histograms have been studied by Liet
al.47,48 Importantly, the methods introduced below can also be
used when time-averaged conductances are employed to
construct histograms.

Figure 1. a) Individual conductance traces and b) corresponding stacked histograms for six differentMD trajectories. Some peaks with higher or lower
conductance than the molecules’ main conductance peak are marked with arrows. In two simulations (red and blue curves), no stable junction was
formed. c)-d) Representative snapshots of the MD trajectories are shown, representing c) the intact wire, d) a successfully formed molecular junction,
and e) a broken junction. The corresponding areas are marked by colored bars at the axes. The inset shows a zoom-in to demonstrate the effect of the
gold wire adjusting to the increasing tension by structural rearrangements to release stress.

Table 1. Structural Parameters for Constructing Custom Descriptors for Molecular Junctions with SMe2 Anchoring Groups
a

name definition dimension

junction length size of the system in transport direction, measured by the distance between the outermost atoms 1
intramolecular
S−S distances

distances between the terminal sulfur atoms of each molecule N

Au−S distance distance of each sulfur atom to the closest gold atom 2N
sulfur
coordination

number of gold atoms in the vicinity of each sulfur atom within a radius of 3 Å 2N

S−S distances distances between all sulfur atoms 2N2−N
density histogram histogram of the atom types along the transport direction: Histograms can differ in bin size, smoothing (denoted by

“(smoothed)”), or whether hydrogen atoms were included (“+H”) (see the SI for more details).
∼90−160
(mainly
depending on
bin size)

aN is the number of molecules included in the MD simulation, in our case 7. The size of the feature vector for the density histogram depends on
the number of bins per atom and on the included atom types.
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3. MOLECULAR DESCRIPTORS FOR CHARGE
TRANSPORT PROPERTIES

The molecular Cartesian coordinates obtained from the MD
simulations have to be converted into a representation suited for
a machine learning algorithm.94,101−105 These representations
are called descriptors, as they translate structural information
into a so-called feature space. In that way, each molecular
structure is represented by a feature vector, with the size of the
vector depending on the chosen descriptor.
For different descriptors, the size of the resulting feature

vector, the performance for different problems, and the concepts
underlying their construction can differ drastically, as discussed
in a recent review.105 To predict the conductance for molecular
junctions, we use established and broadly applicable approaches
like the ACSF,106 SOAP,94 or F2B107 descriptors and construct
new, custom descriptors, which aim at establishing structure−
property relationships based on our understanding of charge
transport through shortmolecules. As shown in a previous study,
the usage of such problem-tailored descriptors can achieve
similar or even better performance than established descriptors
at a decreased computational cost.88

As ingredients for our custom descriptors, we explore different
structural parameters, as detailed in Table 1. The chosen
parameters represent information about the local chemical
environment of the anchoring groups of the molecules (such as
the distance to the closest gold atom), the molecular
conformation (by, e.g., measuring the molecular end-to-end
distance), and global properties which represent the state of the
junction, such as the total length of the system or a histogram of
the occurrences of the different atom types along the transport-
direction. This histogram counts the number of atoms of a
specific type in bins, representing an approximation of an atomic
density. In that way, a continuous density of gold atoms
represents an intact gold wire, while a gap in the gold density
combined with a certain density of carbon atoms in that gap
hints at a successfully formed molecular junction (see Figure S3
for an example). The different parameters can be combined to
find the best performing ML model while retaining a small
feature vector.
The methyl sulfide anchoring groups we are focusing on are

frequently used in molecular break junction experiments. For
many other popular anchoring groups, such as thiolates and
amines, defining an analogous descriptor (or analogous parts of
a descriptor) would be straightforward (e.g., replacing the S−S
distance by the N−N distance). While we would expect such
descriptors to perform similarly well as observed here (see the
discussion below), the transferability of our approach to building
descriptors would need to be tested in future work. Also, for
other (less frequently used) anchoring groups such as
fullerenes108,109 or carbon-based platforms,110−113 defining an
analogous descriptor would be less simple.
The dimensions feature vectors generated by descriptors like

SOAP or F2B depending on the chosen settings and types of
elements included, not on the system size or number of
molecules and electrode atoms. Therefore, they can be used to
compare different systems or system sizes. By contrast, the
dimension of most of our descriptors scales with the number of
molecules (as this relates to the number of anchoring groups/
sulfur atoms) included in the simulation, except for the density
histogram-based approach. Since we aim to predict the
conductance histogram based on MD simulations for a specific

molecular junction, this does not pose any limits to our
approach.
The dimension of the feature vector generated by the SOAP

descriptor is 2640 for our system, significantly larger than all of
the custom descriptors (only surpassed by ACSF with 13328
feature dimensions). The F2B descriptors with 150 dimensions
are comparable in size to the custom descriptors.

4. EVALUATING REGRESSION MODELS
We focus on Gaussian process regression (GPR) for predicting
the conductance for the molecular junction and use Ridge
Regression (RR) as a (regularized) linear baseline model against
which we compareGPR performance. Excellent introductions to
these methods can be found, e.g., in refs 61, 63, 81, 87, and 114.
GPR performs predictions based on similarities between the
feature vectors x1 and x2 (see Section 3) of different data points.
A Gaussian Process represents a probability distribution of
possible functions f which fit to a set of given data points, thus
providing the opportunity to calculate the mean

(1)

and associated variance

(2)

for a prediction. The quantity x* represents the feature vector for
a molecular structure for which a prediction shall be made, k(x*,
xi) is the kernel (or covariance function or similarity measure)
with respect to the i-th structure of the training set (our of N
training data points), and αi is the corresponding weight. In turn,
σn
2 denotes the noise variance, controlling how closely the

predicted function goes through the training data points. We set
σn
2 to 10−10 here, implying our functions go almost directly

through the training data. The third term in the variance satisfies
the condition . The task of
regression is to determine {αi} and {βi*}. These calculations are
not directly performed on the feature vectors but by a kernel,
which provides a measure to obtain similarities between data
points in a higher dimensional space, into which the features are
mapped by the kernel. Ridge Regression on the other hand is a
linear model which includes regularization to be able deal with,
e.g., highly correlated predictor variables.
Predictions are made employing the SOAP, ACSF, and F2B

descriptors and different combinations of the ingredients for our
custom descriptors. The coefficient of determination (R2) as
well as the mean absolute error (MAE) are used as measures for
the performance of our approach, while plots for the root-mean-
squared error (RMSE) and the mean absolute percentage error
(MAPE) as well as a discussion of error measures for machine
learning can be found in the SI. As a target for the learning
algorithm, we use the log-conductance instead of the
conductance, since otherwise the target would span several
orders of magnitude, artificially increasing R2 and decreasing the
MAE and RMSE.
As a kernel-based method, the performance of GPR can

significantly depend on the choice of the kernel.86,115 We found
the Mateŕn kernel,116
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(3)

to deliver a stable and good performance for all our descriptors
(see the SI). The hyperparameters σf2 (signal variance) and l
(length scale) are optimized by maximizing the log-marginal-
likelihood as implemented in SKLEARN.117

We evaluate the performance of our approach by splitting our
data set into 10% training and 90% test set. We choose this
splitting to be in line with the use case we have in mind for our
approach. Twenty-five different splits (sometimes called
“random permutations cross-validation” or “shuffle & split”)
are performed, and the resulting error metrics are averaged over
the models trained on these 25 different splits. The results are
summarized in Figure 2.
These evaluations are performed for unscaled features as well

as for data sets, for which each feature dimension is standardized
(i.e., shifted to a mean of zero and divided by its standard
deviation). Note that we measure our targets, i.e., conductance
values, in units of the quantum of conductance (G0) and then
report it on a log scale. The values are negative since for
molecular junctions the conductance is typically a small fraction
of G0. Learning the conductance directly would retain its
positivity but only very poorly take into account the fact that it
spans several orders of magnitude and, accordingly, results in a
poor performance of any ML model.
For all descriptors, the GPR approach outperforms the linear

RR model. Very simple custom descriptors with few feature
dimensions perform similar or even better than established
descriptors such as SOAP. For a training set size of 10%, SOAP
reaches an MAE of 0.45 log(G/G0), while simply taking the
distances between all sulfur atoms (d(S−S)) yields an MAE of
0.34 log(G/G0). The performance can be improved by
combining different ingredients for the custom descriptors,

such as adding the total length to the distance between each
sulfur atom and its closest gold atom, d(S−Au): In fact, using
only d(S−Au) yields an MAE of 1.4 log(G/G0), while
combining this measure with the length of the whole system
(in order to capture the elongation of the break junction) further
decreases the error to 0.35 log(G/G0). Since the combination of
different structural parameters improves the performance of
GPR, this represents a modular approach where structural
information can be combined to achieve the desired perform-
ance.
For a more detailed look, we plot the ML-predicted vs the

target conductance in Figure 3 for selected descriptors. All
chosen descriptors show the correlation between the original
and calculated conductance, but differences become especially
evident when comparing the RMSE: For the SOAP as well as for
the F2B descriptor, the predicted conductance deviates slightly
more stronger from the target for structures where the junction
is nearly broken or the molecule is detaching . The
custom descriptors employing the distances between sulfur
atoms (d(S−S)) and d(S−S) combined the distances between
the sulfur atoms and the closest gold atom (d(S−Au)), and the
length of the total systems (length) shows correlation plots very
similar to each other (Figure 3), with only slight differences in
the MAE and RMSE and a clearly improved performance
compared to SOAP and F2B.
The conductance histograms in Figure 3 constructed from the

predictions all resemble the histograms constructed from the
targets. Building a histogram involves intrinsic averaging, since
different conductance values are grouped together in bins. This
affects the final shape of the histogram and clouds minor errors,
so that the resulting histograms all show a satisfying agreement
with the target.
As discussed above, a significant difference between the

descriptors is the size of the feature vector, which affects the

Figure 2. Comparison of the performance of the different descriptors (scaled and unscaled), as well as Ridge Regression (RR) and Gaussian Process
Regression (GPR) in terms of a) the mean absolute error and b) coefficient of correlation. A small training set size of 10% was used. The mean
performance and standard deviation were obtained from 25 repetitions of shuf f le and split. The standard deviation is usually very small, making it only
visible for some cases. Colored bars between plots aim to be a guide to the eye for the composition of the different custom descriptors, e.g. the red bar
denotes the d(S−Au) descriptors, and the red and the long magenta bars show the usage of the d(S−Au) descriptors together with the total length.
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fitting times of the GPR. More precisely, it affects the evaluation
of the norm inside the kernel (eq 3), as it scales linearly with the
length of the feature vector. However, it also affects the number
of evaluations during the hyperparameter optimization in an
unpredictable manner. While the custom and F2B descriptors
represent vectors of similar size (size of the feature vector: 100−
150), and the resulting computational time for fitting the GPR
with a training set size of 10% is usually around 2min on an Intel
Xeon Silver 4110 CPU with a clock speed of 2.10 GHz, fitting
times of the GPR for the SOAP descriptor (size of the feature
vector: 2640) are greatly increased by a factor of up to six.
To see whether the number of feature dimensions for, e.g., the

SOAP descriptor can be reduced to a similar number as for the
other descriptors, we perform Principal Component Analysis
(PCA) and evaluate the performance of our approach for
different numbers of Principal Components, with a training set
size of 10%. Figure 4a) shows the MAE and the explained
variance for the SOAP, the F2B, the d(S−S), length+d(S−
S)+d(S−Au), and the density (smoothed) [density histogram
smoothed by a moving average filter] descriptors for an
increasing number of PCA dimensions. (The “explained
variance” reflects how much of the total variance in the data
set is explained by the selected number of PCA dimensions.)
When the feature dimensions are reduced via PCA to 20 (for

SOAP), 10 (for F2B), or 5 (for our custom descriptors), the
performance of GPR becomes comparable to the performance
of the full feature vectors. In that way, the differences between
the descriptors with respect to computational cost become
marginal. It is interesting to note how different our two custom
descriptors perform: Even though slightly worse in the final
performance, only three PCA dimensions are enough for the
density-based descriptor to reach the same MAE as for the full
feature vector, while for the distance-based one, we need around
five dimensions. The PCA of the distance−based descriptor also

Figure 3. a) Correlation between targets and predicted conductances and b) corresponding conductance histograms. Data is provided for the SOAP
and F2B descriptors and for three selected custom descriptors with good performance (unscaled features). The training set size is 10% throughout. The
MAE and RMSE in the upper plots are given for the individual predictions shown here and thus can deviate from the data of Figure 2, which were
obtained by shuffle and split. The predicted conductance histograms in the lower row include data points from the training set, as this resembles the
way the conductance histograms would be created in an actual use case.

Figure 4. a) GPR performance (as measured by the MAE) depending
on the number of dimensions of the Principal Component Analysis for
the SOAP, F2B, d(S−S), length+d(S−S)+d(S−Au), and the density
(smoothed) descriptors. The dashed-dotted horizontal lines show the
performance for the original features. The dashed lines give the
explained variance (second y-axis). For F2B and the custom descriptors,
only 10 PCA dimensions are sufficient to reach a similar performance as
for the original features. The SOAP descriptor requires more
dimensions (≥20), which is still significantly less than the original
dimension of the SOAP feature vector (2640). The explained variance
does not directly correlate with how close the performance is to the final
performance/performance using the original feature vector. b)
Learning curves for the same descriptors. The shape of the curves is
similar for all descriptors; the differences in the performance basically
manifest as a shift on the y-axis. As also shown in Figure 3, a training set
size of 10% is reasonable in our case. Increasing the size of the training
set gains only minor improvements on the predictions but comes at a
higher computational cost. A training set size of 10% equals a reduction
of necessary electronic structure computations to 10%, which are the
bottleneck for the calculation of our conductance histograms. Learning
curves for PCA-reduced versions of the descriptors are shown in the SI.
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explains less variance than the other descriptors when only few
dimensions are used. Thus, significant feature reduction by PCA
is possible here, generating predictions with comparable errors
as the original features.
Finally, to show how the predictions improve with increasing

training set size, we plot learning curves for selected descriptors.
The plots in Figure 4b) clearly demonstrate that, as expected,
the performance improves by including more data points into
the training set. However, training sets bigger than 10% yield
only minor improvement while increasing computational cost,
as the fitting time for GPR scales cubically with the training set
size (neglecting the unpredictable timing regarding hyper-
parameter optimization). Significant differences between the
learning curves for the original or PCA-reduced descriptors
could not be observed.

5. SUMMARY AND OUTLOOK
This study explores the application of Gaussian Process
Regression (GPR) for the calculation of conductance histo-
grams based on molecular dynamics simulations of molecular
junctions. We show that we can construct such histograms by
interpolating between quantum chemical transport calculations
for only around 10% of the MD snapshots via GPR. Calculation
of the conductance for the whole trajectory takes roughly 35 h
on a single core on our CPUs, while fitting the GPR and
predicting the conductance for the remaining data points in
conjunction with our custom descriptors are performed within
minutes. Given the comparatively small cost of the machine
learning, this finally results in a speed-up by 1 order of
magnitude. Predictions based on established molecular
descriptors such as SOAP and F2B yield mean absolute errors
of about 0.45 log(G/G0) and 0.42 log(G/G0), respectively, but
are narrowly outperformed by custom descriptors in terms of
speed and performance (down to 0.34 log(G/G0)). These
custom descriptors aim to capture structural information, which
we think are determining the essentials of the conductance of the
molecular junction. Reducing the number of feature dimensions
via Principal Component Analysis can be used to reduce the
feature vector such that the differences between the different
descriptors are negligible in terms of computational efficiency.
Our approach is method-agnostic, so every combination of a

(hopefully cheap) method to perform structural sampling and a
(potentially expensive) way to calculate electron transport can
benefit and be used to construct conductance histograms based
on a multitude of structures. One potential limitation is the
restriction to systems and conditions in which coherent
tunneling is the dominant charge transport mechanism in our
target data. This is a good assumption for the system we are
studying here. As molecular bridges get longer, molecular orbital
gaps get smaller, or temperatures get higher, incoherent
(thermally activated) hopping may become dominant.59,118,119

For future work, it would be interesting to explore whether a
similar ML model can also be applied to such hopping-
dominated scenarios as important, e.g., in DNA (The good
performance of a descriptor based on base pair sequences,
combined with an artificial neural network,91 suggests that these
systems are indeed very amenable to ML approaches.).
Furthermore, irrespective of the transport mechanism, intelli-
gent schemes to cluster the data points according to different
structure types of interest (such as intact wire, molecule-bridged,
broken wire) may push the boundaries for this approach by
reducing the required size of the training set even more.

6. METHODS
Molecular Dynamics Simulations. For all MD simula-

tions, LAMMPS with reactive force fields (ReaxFF) was
employed.96,97 The force field parameters for gold, sulfur,
carbon, and hydrogen by Bae and Aikens120 were used. The
simulation time step was 0.5 fs, snapshots were generated every
500 steps, and the temperature was set to 300 K using an NVT
ensemble. Even though all simulations finally stem from the
same starting structure, different seeds for the velocities and an
equilibration period before the pulling simulation ensure
divergence of the structures. The outermost six layers were
frozen in all simulations, due to the requirements of the
subsequent transport calculations.
Electron Transport Calculations.Due to the high number

of necessary transport calculations, nonself-consistent electron
transport calculations using DFTB+98 were performed. 386
atoms are included in the central region, and the remaining gold
atoms are distributed to the electrodes in six layers each. The
auorg-1-1 parameter set was used.121 After the calculation
of the transmission function in a nonself-consistent approach
and using the wide band approximation, the zero-bias
conductance was evaluated at a Fermi energy of −5 eV by G =
G0T(EF).
Feature Generation/Descriptor. The SOAP and ACSF

descriptors were used as implemented in the DScribe
library.122 For SOAP, the Rcut, nmax, and lmax parameters
were optimized, and further information can be found in the SI.
ACSF was employed using the default settings, and the
symmetry functions were evaluated at the positions of the
carbon and sulfur atoms. The custom and F2B descriptors were
created using custom python scripts.
Gaussian Process Regression. For the training of Ridge

and Gaussian Process Regression as well as the Kernel functions,
the SKLEARN117 library was employed. The optimization of the
hyperparameters is performed using the LM-BFGS algorithm, as
implemented in SKLEARN. This optimization was performed 40
times (using the gpr_optimizer_restarts parameter)
to make sure the log-marginal likelihood is maximized globally
and the algorithm is not stuck in a local minima.
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