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The quantum-to-classical transition of a symmetry-breaking coherent control scenario is computationally
demonstrated in an optical lattice arrangement. Control is shown to survive in the classical limit and, for small
effective �, to be comparable in magnitude to quantum control. Moderate decoherence is seen to eliminate
structure from the momentum space distribution, but not to cause loss of control. The proposed scenario is
designed so as to be demonstrable experimentally in a moving or shaken one-dimensional optical lattice.
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I. INTRODUCTION

Coherent control of molecular processes arises from the
interference between multiple pathways to the same final
state �1,2�, typically induced via laser irradiation. Recently,
theoretical studies have shown that analogous processes can
arise in certain scenarios in classical mechanics �3,4� and that
such control can persist in the classical limit �5�. Consider-
ations based on nonlinear response and on interference
viewed via the Heisenberg representation �6,7� show that
when control survives in the classical limit it does so because
the interference terms contributing to the quantum dynamics
are externally driven, i.e., proportional to the amplitude of
the external laser fields. In this sense, the quantum interfer-
ence contributions differ qualitatively from those in, for ex-
ample, the double slit experiment.

The possibility of a nonzero classical limit to the quantum
interference phenomena responsible for quantum control is
significant and in need of careful exploration. In this paper,
we computationally examine the approach to the classical
control limit in a proposed optical lattice scenario expected
to be doable experimentally. The design allows one to ex-
plore both control as an effective �→0 as well as the com-
parative effect of decoherence on quantum control. The com-
putational results below also emphasize differences in
quantum response in the domain of classically regular vs
chaotic dynamics.

As a particular control scenario, we focus on symmetry
breaking in which a spatially symmetric system is irradiated
with a laser field with frequency components � and 2�. Such
fields generate phase-controllable net dipoles or currents
without introducing a bias in the potential �see, e.g., Refs.
�1,3,5,8–10��. Our proposed system is a moving or shaken
one-dimensional optical lattice �11,12�, which �as shown be-
low�, through a gauge transformation, can be viewed as a
stationary spatially symmetric periodic potential interacting
with a space homogeneous electric field. We consider both
the �→0 limit as well as the effect of decoherence, the latter

by adding controlled amounts of decoherence through ran-
dom momentum jumps induced by spontaneous emission.
This allows an exploration of the effect of decoherence on a
control scenario that can persist in the classical limit and,
hence, in which matter interference plays a different role
than traditionally envisioned.

Recently, experiments on Bose-Einstein condensates
�BEC� in shaken optical lattices demonstrated a reversible
superfluid-Mott insulator phase transition by changing the
strength of the driving �13�. Although we do not require co-
herent multiparticle effects present in BECs, the coherent
initial state provided by BECs would be necessary for ex-
perimental observation of the quantum-classical transition
discussed below.

In this paper below, Sec. II introduces the details of the
shaken optical lattice and discusses its relationship to the
traditional dipole-field interaction scenario. Section III pro-
vides numerical results, showing details of the control in the
quantum regime, and its approach to the classical limit. The
significance of these results to an understanding of coherent
control is discussed in the summary provided in Sec. IV.

II. FORMAL CONSIDERATIONS

A. Physical system

Consider an atom interacting with a longitudinally shaken
one-dimensional optical lattice. The associated Hamiltonian
is

H =
P2

2m
+ Uf1�t�cos�2kx − �f2�t�� , �1�

where P is the atom momentum and m is its mass. The term
U is the well depth created by the optical lattice with wave
vector k. For an off-resonant interaction U=�I0 /4 for where
� is the atomic polarizability and I0 is the peak lattice inten-
sity. The pulse shapes f1�t� and f2�t� describe the temporal
envelope and spatial shaking motion of the lattice, respec-
tively, with � controlling the strength of the shaking. Such
spatial motion of the lattice is experimentally achieved by
applying a phase modulation to one of the counterpropagat-
ing beams that generate the optical potential �11�. Below we
consider two-frequency driving fields with frequencies � and
2�,
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f2�t� = cos��t + �rel� + s cos�2�t� , �2�

where s controls the ratio of field amplitudes �s=1 in all
calculations below� and �rel is the relative phase between the
driving fields. The atomic wave function ��x , t� satisfies the
Schrödinger equation i����x , t� /�t=H�t���x , t�. Some fea-
tures of the quantum dynamics of this system have been
reported previously �14�.

B. Reduced units and effective �

For the purpose of investigating the classical limit, we
would like to take �→0. Although � is a fixed constant in
nature, an effective Planck’s constant, which can be varied
by changing the lattice parameters, can be defined by casting
the problem in reduced units. For instance, by rescaling the
coordinates as

� = 2kx , �3a�

P� = P�2k/�m� , �3b�

� = �t , �3c�

and defining

U = �2k/��2�U/m� , �4�

the Hamiltonian becomes

H =
P�

2

2
+ Uf1���cos�� − �f2���� , �5�

where H= �2k /��2H /m. The classical equations of motion
are then

�̇ =
�H
�P�

= P�, �6a�

Ṗ� = −
�H
��

= Uf1���sin�� − �f2���� . �6b�

Note that, apart from the pulse shapes f1��� and f2���, the
classical dynamics is governed by two remaining free param-
eters � and U.

The associated quantum-mechanical equations allow for
the introduction of an effective Planck’s constant �e. Specifi-
cally, in the reduced units the Schrödinger equation becomes

i�e
����,��

��
= �−

�e
2

2

�2

��2 + Uf1���cos�� − �f2��������,�� ,

�7�

where

�e = ��2k�2/��m� �8�

is the effective � in the reduced units. The term �e can be
tuned independently of U and � by varying the lattice param-
eters k and �. Hence, the �e→0 limit can, in principle, be
accessed experimentally. Analogous experimental control
over the effective Planck’s constant has been previously re-

ported �15� in the context of cold cesium atoms in an
amplitude-modulated standing wave of light.

C. Equivalence with dipole driving

This setup is related to a traditional coherent control sce-
nario with dipole interaction 	E0�t� through a gauge trans-
formation. Specifically, consider a moving reference frame
defined by the coordinate transformation

z = � − �f2��� �9�

and employ the gauge transformation

���z,�� = eizA���/�e��z,�� , �10�

where

A��� = − � ḟ2��� . �11�

The Schrödinger equation takes the form i�e�����z ,��
=H�������z ,��, where

H���� =
Pz

2

2
+ Uf1���cos�z� + zE��� , �12�

Pz= ż+� ḟ2��� is the momentum conjugate to z, and

E��� = � f̈2��� . �13�

Hence, the optical lattice scenario is directly related to the
traditional control scenario; the system represents either an
atom in a shaking optical lattice �H gauge� or a charged atom
in a static and spatially symmetrical optical lattice that is
driven by an oscillating electric field E��� �H� gauge�. All
numerical calculations presented below refer to the H gauge
as this is the scenario more easily accessible to optical lattice
experiments. In the results reported below, the final distribu-
tions of the photoinduced momentum are taken after the field
f2��� is turned off. In this regime, the momentum in both
gauges coincides.

D. Decoherence

In addition to the �e dependence of the isolated system
dynamics, we also consider the effect of decoherence. Deco-
herence associated with the loss of quantum information of
the system due to interaction with the environment is a phe-
nomenon often invoked as the cause of loss of quantum con-
trol. In order to study the effects of decoherence in an ex-
perimentally accessible way, we include spontaneous
emission �scattering� into our model. We use a simple model
of spontaneous emission, previously used for studies of de-
coherence in optical lattice implementations of the delta
kicked rotors �16�. This model introduces random momen-
tum jumps, on the order of the lattice photon momentum,
into the wave-function dynamics. The probability of a jump
occurring is uniformly distributed in time. The dynamics
with decoherence is calculated using a Monte Carlo wave-
function method: the Schrödinger equation �7� is solved
many times for different realizations of the random momen-
tum shifts, and all observables are averaged over these dif-
ferent realizations. Although spontaneous emission is a quan-
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tum effect, the present model consisting of random
momentum recoils can be easily applied to the classical mod-
els. Experimentally, the rate of spontaneous emission, and
hence the rate of the momentum jumps, can be controlled by
tuning the optical lattice closer or farther from an atomic
resonance. Alternatively, an additional laser field can be
added, whose sole purpose is to couple the system to a sepa-
rate decaying level �17�.

Note that this implementation of decoherence through
noise requires averaging over an ensemble of realizations
each one evolving unitarily. The corresponding ensemble of
unitary evolutions represents a nonunitary evolution of the
density matrix of the system. By contrast, “true” decoher-
ence occurs for a single-quantum system that becomes en-
tangled with environmental degrees of freedom. The unitary
deterministic evolution of the system plus environment leads
to a nonunitary evolution of the reduced density matrix of
the system. This conceptual difference between noise and
true decoherence is known �18,19�. However, unless this dif-
ference is probed explicitly, the noise model is expected to
mimic very well the effects of decoherence since they both
effectively lead to a damping of spatial coherences that
causes interference patterns to decay �18�, which is the effect
that we are interested in here.

III. COMPUTATIONAL RESULTS

A. Simulation parameters

In order to computationally explore the control dynamics,
we need to select a specific pulse shape and specify the ini-
tial conditions. The envelope f1��� is chosen to be

f1��� = sin2� 
�

2��
� , �14�

where ��=100 is the full width at half maximum of the
pulse, and the total pulse duration is 2��. In addition to this
specific pulse shape, we introduce an “absolute” phase �abs
of the shaking motion of the lattice

H =
P�

2

2
+ Uf1���cos�� − �f2�� + �abs�� , �15�

where �abs determines the temporal shift between the enve-
lope f1��� and the underlying oscillations f2���. Computa-
tions below assume U=0.1 and �=1.

Classical and quantum results are compared below. In do-
ing so, all classical and quantum initial conditions are related
by

�0��� = 	Dc��� , �16�

where �0��� is the initial quantum wave function, Dc��� is
the distribution of initial classical trajectory positions, which
all have zero initial momentum P�=0. With this definition

�0���
2=Dc���, i.e., the initial quantum and classical spatial
probability distributions are the same. The initial quantum
states are chosen to be real and hence have zero initial mo-
mentum in the semiclassical sense 
�0���
eip�x�x, where
p�x�=0.

The classical dynamics of this system exhibits interesting
structure, motivating a detailed examination of several dif-
ferent initial states. Specifically, the classical system displays
chaotic dynamics for some regions of the initial phase space.
These chaotic regions lie on the crests of the optical lattice
and correspond to bifurcation instabilities �i.e., small pertur-
bations cause rapid oscillations between falling off the crest
to the left or right�. This suggests an examination of the
quantum/classical transition for regular and chaotic regions
of the phase space. To this end, we examine three initial
states: a spatially uniform state with

Dc
�u���� = 1/�2
� �17�

and two additional initial states localized in the regular
Dc

�r���� and chaotic Dc
�c���� regions, respectively,

Dc
�r���� = ��r� exp�− 7�� − 
�2� ,

Dc
�c���� = ��c� exp�− 7�2� ,

where ��r� and ��c� are the appropriate normalization factors
for the distributions. Note that although the initial quantum
state still has zero semiclassical �and average� momentum,
the presence of spatial localization implies nonzero momen-
tum in the quantum case through the uncertainty principle

�
P���e. Thus, some dynamical differences arising from
differences in the initial state are expected in the latter two
cases in the large �e limit.

B. Classical dynamics

Consider first control in the classical system. Results are
shown in the first column of Fig. 1, which shows the final
average momentum P�,avg �averaged over all initial trajecto-
ries� as a function of �rel and �abs. The top row presents
results for the uniform distribution, while the middle and
bottom plots correspond to the regular and chaotic distribu-
tions, respectively. The color scale used for all control maps
is shown in the bottom right of Fig. 1. Note that all plots
shown in the figure are normalized to their individual maxi-
mum values. For the quantitative measure of the range of
control, see Fig. 2 discussed below.

In all cases, regions of control, where nonzero average
momentum has been imparted to the atoms, are seen. This
nonzero momentum can be either positive �right moving at-
oms� or negative �left-moving atoms�, depending on the par-
ticular choice of phases of the driving lattice. The classical
control displays a strong �rel dependence, showing that this
traditional coherent control strategy �i.e., the dependence of
the outcome of a driven process on the relative phase of two
driving frequencies� survives in classical mechanics. Note
that for regular dynamics, the results are independent of �abs,
whereas the chaotic regions show a strong �abs dependence.
Hence, the �abs dependence seen for the uniform initial dis-
tribution originates from the chaotic regions. Such �abs de-
pendence arises in the chaotic dynamics since changing �abs
one is changing the relative delay between the pulse enve-
lope and the underlying oscillations; thus one perturbs
slightly the peak force attained in each cycle of the driving
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field. Since chaotic dynamics is extremely sensitive to small
perturbations, a strong �abs dependence results.

C. Quantum-classical correspondence in the �e\0 limit

Of particular interest is the quantum control dynamics as
�e→0. This is shown in Fig. 1 for three values of �e �0.1,
0.01, and 0.001� for the three initial states considered. Plot-
ted is the expectation value �P�
 of the final momentum dis-
tribution as the control measure, i.e., the quantum analog of
P�,avg.

Several points are notable: �i� both quantum and classical
results show significant control and differ noticeably at the
larger �e values; �ii� as �e→0, the quantum result ap-
proaches the classical result. In particular, the �rel phase de-
pendence of the control dynamics survives in the classical
limit, as noted above, where it is identical in quantum and
classical mechanics; �iii� as �e→0, the quantum result dis-
plays the underlying �abs dependence associated with the
regular �second row in Fig. 1� or chaotic �third row� classical
behavior.

Thus far, we have considered the general character of the
control as �abs and �rel are varied. We now focus on the
magnitude of the control. A quantitative assessment of the
degree of control is afforded by the measure

R�p
 = max���P�
�� − min���P�
�� , �18�

where max���P�
�� and min���P�
�� are the maximum and
minimum of the final average momentum across the full
space of �abs and �rel with �e held fixed. Figure 2�a� plots
R�p
 over the range of �e=0.001–0.1 using the uniform ini-
tial condition. The horizontal dashed line denotes the classi-
cal value of R�p
, �where the R�p
 uses the classical P�,avg
instead of �P�
� again for the uniform initial state. Across this
range of �e, the quantum control ratio varies but is, roughly
speaking, always of the same order of magnitude as the clas-
sical result or as the �e→0 limit. Figure 2�b� shows the �
dependence of R�p
 for the chaotic and the regular initial
states. One can see that the regular initial state approaches
the �e→0 limit much faster than the chaotic initial state.
Essentially, all of the fluctuations seen in Fig. 2�a� as �e
→0 then arise from the chaotic portions of the uniform ini-
tial state.

How does the control behave in the large �e limit? Figure
2�c� plots R�p
 over a range of �e from 0 to 5 for the uniform
initial state. The localized regular and chaotic states were not
considered since they carry nonzero momentum 
P�

��e /
�. There are two main differences between the large
�e and small �e limits. First, the presence of control in the
large �e limit is now strongly dependent on the value of �e.
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FIG. 1. �Color online� Control dynamics. Final average momentum for the classical and quantum systems. The top row is for the uniform
initial state, while the middle and bottom rows correspond to the regular and chaotic initial state. The first column plots the classical results,
while the remaining columns plot the quantum results for three values of �e=0.001, 0.01, and 0.1.
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This is because in the regime of large �e the spacing between
two adjacent momentum states coupled by the field is large
�on the order of �e�, and, thus, the allowed transitions depend
strongly on the relationship between �e and the driving fre-
quencies. Second, when control is present, the magnitude of
the control is about two orders of magnitude larger than in
the �e→0 limit. This happens because in the large �e limit,
the momentum transfer happens in a highly resonant manner
between very few states, contrary to the �e→0 limit where
many momentum states are coupled and populated.

D. Decoherence in the �e\0 limit

Not all properties of the quantum scenario match the clas-
sical scenario perfectly in the �e→0 limit. For example, in
the small �e limit �e.g., at �e=0.000 1�, the final quantum
momentum distribution Dq�P��= 
��P��
2 �Fig. 3�b�� shows
highly oscillatory behavior that is not seen classically �Fig.
3�a��. These oscillations, arising from quantum interference
effects, are superimposed onto the underlying classical dis-
tribution and have little or no influence on the average con-
trol dynamics. Adding weak decoherence via spontaneous
emission �1 momentum jump per cycle of the driving field
and of magnitude �P�=�e� completely suppresses the oscil-
lations �Fig. 3�d�� and gives the classical distribution, which
itself remains unchanged by the addition of the decoherence
�Fig. 3�c��. Similar results were obtained with alternate types
of decoherence such as spatial jitter, random amplitude fluc-

tuations, or introducing a small initial temperature. Analo-
gous observations of rapid quantum interferences destroyed
by small decoherence were made by Ballentine et al. in a
recent study of the quantum-to-classical transition of Hype-
rion, a moon of Saturn �20�.

Since this small amount of decoherence destroys the
quantum interference features and leads to the classical dis-
tributions and since phase control is nonetheless present in
the classical dynamics, small amounts of decoherence in this
scenario remove a fundamentally quantum feature �oscilla-
tions in the momentum distribution� but is not detrimental, in
the small �e limit, to the utility of the coherent control
scheme. This contrasts with the usual view that decoherence
necessarily jeopardizes coherent control because it mutes
quantum interference effects.

E. Decoherence in the “large” �e regime

Can the presence of decoherence accelerate the emer-
gence of quantum-classical correspondence when �e is not
close to zero? Figure 4 shows the quantum control plots for
�e=0.01 and the classical control plots for increasing
strength of the decoherence. The top plots correspond to no
decoherence, the middle plots are for 10% chance of a mo-
mentum jump per lattice shaking oscillation, and the bottom
plots are for a 20% chance of a momentum jump per lattice
shaking oscillation. The magnitude of the momentum jump
was set to the value of �e used, i.e., �P�=0.01. For no deco-
herence �top row, Fig. 4�, the quantum plots have not yet
reached the classical behavior for this value of �e. As deco-
herence is increased, the quantum and classical control plots
are both modified. However, before quantitative agreement is
achieved �an agreement which has not yet set in for the re-
sults of Fig. 4�, the degree of decoherence would have to be
increased to the point where the underlying classical dynam-
ics is modified strongly. This is in contrast with the results of
Fig. 3, where the quantum dynamics begins to resemble the

10
−3

10
−2

10
−1

0

0.02

0.04
R

〈p
〉

10
−3

10
−2

10
−1

0

0.07

0.14

R
〈p

〉

Regular
Chaotic

0 1 2 3 4 5
0

1

2

3

4

R
〈p

〉
(a)

(b)

(c)

�e

�e

�e

FIG. 2. Magnitude of the control ratio R�p
 �see text for defini-
tion� for �a� the uniform initial state for �e→0, �b� the chaotic and
regular initial states for �e→0, and �c� the uniform initial state in
the large �e regime. The dashed lines in �a� and �b� denote the
corresponding classical values of R�p
.

−0.2 0 0.2
0

0.5

1

1.5
Quantum − No Decoherence

Pθ (au)

D
q(P

θ)
(a

rb
.u

ni
ts

)

−0.2 0 0.2
0

0.5

1

1.5
Classical − No Decoherence

Pθ (au)

D
c(P

θ)
(a

rb
.u

ni
ts

)

−0.2 0 0.2
0

0.5

1

1.5
Classical − Decoh. 1 jump/cycle

Pθ (au)

D
c(P

θ)
(a

rb
.u

ni
ts

)

−0.2 0 0.2
0

0.5

1

1.5
Quantum − Decoh. 1 jump/cycle

Pθ (au)

D
q(P

θ)
(a

rb
.u

ni
ts

)

(a) (b)

(c) (d)

FIG. 3. Classical and quantum momentum distribution �where
�e=10−4� with �panels c and d� and without �panels a and b�
decoherence.

COHERENT CONTROL IN THE CLASSICAL LIMIT: … PHYSICAL REVIEW A 80, 053402 �2009�

053402-5



classical dynamics before the classical dynamics is modified
by the decoherence.

This type of decoherence behavior away from the �e→0
limit, in which the decoherence must be strong enough to
modify the classical dynamics before any hope of quantum-
classical correspondence emerges, has been previously re-
ported by one of the present authors in the context of reactive
scattering studies �23� in the presence of decoherence and
can also be inferred from studies of quantum-classical corre-
spondence under continuous weak measurements �21,22�. In
the latter case, the weak measurements, which are affected
through weak coupling to external degrees of freedom, can
be interpreted as a source of decoherence once one averages
over many realization of the weak measurement process.

In the �e�1 regime, the effects of small decoherence are
fairly general, and as in the previous section, the conclusions
reached here are independent of the type of noise used to
induce decoherence. However, in the �e�1 regime, prelimi-
nary computations �not shown� show that this is no longer
the case and that effects of decoherence depend strongly on
the type of decoherence introduced. The reason for these
complications is that, in the present shaken lattice scenario,
the classical system has no resonances, whereas the dynam-
ics of the quantum when �e�1 is dominated by the reso-
nance behavior �recall Fig. 2�c��. In such a case, the quantum
and classical systems behave qualitatively differently. A thor-

ough study of decoherence in the �e�1 regime departs from
the central focus of this paper, quantum-classical transition
of a coherent control scenario, since the two systems are now
qualitatively different and no general quantum-classical cor-
respondence via decoherence when �e�1 is expected. For
these reasons, we leave the investigation of decoherence in
the �e�1 regime for a separate study. For recent related
studies on quantum-classical correspondence and decoher-
ence in the quantum resonance case, see Refs. �24,25�.

IV. SUMMARY AND COMMENTS

In summary, we have shown the quantum-to-classical
transition of control in the � vs 2� coherent control scenario
in an experimentally accessible optical lattice experiment,
either isolated or in the presence of tunable amounts of de-
coherence. Clear evidence of the approach of the quantum
control to the classical limit is evident, including the mani-
festation of chaotic vs integrable classical dynamics. Deco-
herence associated with spontaneous emission is seen to de-
stroy high-frequency oscillations in the momentum
distribution, but not to affect the control in the small �e limit.
Significant effects on the quantum control due to decoher-
ence were only found to arise in the case where the decoher-
ence is so strong as to have a profound effect on the classical
dynamics, as well as the quantum dynamics.

The results are of fundamental significance to the general
area of coherent control and motivate additional work. First,
the results emphasize the fact that quantum-based coherent
control scenarios can persist in the classical limit, albeit that
the numerical values of the control can be vastly different in
the quantum and classical regimes. This correspondence, as
noted here and elsewhere �6�, arises because the quantum
interference terms are driven by the external laser fields. Our
expectation is that any quantum control scenario that can be
cast as a nonlinear response problem falls into this class.
What remains to be explored are �a� the circumstances under
which the quantum results are well approximated by the clas-
sical dynamics �26� and �b� the range of scenarios that are
fully quantum—i.e., that rely upon fully quantum effects,
such as entanglement, and hence do not survive classically.
Second, the decoherence results shown here are relevant to
the optical lattice setup, where decoherence results from
spontaneous emission. Other types of open system interac-
tions, in accord with the decoherence literature, can be ex-
pected to induce decoherence to other preferred bases
�18,19�. This being the case, different coherent control sce-
narios that occur in alternate environments may well behave
differently. For example, and of particular interest to chemi-
cal physics, are systems undergoing decoherence in con-
densed phase environments. Studies on decoherence associ-
ated with random collisions characteristic of such
environments suggest that such decoherence may be particu-
larly destructive to coherent control scenarios �7�. Further
studies of these effects are underway.
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FIG. 4. �Color online� Classical and quantum ��e=0.010� con-
trol results for �top� no decoherence, �middle� 10% chance of a
momentum jump per cycle, and �bottom� 20% chance of a momen-
tum jump per cycle.
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