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The induction of dc electronic transport in rigid and flexible trans-polyacetylene oligomers
according to the � versus 2� coherent control scenario is investigated using a quantum-classical
mean field approximation. The approach involves running a large ensemble of mixed
quantum-classical trajectories under the influence of �+2� laser fields and choosing the initial
conditions by sampling the ground-state Wigner distribution function for the nuclei. The vibronic
couplings are shown to change the mean single-particle spectrum, introduce ultrafast decoherence,
and enhance intramolecular vibrational and electronic relaxation. Nevertheless, even in the presence
of significant couplings, limited coherent control of the electronic dynamics is still viable, the most
promising route involving the use of femtosecond pulses with a duration that is comparable to the
electronic dephasing time. The simulations offer a realistic description of the behavior of a simple
coherent control scenario in a complex system and provide a detailed account of the femtosecond
photoinduced vibronic dynamics of a conjugated polymer. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2940789�

I. INTRODUCTION

Conjugated polymers are of interest for their broad tech-
nological applications1–3 and because they are model systems
that offer insight into the properties of soft organic and bio-
logical matter. As almost every photochemical, photophysi-
cal, spectroscopic, and charge and energy transfer process in
these materials involves dynamics of photoexcited states, the
possibility to manipulate, at a molecular level, the dynamical
properties of these excitations by means of lasers with well
defined phases may have profound technological
implications.

As a first step toward this goal, we are interested in
manipulating the dynamics of photoexcited electrons along
the backbone of a conjugated polymer using the principles of
coherent control.4 Specifically, we want to induce net dipoles
along the material without introducing a bias voltage. For
this we apply zero-mean laser pulses with frequency compo-
nents � and 2�. Such fields are known to induce phase-
controllable dipoles or currents in anharmonic symmetric
systems5 even when they have a zero-temporal mean, a phe-
nomenon that is referred to as laser-induced symmetry break-
ing. This rectification effect first appears in the third order
nonlinear response of the system to the radiation field.6 At
this order the system mixes the frequencies and harmonics of
the �+2� field, generating a phase-controllable zero har-
monic �dc� component in the response. The dc component in
the photoinduced dipoles is typically of the form ���
���

2 �2� cos��2�−2���, where �n� and �n� denote the am-

plitude and phase of the n� component of the field. Hence,
simply by varying the relative phase between the two inci-
dent lasers one can exert control over the magnitude and sign
of the symmetry breaking.

Laser-induced symmetry breaking4,6 has been demon-
strated in a wide variety of systems ranging from atoms to
solid state samples. Experimentally, it has been implemented
for generating anisotropy in atomic photoionization,7 photo-
currents in quantum wells,8 intrinsic semiconductors,9 and
metal surfaces,10 as well as directed diffusion in symmetric
optical lattices.11 Theoretically, it has been studied for gen-
erating transport in doped12 and bulk semiconductors
through interband13 and intraband14 excitations, in graphene
and carbon nanosheets15 and in molecular wires,16–18 among
others. The setup is of interest since, with current laser tech-
nology, it can be employed to generate controlled transport
on a femtosecond timescale.

Of major concern when using lasers to generate elec-
tronic transport is the influence of the lattice dynamics on the
rectification. The lattice can induce ultrafast dephasing19,20

processes that have deleterious effects on the control. Only a
few attempts to quantify this effect exist. In all of them, the
explicit dependence of the dynamics on the nuclear degrees
of freedom is eliminated, and the effect of the lattice has
been modeled through phenomenological relaxation,9 sto-
chastic forces,14 or thermal baths.18 Although formulations of
this type have a considerable domain of applicability, they
are not appropriate here since the electronic dynamics and
spectroscopic observables in conjugated polymers depend on
the detailed dynamics of the molecular backbone.21–23 This
coupling between, and mutual influence of, electronic anda�Electronic mail: pbrumer@tikva.chem.utoronto.ca.
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vibrational degrees of freedom gives rise to the very rich
photophysics of solitons, polarons, and breathers and consti-
tutes an important distinction between “soft” materials and
rigid solids.1,22,24 Furthermore, the constant exchange of en-
ergy between the electronic and nuclear degrees of freedom
during photoexcitation keeps the vibrations out of equilib-
rium, rendering the thermal description inappropriate.

Here we numerically investigate the effect of vibronic
couplings on the applicability of laser-induced symmetry
breaking in �-conjugated systems by explicitly following the
dynamics of both electronic and vibrational degrees of free-
dom. The simulations presented below provide a realistic
description of the behavior of a simple laser control scenario
in a complex system, and offer a detailed account of the
femtosecond vibronic dynamics of a conjugated polymer.

As a minimal microscopic model for conjugated poly-
mers we adopt the Su–Schrieffer–Heeger �SSH� Hamiltonian
for trans-polyacetylene �PA�.1,24 The SSH model treats the
polymer chain in terms of a one-dimensional tight-binding
model in which the � electrons are coupled to distortions in
the polymer backbone by electron-vibrational interactions. It
neglects quasiparticle interactions, assuming that they are
relatively weak due to screening. Despite of its simplicity,
the SSH Hamiltonian has been remarkably successful in re-
producing the band structure and the dynamics of excitations
in PA. With it, we follow numerically the highly nonlinear
coupled dynamics of electronic and vibrational degrees of
freedom in neutral PA chains during and after photoexcita-
tion with �+2� laser pulses of varying frequency, width,
and intensity. The simulations are performed in a mean-field
�Ehrenfest� approximation25–28 in which the nuclei are
treated classically and the electrons quantum mechanically.
Mean-field dynamics is the simplest mixed quantum-
classical method that allows transfer of energy between
quantum and classical coordinates with a proper conserva-
tion of energy,25–28 and where transitions between instanta-
neous eigenstates are allowed. Allowing for change in the
occupation of the electronic levels is crucial because the la-
ser is constantly inducing electronic transitions and, addi-
tionally, electronic levels can approach one another closely
during the dynamics and may lead to nonadiabatic transitions
between electronic states. It is also a tractable method, as
shown below, for treating the vibronic dynamics of multiple
electronic states in the presence of a laser.

In order to incorporate the effects of lattice fluctuations
on the dynamics we follow the evolution of an ensemble of
quantum-classical trajectories. The initial conditions are ob-
tained by using importance sampling for the nuclear Wigner
phase-space distribution in the harmonic approximation. In
this way, the resulting averaged dynamical observables retain
relevant correlations between the electronic and vibrational
degrees of freedom and are subject to electron-vibrational
induced decoherence and relaxation.

This analysis begins by briefly describing the model
Hamiltonian �Sec. II A� and deriving the equations of motion
for the vibronic dynamics �Sec. II B�. Then we turn to the
important problem of choosing initial conditions for the evo-
lution �Sec. II C� and we introduce the geometric and spec-
troscopic observables that are used to monitor the dynamics

�Sec. II D�. Our main results are presented in Sec. III. Spe-
cifically, after discussing the properties of the initial state
�Sec. III A�, we investigate the typical dynamics of the chain
generated by short �10 fs� and long �300 fs� pulses, and es-
timate the typical electronic dephasing times in PA oligomers
�Sec. III B�. Then, we turn our attention to the effects that the
lattice dynamics has on laser-induced symmetry breaking
�Sec. III C�. The main results are summarized in Sec. IV.

II. MODEL AND METHODS

A. The SSH model

The SSH Hamiltonian1,24 models the PA oligomer as a
one-dimensional tight-binding chain, each site representing a
CH unit. The Hamiltonian for an N-membered chain has the
following form:

HSSH = H� + H�-ph + Hph, �1�

where

H� = − t0�
n=1

N−1

�
s=�1

�cn+1,s
† cn,s + cn,s

† cn+1,s� �2�

describes the hopping of � electrons along the chain without
spin flip characterized by the lowest-order hopping integral
t0. The operator cn,s

† �cn,s� creates �annihilates� a fermion in
site n with spin s and satisfies the usual fermionic anticom-
mutation relations 	cn,s ,cm,s�

† 
=�n,m�s,s�. The �-electron-ion
interaction term is given by

H�-ph = ��
n=1

N−1

�
s=�1

�un+1 − un��cn+1,s
† cn,s + cn,s

† cn+1,s� , �3�

where un is the displacement of the nth site in the x direction
from the perfectly periodic position x=na, with a as the lat-
tice constant. The operator H�-ph couples the electronic states
to the molecular geometry and provides a first-order correc-
tion to the hopping integral with � as the coupling constant.
Finally, the nuclear Hamiltonian is taken to be

Hph = �
n=1

N
pn

2

2M
+

K

2 �
n=1

N−1

�un+1 − un�2, �4�

where M is the mass of the CH group, pn is the momentum
conjugate to un, and K is an effective spring constant.

The SSH model is an effective24 empirical model for
noninteracting quasiparticles in PA. The electron-vibrational
coupling and the hopping integral can be viewed as param-
eters in which screening and other high-energy effects have
already been taken into account. The effect of the residual
interactions that cannot be accounted for by a simple renor-
malization of the one-electron Hamiltonian are completely
neglected.

Throughout this work, we use the standard SSH param-
eters for PA:24 �=4.1 eV /Å, K=21 eV /Å2, t0=2.5 eV, M
=1349.14 eV fs2 /Å2, and a=1.22 Å. Results using this set of
parameters agree qualitatively well with experimentally de-
termined properties.
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B. Photoinduced dynamics

To simulate excitation of the chain by a femtosecond
laser pulse, an interaction with an electric field in dipole
approximation is added to the SSH Hamiltonian. The electric
field is taken into account to all orders and the dynamics is
followed in the mean-field �Ehrenfest� approximation. Our
approach resembles that of Johansson et al.29,30 and
Streitwolf,31 but we dynamically propagate an ensemble of
quantum-classical trajectories rather than a single trajectory
that starts from the optimal geometry. Single-trajectory
approaches21–23,29–32 offer valuable insights into the times-
cales involved in the vibronic dynamics but are insufficient
for our purposes because including the decoherence effects
requires averaging over the nuclear degrees of freedom. Fur-
ther, during this study we have observed that the vibronic
dynamics of the SSH chain tends to exhibit deterministic
chaos and, hence, individual trajectories become inaccurate
for sufficiently long integration times. By contrast, results for
an ensemble of trajectories are meaningful even for long in-
tegration times, provided the shadowing theorem33,34 holds.

In the presence of a radiation field, the total Hamiltonian
of the system assumes the following form:

HS�t� = HSSH + HE�t� , �5�

where HE�t� describes the interaction of the chain with an
external electric field E�t� in the dipole approximation and
Coulomb gauge,

HE�t� = − ��e + �i�E�t� . �6�

Here �e=−�e��n,sxncn,s
† cn,s and �i= + �e��nxn are the elec-

tronic and ionic dipole moments, where xn=na+un is the
monomer position operator, a the lattice parameter, and −�e�
is the unit electronic charge. The Coulomb gauge is consis-
tent with our open chain boundaries. As a field we use the
femtosecond �+2� Gaussian pulses detailed in Table I at a
variety of frequencies noted in the text.

In the mean-field approximation the nuclei move classi-
cally on a mean-field potential energy surface with forces
given by25–28

ṗn = − �	�t� �HS�t�
�un

	�t�� , �7�

where �	�t�� denote the antisymmetrized N-electron wave
function. The electrons are assumed to respond instanta-
neously to the nuclear motion and, hence, �	�t�� satisfies the
time-dependent Schrödinger equation,

i

�

�t
�	�t�� = Helec�u�t�,t��	�t�� , �8�

where Helec contains the electronic and the electron-nuclei
interaction terms of the total Hamiltonian, and u
= �u1 ,u2 , ¯ ,uN�. Equations �7� and �8� define the Ehrenfest
method. Feedback between the fast and slow degrees of free-
dom is incorporated in both directions in an average self-
consistent way. Note that the mean-field approximation
avoids the expansion of the electronic wave function in terms
of adiabatic basis functions. Equations �7� and �8� can there-
fore be integrated directly, making the implementation of the
method particularly simple.

The electronic part of the total system Hamiltonian �Eq.
�5�� reads

Helec�t� = �
n=1,s

N−1

�− t0 + ��un+1 − un���cn+1,s
† cn,s + cn,s

† cn+1,s�

+ �e� �
n=1,s

N

xncn,s
† cn,sE�t� . �9�

Since Helec�t� is a single particle operator, the electronic
properties of the system are completely characterized by the
electronic reduced density matrix, defined by

�n,m�t� = �
s

�	�t��cn,s
† cm,s�	�t�� . �10�

From Eq. �8� it follows that the dynamics of �n,m�t� is
governed by

i

d

dt
�n,m�t� = �

s

�	�t���cn,s
† cm,s,Helec�t���	�t��

= �
m�

�hm,m��t��n,m��t� − hm�,n�t��m�,m�t�� ,

�11�

where hn,m�t�= �n ,s�Helec�t��m ,s� are the single-particle ma-
trix elements of Helec�t�, and �n ,s�=cn,s

† �0� where �0� is the
vacuum state. In order to integrate this equation it is useful to
employ an orbital decomposition for �n,m�t�, as described
below.

Let �� ,s� be the eigenorbitals of the system at prepara-
tion time, defined by the eigenvalue relation
Helec�t=0��� ,s�=��� ,s�. Using this basis, the initial electronic
reduced density matrix can be expressed as

TABLE I. Parameters and labels defining the femtosecond laser pulses used E�t�
=exp�−�t−Tc�2 /TW

2 ���� cos��t+���+�2� cos�2�t+�2���. Here I2� is the intensity of the 2� component at
maximum field strength.

Label Tc �fs� TW �fs� �2� �V Å−1� �� /�2� I2� �W cm−2�

f1 900 300 8.70�10−3 2.82 1.0�109

f2 900 300 4.00�10−2 2.82 2.1�1010

f3 50 10 8.70�10−3 2.82 1.0�109

f4 50 10 4.00�10−2 2.82 2.1�1010
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�n,m�0� = �
�,��=1

N

�
s

��,s�n,s��m,s���,s�

��	�0��c�,s
† c��,s�	�0�� , �12�

where c�,s
† creates a fermion with spin s in the orbital with

energy � �i.e., �� ,s�=c�,s
† �0��, and �	�0��c�,s

† c��,s�	�0�� char-
acterizes the initial electronic distribution among the single
particle states. In writing Eq. �12� we have employed the
basis transformation function cn,s=��=1

N �n ,s �� ,s�c�,s, and its
Hermitian conjugate, which takes into account the fact that
�� ,s �n ,s��= �� ,s �n ,s��s,s� for the Hamiltonian under consid-
eration. Upon time evolution we assume that �n,m�t� main-
tains the form in Eq. �12�, that is,

�n,m�t� = �
�,��=1

N

�
s

���t�,s�n,s��m,s����t�,s�

��	�0��c�,s
† c��,s�	�0�� . �13�

The utility of this ansatz is that if the time-dependent orbitals
���t� ,s� satisfy the single-particle Schrodinger equation,

i

d

dt
���t�,s� = Helec�t����t�,s� , �14�

with initial conditions ���t=0� ,s�= �� ,s�, the reduced density
matrix automatically satisfies the correct equation of motion
�Eq. �11��.

With the exception of the simulations presented in Sec.
III B 3, the initial electronic state �	�0�� is taken to be a
single Slater determinant for which

�	�0��c�,s
† c��,s�	�0�� = ��,��f��,s� , �15�

where f�� ,s� is the initial distribution function that takes
values 0 or 1 depending on the initial occupation of each
level with energy � and spin s. In this case, �n,m�t� assumes
the following simplified form:

�n,m�t� = �
�=1

N

�
s

���t�,s�n,s��m,s���t�,s�f��,s� . �16�

Henceforth we drop spin labels since orbitals with opposite
spin satisfy the identical equation of motion.

Given Eqs. �7� and �10� and the total Hamiltonian of the
system Eq. �5�, the equations for the nuclear trajectories are
given as

u̇n�t� =
pn�t�
M

;

ṗn�t� = − K�2un�t� − un+1�t� − un−1�t�� + 2�Re	�n,n+1�t�

− �n,n−1�t�
 − �e�E�t���n,n�t� − 1� . �17�

The chain is taken to be clamped so that u1�t�=uN�t�=0 and
p1�t�= pN�t�=0 for all time, and Eq. �17� is valid for n
=2, . . . ,N−1. In turn, the orbitals that form �nm�t� satisfy
Eq. �14�, so that

i

d

dt
�n���t�� = �− t0 + ��un+1�t� − un�t����n + 1���t��

+ �− t0 + ��un�t� − un−1�t����n − 1���t��

+ �e�E�t��na + un�t���n���t�� , �18�

for n ,�=1, ¯ ,N. Since the electrons are confined within the
chain, �n ���t��=0 for n� 	1, . . . ,N
. Equations �17� and �18�
constitute a closed set of N�N+2� coupled first-order differ-
ential equations, which are integrated using the eighth-order
Runge–Kutta method with step-size control.35

C. The initial conditions

A crucial aspect of the problem is the choice of initial
conditions. The oligomer is assumed to be in the ground
electron-vibrational state. Hence, we first determine the op-
timal geometry of an N-membered oligomer with open
boundaries and clamped ends �u1=uN=0� by an iterative
self-consistent procedure, and then perform a normal mode
analysis in the ground electronic surface as detailed in Ref.
36. This procedure provides the nuclear ground-state wave
function in the harmonic approximation. A phase-space-like
description of the resulting nuclear quantum state is obtained
by constructing the associated nuclear Wigner phase-space
distribution37,38 function �W�u ,p�, which is just the product
of the Wigner distributions associated with each vibrational
mode,

�W�u,p� = �
j=1

N−2

� j�Qj�u�,Pj�p�� . �19�

Here Qj�u� is the normal mode coordinate of the jth mode
and Pj�p� its conjugate momentum. In the ground state, the
Wigner distribution of each normal mode is given by37

� j�Qj,Pj� =
1

�

exp�− M� jQj

2/
�exp�− Pj
2/
� jM� , �20�

where � j is the frequency of the jth mode. The 2N−4 di-
mensional phase-space distribution in Eq. �19� completely
characterizes the initial quantum state of the nuclei.

The ensemble of lattice initial conditions 	ui�0� ,pi�0�

for the quantum-classical dynamics is obtained from a Monte
Carlo sampling of the nuclear Wigner phase-space distribu-
tion of Eq. �19�. The average classical energy of the resulting
ensemble coincides numerically with the zero-point energy
of the lattice. The associated initial values for the orbitals
	�n ��i�0��
 are obtained by diagonalizing the electronic part
of the Hamiltonian in the initial lattice geometries 	ui�0�
.
Each initial condition i, together with the equations of mo-
tion �Eqs. �17� and �18��, defines a quantum-classical trajec-
tory �ui�0� ,pi�0� , �	i�0���→ �ui�t� ,pi�t� , �	i�t���. The set is
propagated using a parallel algorithm and used to obtain en-
semble averages. In this manner, the dynamics reflects the
effects of lattice fluctuations and the initial quantum phase-
space distribution of the nuclei.

Since laser-induced symmetry breaking is an effect that
depends on the third-order response of the system to the
field, adequate convergence of the results with the number of
initial conditions requires a large number of initial configu-
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rations, O�103� �2N−4��. This is the main computational
bottleneck of the present approach and limits our analysis to
modestly sized oligomer chains.

D. Dynamical observables

During the vibronic dynamics induced by the laser field
the molecular geometry distorts and this, in turn, induces
strong changes in the electronic wave function. Below we
describe the geometric and spectroscopic observables that we
use to follow the evolution of both nuclei and electrons.

Geometrical changes in the polymer backbone are char-
acterized by the bond length alternation parameter rn, which
quantifies the homogeneity in the distribution of � electrons
over the bonds. The ensemble average of this quantity is
defined by

�rn� =
1

M�
i=1

M
�− 1�n

2
�ln−1

i − ln
i �

=
1

M�
i=1

M
�− 1�n

2
�2un

i − un−1
i − un+1

i � , �21�

where ln
i is the bond length between the nth and �n+1�th

atoms along the chain in the ith member of the ensemble and
M is the cardinality of the ensemble. When the alternation
between single and double bonds is perfect, the bond length
alternation is constant �apart from end effects� and takes a
value of r0�0.08 Å. An enhancement in the electronic delo-
calization tends to equalize the bond lengths in the polymer
resulting in �rn� /r01.

The state of the electronic degrees of freedom is com-
pletely characterized by the ensemble-averaged electronic re-
duced density matrix,

�̄n,m�t� =
1

M�
i=1

M

�n,m
i �t� , �22�

where �n,m
i is defined by Eq. �10�. The diagonal elements of

�̄n,m�t� represent the density of charge along the chain. The
off-diagonal elements represent the electronic coherences be-
tween different sites.

A compact description of the electronic dynamics is of-
fered by the polarization of the chain, defined by

���t�� =
�e�
M�

i=1

M

�
n=1

N

xn
i �t��1 − �n,n

i � , �23�

where xn
i �t�= �na+un

i �t�� is the position of site n at time t in
the ith trajectory. The first term in Eq. �23� comes from the
dipole due to the nuclei, while the second one quantifies the
electronic contributions. Any laser-induced symmetry break-
ing must manifest as a DC component in ���t��. In order to
isolate the zero-frequency component from the oscillatory
terms we integrate the signal over time,

�C�t�� =
1

LTW
�

0

t

dt����t��� . �24�

This gives the net cumulative dipole induced by the field,
weighted over the chain length L and the temporal pulse
width TW.

For each member of the ensemble the instantaneous
eigenorbitals of the electronic Hamiltonian �including the
field� are defined by the following eigenvalue relation:

Helec
i �t���i�t�� = ��

i �t���i�t�� , �25�

where Helec
i �t� is the electronic Hamiltonian for trajectory i at

time t. At each instant in time the instantaneous eigenorbitals
for different trajectories differ since each trajectory experi-
ences a different vibronic evolution. For each trajectory, at a
given t, the orbitals ��i�t�� satisfying Eq. �18� may be ex-
panded as a linear combination of the instantaneous eigen-
functions ��i�, ��i�t��=��a�,�

i �t���i�t��, where a�,�
i �t�

= ��i�t� ��i�t��. The occupation number n�
i of the instanta-

neous states is thus given by

n�
i �t� = �

�,s
���i�t���i�t���2f��,s� = �

�,s
�a�,�

i �2f��,s� , �26�

and varies as the system evolves. This contrasts with purely
adiabatic dynamics with fixed level occupation. For the en-
semble, we define the mean occupation and mean energy of
the instantaneous eigenstates as

����t�� =
1

M�
i=1

M

��
i �t�, �n��t�� =

1

M�
i=1

M

n�
i �t� , �27�

for �=1, . . . ,N. These quantities are physically acceptable if
the ordering of the eigenstates does not vary among trajec-
tories, a property that we assume. Throughout the text the
label � is employed to number the instantaneous eigenstates
of the oligomer in ascending order, with �=1,N /2, and
N /2+1 denoting the lowest energy, HOMO �highest occu-
pied molecular orbital�, and LUMO �lowest unoccupied mo-
lecular orbital� orbitals, respectively.

III. RESULTS AND DISCUSSION

Consider the ability of �+2� fields to induce symmetry
breaking in PA. The dynamics is characterized using the ob-
servables discussed in Sec. II D as well as by the different
contributions to the chain energy. Vibrational effects are
made explicit by contrasting the vibronic dynamics of the
oligomers with the evolution of a single trajectory for an
equivalent but rigid system initially in the optimal geometry.
The chain is made rigid by multiplying the mass of the CH
groups by a factor of 106. In this way the lattice is made to
move a thousand times more slowly while maintaining the
same value of the electron-ion interaction.

A. Initial state

We study neutral oligomers with 20 sites and 20 � elec-
trons �L�23 Å� initially in the ground electronic configura-
tion. This size was selected because it reproduces qualita-
tively well the spectrum and dimerization pattern of longer

244905-5 Control of transport in trans-polyacetylene J. Chem. Phys. 128, 244905 �2008�



chains without making the computational effort prohibitive.
The initial state for the flexible chain consists of an ensemble
of 100 000 initial conditions obtained by sampling the
ground-state nuclear Wigner distribution �Sec. II C�.

The resulting electronic and geometrical properties of
the chain are shown in Fig. 1. The initial geometry of the
chain �Fig. 1�c�� consists of a perfect alternation of double
and single bonds, yielding �rn��0.08 Å. The open-ends
boundary condition results in a stronger dimerization near
the edges of the oligomer. The structure is centrosymmetric
with the inversion center residing between sites 10 and 11.
The single-particle spectrum �Fig. 1�d� and Table II� has a
total width of 4t0=10 eV. It consists of N /2 fully occupied �

�valence� states and N /2, initially empty, �� �conduction�
states, separated by an energy gap 2�=1.8 eV. The reduced
density matrix �Figs. 1�a� and 1�b�� is concentrated along the
diagonal of the plot reflecting the bonding pattern of the
oligomer, with the spatial electronic coherence �measured by
the magnitude of the off-diagonal matrix elements� being
�10–15 units.

Note that the average geometrical and spectroscopic
properties of the ensemble coincide with the ones obtained

FIG. 2. Energy contributions during the dynamics of
PA under the influence of pulse f4 with 
�=1.3 eV and
�2�−2��=0 for the rigid �gray lines� and flexible
�black lines� chain. �A� The electronic kinetic energy
�including electron-ion interactions�, �B� purely nuclear
energy, and �C� radiation-matter interaction. The total
energy is shown in �D�.

FIG. 1. �Color� Nuclear and electronic properties of a 20 atoms +20� elec-
trons SSH-type chain in the ground-state configuration. Properties of the
chain in the optimal geometry are compared with the average results ob-
tained from an ensemble of 100 000 initial configurations. The upper panels
show the reduced density matrix �chosen to be real� for �A� the optimal
geometry and �B� the ensemble of initial states. The color bar is given in the
far right. �C� Bond length alternation along the chain and �D� the single-
particle spectrum. ��� the optimal geometry and ��� the ensemble average.
In both cases, the initial average momentum for each atom is zero.

TABLE II. Initial single particle spectrum for the 20 site neutral PA oli-
gomer. The energies �i

0 were obtained at the optimal geometry, while ��i�
denote the average orbital energies for the ensemble. The ensemble of
orbital energies form energy bands distributed in a Gaussian manner about
the band centers, f��i�= �1 /�2��i� exp�−��− ��i��2 /2�i

2�, where �i is the
standard deviation.

i �i
0 �eV� ��i� �eV� �i �eV�

1 −4.893 −4.930 0.034
2 −4.735 −4.755 0.039
3 −4.479 −4.491 0.046
4 −4.131 −4.141 0.053
5 −3.701 −3.708 0.061
6 −3.199 −3.206 0.068
7 −2.640 −2.646 0.079
8 −2.045 −2.049 0.091
9 −1.445 −1.444 0.107

10 −0.914 −0.883 0.130

11 0.914 0.883 0.130
12 1.445 1.444 0.107
13 2.045 2.049 0.091
14 2.640 2.646 0.079
15 3.199 3.206 0.068
16 3.701 3.708 0.061
17 4.131 4.141 0.053
18 4.479 4.491 0.046
19 4.735 4.755 0.039
20 4.893 4.930 0.034
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from a single configuration in the optimal geometry. How-
ever, within the ensemble there is a distribution of values for
the properties, displaying important deviations from the av-
erage. For example, we find that the ensemble of orbital en-
ergies form bands of states distributed in a Gaussian fashion
about the band averages. The banded-Gaussian distribution
in energy space is a direct result of the Gaussian distribution
of the initial geometries. The band-averages ��i� and band-
widths �i are enumerated in Table II. Note that the band-
width of the electronic levels near the energy gap
�i=10–11� is considerably broader than the one displayed by
states near the band edges.

Last, due to residual anharmonicities around the equilib-
rium geometry, the distribution in Eq. �19� is not completely
stationary. Rather, the average values of the initial state dis-
play some fluctuations under free evolution. These fluctua-
tions are very small, introducing only small changes to Fig.
1, of the order of 1% in the band-gap energy and of 3% in
the bond length alternation.

B. Rigid versus flexible chain dynamics

For rigid chains, changes in the electronic spectrum can
only arise from the Stark shifts induced by the laser field. By
contrast, for flexible chains there is a continuous exchange of
energy between the electronic and nuclear degrees of free-
dom during the photoexcitation process. Below we present
two illustrative examples of the photoinduced dynamics in
PA. First we consider the case in which the lattice is photo-
excited with a 10 fs pulse �Sec. III B 1�. For such short
pulses very little excited state dynamics occurs during the
pulse. In the wake of the pulse we observe coherent vibra-

tional breathing motion that decays in �200 fs due to vibra-
tional energy redistribution. We then consider excitation with
a 300 fs pulse �Sec. III B 2�. In this case the laser does not
generate a breathing motion of the lattice. Rather, we observe
a gradual increase in the electronic delocalization, accompa-
nied by a concurrent change in the average spectroscopic and
geometrical parameters of the chain.

Last, in Sec. III B 3 we quantify the timescale for elec-
tronic dephasing for chains of different lengths.

1. The dynamics induced by a 10 fs pulse

The different contributions to the rigid and flexible chain
energy during and after photoexcitation with a 10 fs �+2�
pulse �laser field f4 in Table I� with 
�=1.3 eV are shown in
Fig. 2. Initially, the flexible chain has 0.83 eV more energy
than its rigid counterpart due to zero-point motion in the
ground electronic state. Secondly, after photoexcitation, the
rigid chain gains 1.85 eV from the laser while the average
energy absorbed by the ensemble of flexible chains is 3.9 eV.
This enhanced absorption of energy of the flexible chain is
due to spectral broadening of states which form bands, with
the broadening being especially large near the band gap �re-
call Table II�. As exemplified in Fig. 3, this results in a wider
set of electronic levels being populated during photoexcita-
tion. In both cases, the occupation numbers and the single
particle spectrum display the electron-hole symmetry of the
SSH Hamiltonian.

Figure 4 shows the evolution of the bond length alterna-
tion parameter �upper panel� and the mean instantaneous or-
bital energies for states near the energy gap �lower panel� of
the flexible chain. The photoexcitation of the chain initiates a

FIG. 3. Occupation numbers of the instantaneous
eigenstates near the band gap for the �A� rigid and �B�
flexible chain during the dynamics induced by pulse f4
with 
�=1.3 eV and �2�−2��=0.

FIG. 4. �Color� Vibronic dynamics of
PA induced by pulse f4 with 
�
=1.3 eV and �2�−2��=0. The upper
panel shows contours of the bond
length alternation parameter �defined
in Eq. �21��. The lower panel: the
mean instantaneous energies for the
single-particle states near the energy
gap.
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complex highly nonlinear vibronic evolution. The lattice is
set to vibrate and large scale oscillations in the bond length
alternation are observed. By t=67 fs the chain has reversed
the sense of its dimerization and establishes a coherent
“breathing” oscillation of the bond length alternation in
which �rn�t�� oscillates between the two senses of dimeriza-
tion. Several carbon-carbon stretching vibrational modes
with periods between 32 and 40 fs enter into the initial lattice
dynamics. The breathing motion, however, is not long lived
and the amplitude of the oscillations display an initial fast
exponential decay with a characteristic timescales of
�90–130 fs, followed by a slower damping. By t�400 fs
most of the vibrational modes initially excited have already
decayed, and gradually the system approaches a state of in-
ternal equilibrium through internal vibrational energy
redistribution.

These changes in the lattice geometry are reflected as
changes in the single-particle spectrum. Upon initial photo-
excitation the two states near the energy gap come very close
to each other in less than 20 fs and the band-gap energy
fluctuates following the breathing oscillation of the bond
length alternation. A dip �crest� in the bond-length alternation

corresponds to a minimum �maximum� in the gap energy.
Concurrent with the dimerization pattern, the energy gap ex-
hibits strong initial oscillations at timescales between 30 and
40 fs that rapidly decay, followed by a slower damping. The
band-gap energy eventually reaches an equilibrium value of
�0.6 eV. The remaining energy levels also oscillate on time-
scales determined by the different vibrational modes of the
chain. We observe that states around the band-gap couple to
vibrational modes whose period is �38 fs, while states near
the band edges couple to lower frequencies modes.

An estimate of the electronic decoherence that occurs
during and after the pulse is provided by measuring the
purity39 Tr �2=�n,m�̄n,m�̄m,n, where �̄n,m are the matrix ele-
ments of the ensemble-averaged electronic reduced density
matrix �Eq. �22��. For pure systems with a �n,m�t� of the form
in Eq. �16�, as is the case of the rigid chain, Tr �pure

2 is a
constant equal to 2N where N is the number of electrons. For
mixed states Tr �mixed

2 �Tr �pure
2 and its decay offers insight

into the decoherence timescales introduced by the coupling
to the vibrational modes. Figure 5 shows the evolution of
Tr �2 for the flexible chain. The system begins in a state that
is almost pure with Tr �2 /Tr �pure

2 =0.997. Upon photoexcita-
tion the purity displays a sharp drop at �40 fs, followed by
some modulation in timescales commensurate with the vibra-
tional periodicities of the chain. These modulations decay
rapidly and the purity stabilizes at 0.89 after �400 fs.

The dynamical behavior exemplified by our simulations
describes quite well the main trends observed in recent sub-
10 fs experiments that have been performed on PA �Ref. 40�
and poly�phenylene�-vinylene41 samples: initial fast decay of
the breathing motion �order of 200 fs� followed by a slower
damping. Previous studies of the excited state dynamics in
PA did not capture the decay since they only consider the
evolution of a single trajectory. However, the timescales that
we observe for the energy gap fluctuations �32–38 fs� are
somewhat larger than the ones reported for PA of 31 and
23 fs. This is a consequence of the parameters employed for
the Hamiltonian.

We have observed that the basic features of the vibronic
dynamics described above also apply to longer oligomers.

FIG. 5. Decoherence during the dynamics of the flexible chain induced by
pulse f4 �10 fs wide, centered at 50 fs� with 
�=1.3 eV and �2�−2��=0.

FIG. 6. Energy contributions during the dynamics of
PA under the influence of pulse f1 with 
�=1.18 eV
and �2�−2��=0. �A� Electronic kinetic energy �in-
cluding electron-ion interactions�, �B� the purely
nuclear energy, and �C� the radiation-matter interaction.
The total energy is shown in �D�. The gray and black
lines correspond to the rigid and flexible chains,
respectively.
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However, in the long chain limit the two states near the en-
ergy gap can become degenerate, forming soliton-antisoliton
pairs,24 unlike to the case described above.

2. The dynamics induced by a 300 fs pulse

Consider now dynamics under the longer �300 fs� pulse
f1 with 
�=1.18 eV. Here the pulse time width is long com-
pared with the typical optical-phonon vibrational modes.
Figures 6 and 7 show the different energy contributions to
the chain during the dynamics and the instantaneous occupa-
tion numbers for states near the energy gap, respectively. As
before, due to broad nature of its transition frequencies the
flexible chain absorbs 1.36 eV more energy from the field,
with a wider range of electronic levels being populated dur-
ing the process. The large-scale oscillations observed previ-
ously in the average electronic and nuclear energy for the
flexible chain �Figs. 2�a� and 2�b�� are no longer present.

The origin of this difference in behavior is readily iden-
tified by considering the bond length alternation and the
single particle spectrum during the dynamics �Fig. 8�. During
the first 400 fs the bond length alternation and the transition
frequencies display minor oscillations. These oscillations
arise because our initial state is not an exact eigenstate of the
Hamiltonian due to ground state residual lattice anharmonici-
ties. Upon photoexcitation the bond lengths in the chain
slowly equalize in order to improve electronic delocalization
along the chain that permits accommodating the electrons
that have been photoexcited. After the pulse the bond length
alternation settles at �0.03 Å. These changes in the lattice

geometry are accompanied by a 0.7 eV redshift of the energy
gap. However, contrary to the dynamics under the 10 fs
pulse, the lattice does not establish a breathing motion. In-
stead the mean geometrical observables and spectroscopic
quantities display a slow and steady change from the per-
fectly dimerized lattice to a chain with increased electronic
delocalization. In essence, the frequency width of the pulse is
not broad enough to bring about a coherent breathing motion
of the chain. The latter requires participation of many vibra-
tional states. These features of the vibronic dynamics in-
duced by 300 fs pulses also persist when considering longer
oligomers.

Decoherence occurs slowly and steadily during the time
that the system is being driven by the laser field �Fig. 9�. No
modulations of Tr �2 or further decoherence are observed
after the pulse, and Tr �2 /Tr �pure

2 stabilizes at �0.88. Com-
putations discussed below show that the electronic dephasing
time is of the order of 2.5 fs. Hence, the limiting step in the
decoherence process is not the rate at which lattice-induced
decoherence occurs, but the rate at which the field is able to
establish new superposition states that then rapidly decohere.

3. How fast is the electronic dephasing?

A measure of the timescale for the electronic dephasing
induced by intramolecular vibrational motions can be ob-
tained by following the field-free evolution of neutral chains
initially in an electronic superposition state. In a full quan-
tum mechanical analysis, nuclear evolution on alternative
electronic potential energy surfaces leads, in general, to elec-

FIG. 7. Occupation numbers of the instantaneous
eigenstates near the energy gap during the dynamics
induced by pulse f1 with 
�=1.3 eV and �2�−2��

=0. �A� The rigid chain and �B� flexible case.

FIG. 8. �Color� The vibronic dynam-
ics of PA induced by pulse f1 with

�=1.18 eV and �2�−2��=0. The
upper panel shows contours of the
bond length alternation parameter �de-
fined in Eq. �21��. The lower panel
shows the mean instantaneous ener-
gies for the single-particle states near
the energy gap.
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tronic coherence loss. In our quantum-classical picture the
electronic dephasing is captured by the distribution and evo-
lution of orbital energies contained within the initial en-
semble �recall Table II�.

A detailed calculation reveals the features of this dephas-
ing. Figure 10 shows the time-dependence of the polarization
for PA oligomers initially prepared in a superposition
�	�0��= �1 /�2���G�+ �E��, where �G� and �E� are the
N-particle ground and first-excited electronic states, respec-
tively. The initial nuclear distribution is taken to be the one
obtained in the ground electronic surface, and �E�
=c��+1,s�

† c��,s��G� is generated by instantaneously promoting
an electron from the HOMO to the LUMO orbital of the
chain, so that ��=N /2. For chains with four sites the polar-
ization displays a fast initial decay, and observes recurrences
every �30 fs. In a full quantum mechanical analysis these
recurrences arise from the time dependence of the overlap of
the nuclear wave functions in the ground and excited elec-
tronic states. In this quantum-classical picture, the recur-
rences are captured by the time-dependence of the orbital
energies during the dynamics. Note that between consecutive
recurrences the amplitude of the polarization gets reduced
and ���t�� dies in hundreds of femtoseconds. For longer
chains these recurrences are less important and the dephasing
time is basically determined by the initial decay of the po-
larization which occurs in less than 10 fs, with a character-
istic timescale of 2.5 fs. These timescales are in agreement
with electronic dephasing timescales that have been deter-
mined in other systems using a fully quantum treatment.42

C. Laser-induced symmetry breaking

In the previous sections we identified important ways in
which the vibronic couplings influence the photoinduced dy-
namics of �-conjugated systems. The coupling introduces:
�i� broadening of the electronic transitions �see Table II and
Figs. 3 and 7�, �ii� pronounced changes in the mean single-
particle spectrum �see Figs. 4 and 8�, �iii� internal relaxation
mechanisms, and �iv� ultrafast dephasing �see Figs. 5, 9, and
10�. Because of this, when using lasers to control a dynami-
cal process in this class of systems, the laser frequencies may
become detuned from the desired transition and the control
may be diminished by broadening of the electronic levels
and internal relaxations. Here we investigate the extent to
which these additional complexities affect the ability to in-
duce symmetry breaking using the � versus 2� coherent
control scenario.

The results presented in this section focus on effects that
depend on the relative phase of the laser field. This is be-
cause symmetry breaking contributions that depend on the
carrier envelope phase are typically difficult to control �al-
though not impossible, see e.g., Ref. 43� since it requires an
experimental arrangement that permits locking the carrier en-
velope phase of the incident radiation and that controls the
position of the center of mass of the molecule with respect to
the laboratory reference frame. This contrasts with relative-
phase control that is unaffected by the center of mass motion
and only requires manipulating the relative phase between
the two central frequency components of the �+2� field.

We consider the evolution of rigid and flexible chains
under the influence of the laser pulses in Table I, for different
laser frequencies. The parameters chosen for the laser pulses
encompass four illustrative cases: dynamics induced by weak
and moderately strong pulses with time envelopes that are
either short or long with respect to the typical 30–40 fs
optical-phonon vibrational period. Specifically, pulses f1 and
f2 induce weak- and strong-field dynamics, respectively,
when the time-width of the pulse is relatively long �300 fs�.
By contrast, pulses f3 and f4 offer insight into the weak- and
strong-field control when the laser pulses are short �10 fs�,
and of the order of the electronic dephasing time, permitting
only a limited degree of excited state dynamics during the
pulse.

Consider first the dynamics in the weak-field/long-pulse
�f1� and strong-field/short-pulse �f4� regimes. The relevant
observable here is the polarization of the chain ���t�� �Eq.
�23�� which quantifies the symmetry breaking. Figure 11
shows representative results. Initially ���=0, reflecting the
symmetric distribution of electrons over the chain. As soon

FIG. 9. Decoherence during the dynamics of the flexible chain induced by
pulse f1 �300 fs wide, centered at 900 fs� with 
�=1.18 eV and �2�

−2��=0.

FIG. 10. Time-dependence of the polarization ���t�� for neutral flexible PA
chains with N sites. The initial state is a superposition, with equal coeffi-
cients, between the ground and first excited electronic states. The nuclei are
taken to be initially in the ground-state configuration.
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as the laser is turned on, dipoles are induced in the system,
oscillating with the frequencies of the field and various har-
monics. The harmonic of interest is the zero-frequency �dc�
component, appearing at the third, fifth, etc., order response
to the �+2� field. These harmonics can be extracted by
integrating the signal over time �see Eq. �24��, yielding the
cumulative dipoles �C�t�� shown in Figs. 11�c� and �C��. We
denote the mean asymptotic value of �C�t�� after the pulse as
�C����. As can be seen, all symmetry breaking effects in-
duced by the �+2� field are achieved while the system is
being driven by the laser field. Once the field is turned off,
the zero-frequency component disappears so that �C�t�� be-
comes constant and net dipoles no longer persist. This is
because systems with discrete, nondegenerate, spectra cannot
sustain net dipoles after the pulse.

In the rigid case the zero-frequency term constitutes an
important component of ���t�� and both f1 and f4 pulses
generate a net dipole while the pulse is on. By contrast, when
pulse f1 is applied on the flexible chain �Fig. 11 upper pan-

els� the electron-vibrational couplings mute most of the ef-
fect. However, by applying a shorter pulse �lower panels� it
is possible to generate net dipoles that are of the same order
of magnitude as the ones observed for the rigid chain. In
essence, by using shorter pulses one is limiting the detrimen-
tal effects that the excited state vibronic couplings exert on
the control.

A complementary perspective on the influence of the vi-
bronic couplings on the photoinduced control is obtained by
considering the dependence of the symmetry breaking effect
on the laser frequency �. Figure 12 shows the asymptotic
cumulative dipoles �C���� observed in flexible and rigid
chains after photoexcitation with pulses f1–f4 for different
laser frequencies. In the rigid case, the � versus 2� coherent
control scenario is very robust, inducing net dipoles at most
driving frequencies and with pulses of any time-width and
intensity. The effect shows sharp resonances at selected fre-
quencies. The origin of these resonances can be identified by
comparing the control map to the single particle spectrum of

FIG. 11. First moment of the charge
distribution during and after photoex-
citation with a symmetry breaking �
+2� laser field. �A� The flexible and
�B� the rigid chain under the influence
of pulse f1 with 
�=1.18 eV and
�2�−2��=0. �C� The resultant cumu-
lative dipoles �C�t�� ��black line� flex-
ible chain and �gray line� rigid case�.
Parts �A��– �C�� as in �A�–�C� but for
the f4 pulse with 
�=1.3 eV and
�2�−2��=0.

FIG. 12. Frequency dependence of the
degree of symmetry breaking gener-
ated by an �+2� field in rigid �gray�
and flexible �black� PA oligomers with
20 sites. The initial energy gap of the
oligomer is 2�=1.8 eV. The plots
show the asymptotic cumulative di-
pole �C���� after photoexcitation with
pulses �A� f1, �B� f2, �C� f3, and �D�
f4, using �2�−2��=0.
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the rigid chain �Table II�. Consider, for instance, the reso-
nances displayed in Fig. 12�a� at 
�=0.9, 1.18, and 1.42 eV.
At these frequencies the quantity 2� coincides with the
HOMO→LUMO, HOMO→LUMO+1 �or HOMO−1
→LUMO�, and HOMO−1→LUMO+1 transition frequen-
cies, respectively. By applying stronger pulses �e.g., Fig.
12�b�� it is possible to exploit high order multiphoton pro-
cesses to generate dc terms, resulting in a complicated fre-
quency dependence of the degree of control.

The control map in the flexible chain is remarkably dif-
ferent. In flexible chains, in order to generate appreciable
symmetry breaking it is necessary to work with either suffi-
ciently short pulses, so that only limited excited state dynam-
ics occurs during the pulse �Figs. 12�c� and 12�d��, or to
apply stronger fields, as in Fig. 12�b�, in which the evolution
imposed by the field becomes dominant. When using short
pulses, the resonance structure previously observed in the
rigid-chain control case is partially maintained. However, in
the case of long pulses the fine features observed in the rigid
chain are washed away by the broadening of the electronic
transitions, with only the rough features in the control map
being maintained. Interestingly, when applying short pulses
at selected frequencies it is possible to obtain a higher degree
of symmetry breaking in the flexible chain than in the rigid
chain. However, the maximum control attainable �as a func-
tion of �� is always attenuated by the electron-vibrational
couplings.

Importantly, in all cases the sign and magnitude of sym-
metry breaking can be manipulated by varying the relative
phase between the two components of the field. Figure 13
exemplifies this dependence for selected frequencies and
pulses. The electron-vibrational couplings in the system do
not destroy the phase control of the electronic dynamics, but
merely attenuate its magnitude. It follows then that it is pos-
sible to use the techniques of coherent control to manipulate
electronic dynamics even in the presence of significant vi-
bronic couplings. The attenuation of the effect can be over-
come by using stronger pulses or by working with laser
pulses that are short or comparable with the timescale for
electronic dephasing. Similar results were found in sample
studies on longer chains.

IV. CONCLUSIONS

We have investigated the possibility of inducing elec-
tronic transport in conjugated polymers by irradiating the
sample with �+2� lasers. To do so, we have followed the
highly nonlinear dynamics of the electronic and vibrational
degrees of freedom in trans-polyacetylene oligomers in the
presence of �+2� laser pulses of different durations and

intensities, and for a variety of frequencies. The simulations
are performed in the mean-field approximation, in which the
nuclei are treated classically and the electrons quantum me-
chanically. The dynamics is followed for an ensemble of
lattice initial conditions obtained by sampling the ground-
state nuclear Wigner distribution function in the harmonic
approximation.

Several important ways in which the electron-vibrational
couplings in �-conjugated systems modify the photoinduced
dynamics have been identified. The vibronic couplings intro-
duce broadening of the electronic transitions and can cause
ultrafast dephasing in the electronic dynamics, as well as
pronounced changes in the mean single-particle spectrum
and intramolecular vibrational energy redistribution.

The simulations reveal that the vibronic couplings can
have strong detrimental effects on the control. In fact, it is
difficult to induce and control electronic transport when the
laser pulses are longer than the typical carbon-carbon vibra-
tional period of �30 fs, unless the pulse intensities are
strong enough to completely dominate the dynamics. How-
ever, even in the presence of significant vibronic couplings,
limited laser control of the electronic dynamics is possible
via the use of pulses whose durations are comparable to the
electronic dephasing timescale ��10 fs�.

These results provide insight into the way coherent con-
trol works in large molecular systems with significant
electron-vibrational couplings, and offer a characterization of
the timescale of decay of photoinduced breathers in conju-
gated polymers. We expect that the set of phenomena inves-
tigated here will be of generic importance in a wide range of
materials characterized by significant electron-vibrational
couplings.
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