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ABSTRACT
We introduce a simple and effective method to decompose the energy dissipation in the dynamics of open quantum systems into contri-
butions due to individual bath components. The method is based on a vibronic extension of the Förster resonance energy transfer theory
that enables quantifying the energy dissipated by specific bath degrees of freedom. Its accuracy is determined by benchmarking against
mixed quantum–classical simulations that reveal that the method provides a semi-quantitative frequency-dependent decomposition of
the overall dissipation. The utility of the method is illustrated by using a model donor–acceptor pair interacting to a thermal harmonic
bath with different coupling strengths. The method can be used to identify the key features of a bath that leads to energy dissipation as
required to develop a deep understanding of the dynamics of open quantum systems and to engineer environments with desired dissipative
features.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0038967., s

I. INTRODUCTION

Open quantum system dynamics refers to the evolution of a
quantum subsystem interacting with an environment.1,2 This setup
describes a vast range of chemical processes that occur in the con-
densed phase, in which the behavior of a few relevant molecular
degrees of freedom (DOFs) of interest are influenced by a macro-
scopic thermal environment. An important class of environments
is those that can be described as a collection of harmonic oscilla-
tors,3 such as photonic, vibrational, and solvation environments.4,5

For harmonic baths, the key quantity to describe the subsystem–bath
interaction is the bath spectral density (BSD), which characterizes
the profile of the subsystem–bath coupling strength for different
bath frequencies. The shape of the BSD shows great diversity, as
can be observed from various analytic models6–9 and realistic mod-
els obtained from atomistic simulations.10–12 The effect of the bath
on the subsystem is intricately related to the BSD.

To better understand the dynamics of an open quantum sys-
tem, it is highly desirable to be able to resolve the effects arising from
individual bath components and, in particular, their contributions to

the overall energy dissipation. In this manner, one can gain knowl-
edge about the relaxation channels of the system and related time
scales, as needed to develop a clear picture of the major factors gov-
erning the dynamics. Such investigations are essential to address the
grand challenge of controlling the open quantum system dynamics
through reservoir engineering.13–16

However, direct calculation of dissipation routes is challenging
as it requires dynamical information about the environment. In
the context of electron–nuclear problems, where vibrations pro-
vide a thermal environment for the electrons, a popular strategy is
to explicitly include the vibrational modes in the subsystem
and follow the dynamics of the resultant electronic-vibrational
(vibronic) Hilbert space.17–19 However, this approach can only treat
a small number of vibrational modes at once, due to the exponen-
tial increase in computational cost with subsystem dimensionality.
Efficient wavefunction propagation schemes such as multi-
configurational time-dependent Hartree (MCTDH)20–22 and time-
dependent density matrix renormalization group (TD-DMRG)23–25

can treat relatively large dimensionalities in a formally exact man-
ner, although simulating nonzero temperatures usually requires
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truncation of the vibrational subspace to reduce the computational
cost,26,27 leading to modest accuracy. This is particularly trouble-
some for treating the low-frequency part of the BSD, for which many
levels are significantly occupied at room temperature.

Mixed quantum–classical simulation methods28–31 can be used
to directly calculate dissipation from the positions and momenta of
classical bath trajectories, by splitting the total energy of the system
into contributions from the subsystem and individual bath modes.
The advantages of this strategy are that the computational cost only
increases linearly with the number of vibrational modes and that
truncation of the vibrational Hilbert space is not needed. However,
to obtain statistically meaningful results, one still needs to prop-
agate a large number of trajectories with a small integration time
step.19

Therefore, there is a primary need for new strategies that can
efficiently resolve the overall dissipation into contributions from
individual bath components.

In this work, we develop an efficient dissipation rate equa-
tion for molecular systems coupled to harmonic environments that
conveniently decomposes the overall dissipation into contributions
from individual vibrational modes with a significantly low compu-
tational cost. We accomplish this by extending Förster resonance
energy transfer (FRET) theory32 into vibronic subsystems and per-
forming an analytical summation over the vibrational Hilbert space.
The accuracy of our theory is assessed by benchmarking against
the dissipation calculated by a mixed quantum–classical simulation
method, specifically, the Poisson bracket mapping equation with a
non-Hamiltonian modification (PBME-nH). An extensive bench-
mark against a numerically exact simulation method has shown
that PBME-nH provides qualitatively correct results for moderate
subsystem–bath couplings.19

This paper is organized as follows: In Sec. II, we introduce
the Hamiltonian model and theory underlying our work and derive
expressions for calculating dissipation rates. Section III illustrates
the basic features of the theory and provides benchmark computa-
tions. Section IV uses these expressions to analyze the physical origin
of frequency dependence of dissipation in a model donor–acceptor
system each coupled to a harmonic bath. Section V summarizes the
main findings, and discusses the computational cost and the future
prospects for the proposed strategy.

II. THEORY
The developed theory is based on FRET, which describes the

transfer of electronic excitation among weakly interacting chro-
mophore molecules. Below, we review FRET and its basic assump-
tions and use this theoretical framework to capture the dissipation
by individual vibrational modes. This is done by explicitly including
the vibrational mode into the subsystem and constructing vibronic
FRET equations. As discussed, we analytically combine microscopic
energy transfer events between all pairs of vibronic states, to isolate
convenient expressions for calculating dissipation.

A. Hamiltonian
Consider N two-level molecules composed of their ground and

first excited electronic states, each of them interacting with a local

harmonic environment. We focus on the transfer of electronic exci-
tation in the single-excitation manifold {|A⟩}, where |A⟩ describes
a state for which only molecule A is in its excited state, while the
rest are in their ground state. We write the total electron–nuclear
Hamiltonian of the system as

Ĥ = Ĥe + Ĥn + Ĥe-n + Ĥλ + ĤCoul. (1)

Here,

Ĥe =
N

∑
A=1

EA0∣A⟩⟨A∣ (2)

is the bare electronic Hamiltonian where EA0 is the zero-phonon
(0–0) transition energy between the ground and excited states of
molecule A. The nuclear DOFs are described by a collection of
quantum harmonic oscillators,

Ĥn =
N

∑
A=1
∑
k
(
p̂2
Ak

2
+
ω2
Ak

2
x̂2
Ak), (3)

where the origin of the coordinates defines the minimum of the
ground-state potential energy surface (PES). Here, the operators p̂Ak
and x̂Ak are the mass-weighted momentum and coordinate opera-
tors of the kth vibrational mode coupled to molecule A. In turn, the
vibronic coupling Hamiltonian

Ĥe-n =
N

∑
A=1
(∣A⟩⟨A∣ ⊗∑

k
ω2
AkdAkx̂Ak) (4)

modifies the energy gap between the ground and excited state PESs
along the vibrational coordinates {xAk}. The strength of the vibronic
coupling along xAk is proportional to the displacement dAk between
the ground and excited state PESs. The reorganization Hamiltonian,

Ĥλ =
N

∑
A=1

λA∣A⟩⟨A∣, (5)

where λA = ∑k(ω
2
Akd

2
Ak/2) is the reorganization energy of molecule

A, accounts for the difference between the vertical and zero-phonon
transition energies induced by the vibronic coupling [Eq. (4)].
Finally,

ĤCoul =
N

∑
A=1
∑
B<A

VAB∣A⟩⟨B∣ + H.c. (6)

is the Coulombic coupling Hamiltonian that describes the inter-
molecular coupling. Here, VAB = VBA is the electronic coupling
between molecules A and B, which is assumed to be independent
on the bath coordinates, and H.c. denotes the Hermitian conjugate.

For future reference, we introduce the BSD,

JA(ω) = ∑
k
h̵ω2

AksAkδ(ω − ωAk), (7)
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where

sAk =
ωAkd2

Ak

2h̵
(8)

is the dimensionless Huang–Rhys factor that quantifies the strength
of vibronic coupling. We also introduce the single-mode reorgani-
zation energy λAk,

λAk =
ω2
Akd

2
Ak

2
= h̵ωAksAk, (9)

which satisfies ∑kλAk = λA. Combining Eqs. (7) and (9) gives the
relation between the BSD and the reorganization energy,

λA = ∫
∞

0

JA(ω)
ω

dω. (10)

B. Förster resonance energy transfer
The total Hamiltonian [Eq. (1)] is treated in the framework of

perturbation theory by writing Ĥ = Ĥ0 + Ĥ1, where

Ĥ0 = Ĥe + Ĥn + Ĥe-n + Ĥλ,

Ĥ1 = ĤCoul.
(11)

FRET theory supposes that: (1) The inter-molecular coupling VAB
is much smaller than either the excitation energy gap |EA0 − EB0|
or the standard deviation of the vibronic coupling ⟨Ĥ2

e-n⟩
1/2 so that

Ĥ1 can be treated perturbatively. (2) Markovian bath, so the nuclear
DOFs instantly relax to the equilibrium. (3) A local nuclear ther-
mal equilibrium defined by the Hamiltonian ⟨A∣Ĥ0∣A⟩. That is, the
vibrational modes coupled to molecule A relax to the excited state
equilibrium, while the other modes relax to the ground-state equilib-
rium. This reflects that FRET describes each molecule as a separate
entity, which is valid for small VAB.

By applying Nakajima–Mori–Zwanzig projection operator
techniques under these assumptions and keeping terms up to
second-order in VAB,33 one arrives at

ṖA(t) = ∑
B≠A
[−KBAPA(t) + KABPB(t)], (12)

where PA(t) is the population of the state |A⟩ at time t and KBA is
the rate constant for the population transfer from |A⟩ to |B⟩. Note
that Eq. (12) focuses on the populations and neglects any effects of
coherence between chromophores, which is valid when the effect of
Ĥ1 is small. The FRET rate constants are evaluated according to

KBA =
2∣VBA∣

2

h̵2 Re∫
∞

0
F∗A (t)AB(t) dt, (13)

where FA(t) and AB(t) are defined by

FA(t) ≡ exp[−
it
h̵
(EA0 − λA) − g∗A(t)],

AB(t) ≡ exp[−
it
h̵
(EB0 + λB) − gB(t)].

(14)

Here, gA(t) is the line broadening function,

gA(t) =
1
h̵ ∫

∞

0
JA(ω)[coth(

βh̵ω
2
)

1 − cos(ωt)
ω2

+ i
sin(ωt) − ωt

ω2 ] dω, (15)

where β = 1/kBT and kB is Boltzmann’s constant. The physical mean-
ing of Eq. (13) becomes more apparent if we express it with the
Fourier-transformed quantities,

FA(ω) =
1

2π ∫
∞

−∞
FA(t)eiωt dt, (16a)

AB(ω) =
1

2π ∫
∞

−∞
AB(t)eiωt dt, (16b)

which are actually the spectra for the fluorescence of molecule A and
the absorption of molecule B, whose areas are normalized to unity.
Due to the relations F(t) = F∗(−t) and A(t) = A∗(−t), F(ω) and
A(ω) are real quantities. Rewriting Eq. (13) by using Eq. (16) leads
to

KBA =
2π∣VBA∣

2

h̵2 ∫

∞

−∞
FA(ω)AB(ω) dω. (17)

Equation (17) shows that the FRET rate constantKAB is proportional
to the overlap integral between the donor fluorescence line shape
FA(ω) and the acceptor absorption line shape AB(ω).

C. vFRET: Extension of FRET to vibronic dynamics
To capture the dissipation into individual vibrational modes, it

is necessary to simulate correlated quantum dynamics between elec-
tronic and vibrational DOFs. To do so, we take advantage of the
structure of FRET and extend its applicability to capture vibronic
dynamics. We call the resulting theory vibronic FRET (vFRET).

We start by decomposing the full Hamiltonian [Eq. (1)] into

Ĥ = Ĥe + ĤCoul +∑
A
∑
k
ĤAk, (18)

where, in the right-hand side of Eq. (18), Ĥe + ĤCoul is the electronic
contribution, while ∑A,k ĤAk is the vibrational contribution. The
Hamiltonian component ĤAk for an individual vibrational mode of
index Ak is

ĤAk = ∣A⟩⟨A∣ ⊗ ĥAk,e + ∑
B≠A
∣B⟩⟨B∣ ⊗ ĥAk,g , (19)

where

ĥAk,g =
p̂2
Ak

2
+
ω2
Ak

2
x̂2
Ak, (20a)

ĥAk,e =
p̂2
Ak

2
+
ω2
Ak

2
(x̂Ak + dAk)

2 (20b)

are the ground and excited state PESs of the vibrational mode Ak.
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We investigate the energy flow into a given vibrational mode
by re-assigning it from the bath to the subsystem and consider
the dynamics in the vibronic subsystem formed by the electronic
DOFs and the re-assigned vibrational mode (RAVM). We assume
that the RAVM couples to molecule A and denote its index as v.
As a complete basis for the vibronic subsystem, we pair |A⟩ with
the excited state vibrational eigenstates {|Ie⟩} of ĥAk,e and all other
electronic states {|B⟩} with the ground-state vibrational eigenstates
{|Jg⟩} of ĥAk,g . According to the second and third assumptions of
FRET, the RAVM is always in the local thermal equilibrium of
the nuclear PESs ⟨A∣ĤAk∣A⟩ = ĥAk,e or ⟨B∣ĤAk∣B⟩ = ĥAk,g . There-
fore, an advantage of using the {|A⟩|Ie⟩} and {|B⟩|Jg⟩} bases is that
there is no coherence so that the vibronic population transfer can be
described in the framework of FRET. From now on, we denote {|A, I⟩
≡ |A⟩|Ie⟩} and {|B, J⟩ ≡ |B⟩|Jg⟩}. Figure 1 schematically illustrates the
population transfer between the subsystem basis states of the elec-
tronic and vibronic descriptions. Accordingly, we re-write the total
Hamiltonian [Eq. (1)],

Ĥ = Ĥ′e + Ĥ′n + Ĥ′e-n + Ĥ′λ + Ĥ′Coul, (21)

where each Hamiltonian component is the vibronic generalization
of the corresponding component without prime in Eq. (1). To con-
struct them, we take into account that the RAVM is now re-assigned
to the subsystem and, hence, not included in the bath any more. That
is, the electronic Hamiltonian is now

Ĥ′e = {EA0 + h̵ωAv(I +
1
2
)}∣A, I⟩⟨A, I∣

+ ∑
B≠A
[{EB0 + h̵ωAv(J +

1
2
)}∣B, J⟩⟨B, J∣], (22)

FIG. 1. The population transfer from molecule A to molecule B depicted in (a) the
electronic description and (b) the vibronic description formed by explicit treatment
of re-assigned vibrational mode (RAVM).

where we have added the vibrational eigenenergies of the RAVM to
EA0 and EB0. The quantity

Ĥ′n = ∑
k≠v
(
p̂2
Ak

2
+
ω2
Ak

2
x̂2
Ak) + ∑

B≠A
∑
k
(
p̂2
Bk

2
+
ω2
Bk

2
x̂2
Bk) (23)

defines the ground-state PES without the RAVM. In turn,

Ĥ′e-n = (∑
I
∣A, I⟩⟨A, I∣) ⊗

⎛

⎝
∑
k≠v

ω2
AkdAkx̂Ak

⎞

⎠

+ ∑
B≠A

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∑
J
∣B, J⟩⟨B, J∣

⎞

⎠
⊗ (∑

k
ω2
BkdBkx̂Bk)

⎤
⎥
⎥
⎥
⎥
⎦

(24)

is the vibronic coupling Hamiltonian without the RAVM. Here, we
have taken into account that all vibrational modes are independent
of each other, and therefore, Ĥ′e-n still adopts a direct product form
as in Eq. (4). The reorganization Hamiltonian is now

Ĥ′λ = ∑
I
λA−∣A, I⟩⟨A, I∣ + ∑

B≠A
∑
J
λB∣B, J⟩⟨B, J∣, (25)

where we have replaced λA in Eq. (5) by λA− ≡ λA − λAv, to take into
account that the contribution of the RAVM needs to be removed.
The coupling between the vibronic states is

Ĥ′Coul =

⎛
⎜
⎜
⎝

∑
B<A
∑
I,J

VAB⟨Ie∣Jg⟩∣A, I⟩⟨B, J∣

+ ∑
B≠A
∑
C≠A
C<B

∑
J,J′

VBCδJJ′ ∣B, J⟩⟨C, J′∣
⎞
⎟
⎟
⎠

+ H.c.. (26)

The inter-chromophore couplings in Eq. (26) are now scaled by
the overlap between the vibrational eigenstates of the RAVM. The
equivalence between Eqs. (1) and (21) can be verified by evaluating
the Hamiltonian matrix elements in the {|A, I⟩, |B, J⟩} basis by using
both representations.

To calculate the dissipation by RAVM, we need to determine its
energy. For this, we construct expressions that govern the vibronic
population transfer by applying FRET to Eqs. (21)–(26). This can be
achieved by modifying the electronic expressions [Eqs. (12)–(14)]
by using the vibronic quantities in Eqs. (21)–(26). We start from the
rate equations for vibronic populations, which are generalizations of
Eq. (12) to the vibronic description,

ṖAI(t) = ∑
B≠A
∑
J
[−KBJ,AIPAI(t) + KAI,BJPBJ(t)], (27a)

ṖBJ(t) = ∑
I
[−KAI,BJPBJ(t) + KBJ,AIPAI(t)]

+ ∑
C≠A
C≠B

∑
J′
[−KCJ′ ,BJPBJ(t) + KBJ,CJ′PCJ′(t)]. (27b)

Note that we are separately treating {|A, I⟩} and {|B, J⟩} in Eq. (27)
to distinguish the ground and excited vibrational quantum states for
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the RAVM. We also took into account that KAI ,AI ′ = KBJ ,BJ ′ = 0,
as there is no coupling between such vibronic state pairs accord-
ing to Eq. (26). This reflects that the bath is always in the thermal
equilibrium, and therefore, there is no direct population transfer
within the vibrational manifold of a single molecule. We classify
the nonzero vibronic rate constants in Eq. (27) into three types.
The rate constants {KBJ ,AI} and {KAI ,BJ} govern the outward and
inward population transfer with respect to molecule A that is cou-
pled to the RAVM. These two types of vibronic population trans-
fers change the PES of the RAVM and induce vibrational relaxation
of the RAVM. On the other hand, {KBJ ,CJ ′ } keeps the RAVM at
the ground-state PES and, hence, does not involve any vibrational
relaxation of RAVM.

The expressions for vibronic rate constants in Eq. (27),

KBJ,AI =
2∣VBA∣

2

h̵2 ∣⟨Jg ∣Ie⟩∣2 Re∫
∞

0
F∗AI(t)ABJ(t) dt,

KAI,BJ =
2∣VAB∣

2

h̵2 ∣⟨Ie∣Jg⟩∣2 Re∫
∞

0
F∗BJ(t)AAI(t) dt,

KCJ′ ,BJ =
2∣VBC∣

2

h̵2 δJJ′ Re∫
∞

0
F∗BJ(t)ACJ′(t) dt,

(28)

can be constructed from the electronic rate constant [Eq. (13)] by
replacing the electronic coupling VAB by the scaled couplings in
Eq. (26) and the fluorescence and absorption line shapes F(t) and
A(t) by their vibronic analogs determined by

FAI(t) = exp[−
it
h̵
{EA0 + h̵ωAv(I +

1
2
) − λA−} − g∗A−(t)], (29a)

AAI(t) = exp[−
it
h̵
{EA0 + h̵ωAv(I +

1
2
) + λA−} − gA−(t)], (29b)

FBJ(t) = exp[−
it
h̵
{EB0 + h̵ωAv(J +

1
2
) − λB} − g∗B (t)], (29c)

ABJ(t) = exp[−
it
h̵
{EB0 + h̵ωAv(J +

1
2
) + λB} − gB(t)]. (29d)

Equation (29) is deduced by generalizing the electronic line shapes
[Eq. (14)] by (i) converting the electronic state energies to the
vibronic state energies [Eq. (22)] and (ii) removing the contribu-
tion of the RAVM from the bath-related quantities in Eqs. (29a) and
(29b). As a result, λA and gA(t) in Eq. (14) are replaced by λA− and
gA−(t) defined by

gA−(t) ≡ gA(t) − gAv(t), (30)

where gAv(t) is the line broadening function of the RAVM,

gAv(t) = sAv[coth(
βh̵ωAv

2
)[1 − cos(ωAvt)]

+ i [sin(ωAvt) − ωAvt]], (31)

evaluated by plugging the spectral density of the RAVM JAv(ω)
= h̵ω2

AvsAvδ(ω − ωAv) [Eq. (7)] into Eq. (15). Meanwhile, λB and
gB(t) in Eqs. (29c) and (29d) remain unaffected because the exclu-
sion of the RAVM from the bath only changes the bath structure of
molecule A, as can be seen from Eqs. (23) and (24).

Equations (27)–(29) form vFRET theory. We note that these
expressions can be rigorously obtained by applying the projection
operator technique to Eqs. (21)–(26), and our approach is just a
convenient shortcut for the derivation. The physical consistency of
vFRET is demonstrated in Appendix A by showing that the net elec-
tronic population transfer in FRET and vFRET coincide. Indeed, as
the electronic and vibronic descriptions in Fig. 1 are just two differ-
ent representations of the same Hamiltonian, their physical behav-
iors must be the same. However, do note that to make the FRET and
vFRET identical, it is necessary to impose the Markov approxima-
tion on the RAVM. That is, to insist that the vibronic populations
always satisfy

PAI(t) = wIPA(t), PBJ(t) = wJPB(t), (32)

where wI and wJ are the Boltzmann weights for the vibrational
eigenstates of the RAVM,

wI =
1
Z

exp[−βh̵ωAv(I +
1
2
)],

wJ =
1
Z

exp[−βh̵ωAv(J +
1
2
)],

(33)

with the partition functionZ = [2 sinh(βh̵ωAv/2)]−1. Equations (32)
and (33) are not automatically satisfied by Eqs. (27) and (28), and
the vibronic populations within each molecule must be redistributed
according to Eqs. (32) and (33) after every integration time step.

D. Dissipation rate equation
With the rate equations for the vibronic state populations

[Eqs. (27)–(29)], it is now possible to derive the dissipation rate
equation for the RAVM. We define the energy contained in the
RAVM as the weighted average of the vibrational eigenenergies,

EAv(t) = ∑
I
h̵ωAv(I +

1
2
)PAI(t)

+ ∑
B≠A
∑
J
h̵ωAv(J +

1
2
)PBJ(t), (34)

as there are no coherences between the vibronic states {|A, I⟩}
and {|B, J⟩} in vFRET due to the second and third assumptions of
FRET. Meanwhile, the populations of the vibronic states must sat-
isfy Eqs. (32) and (33) at every instance. Plugging these equations
into Eq. (34) gives

EAv(t) = ∑
I
wI h̵ωAv(I +

1
2
), (35)

which is constant over time and, hence, does not capture the dissi-
pation. This is because the Markov approximation [Eq. (32)] insists
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that any extra vibrational energy gained by dissipation must be
quenched instantly. Nevertheless, we can still determine the amount
of dissipated energy by differentiating Eq. (34) with respect to time
and expressing the time derivatives of vibronic populations by using
Eq. (27). That is,

ĖAv(t) = ∑
B≠A
∑
I,J

h̵ωAv(I − J)[−KBJ,AIPAI(t) + KAI,BJPBJ(t)]

+ ∑
B≠A
∑
C≠A
C<B

∑
J,J′

h̵ωAv(J − J′)[−KCJ′ ,BJPBJ(t) + KBJ,CJ′PCJ′(t)].

(36)

Equation (36) corresponds to the vibrational energy gained by the
RAVM per unit time and, therefore, is equivalent to the dissipation
rate. This gained energy is immediately lost by imposing Eq. (32), as
discussed in Sec. II C.

The amount of dissipation by the RAVM can now be calculated
by integrating Eq. (36) over time. However, this procedure involves
summations over infinite number of vibronic states and, hence, is
not very efficient. To develop much more practical expressions, we
express the vibronic populations and rate constants in Eq. (36) by
using Eqs. (28) and (32). This gives

ĖAv(t) = −
2∣VBA∣

2

h̵2 ∑
B≠A

PA(t)
⎡
⎢
⎢
⎢
⎣
∑
I,J

wI(I − J)h̵ωAv ∣⟨Jg ∣Ie⟩∣2

× Re∫
∞

0
F∗AI(t′)ABJ(t′) dt′

⎤
⎥
⎥
⎥
⎦

+
2∣VAB∣

2

h̵2 ∑
B≠A

PB(t)

×
⎡
⎢
⎢
⎢
⎣
∑
I,J

wJ(I − J)h̵ωAv ∣⟨Ie∣Jg⟩∣2Re∫
∞

0
F∗BJ(t′)AAI(t′) dt′

⎤
⎥
⎥
⎥
⎦

.

(37)

To simplify Eq. (37), we need to perform analytical summations
over vibrational quantum numbers I and J. As we are summing line
shapes weighted by the thermal population and vibrational overlap,
we are motivated to consider each of the sums as a spectral line
shape dressed by a thermal phonon. In the formulation presented
in Appendix B, we show that FA(ω) and AA(ω) are related to the
line shapes without the RAVM, FA−(ω) and AA−(ω), through the
following convolution relations:34

FA(ω) = ∫
∞

−∞
dω′ FA−(ω′)LAv(ω′ − ω), (38a)

AA(ω) = ∫
∞

−∞
dω′ AA−(ω′)LAv(ω − ω′), (38b)

where FA−(ω) and AA−(ω) are constructed from Eqs. (14) and (16)
by making substitutions λA → λA− and gA(t)→ gA−(t),

FA−(ω) =
1

2π ∫
∞

−∞
exp[−

it
h̵
(EA0 − λA−) − g∗A−(t)]e

iωt dt,

AA−(ω) =
1

2π ∫
∞

−∞
exp[−

it
h̵
(EA0 + λA−) − gA−(t)]eiωt dt,

(39)

and LAv(ω) is the phonon sideband of the RAVM,

LAv(ω) = ∑
I,J

wJ ∣⟨Ie∣Jg⟩∣2δ(ω − (I − J)ωAv). (40)

Combining Eqs. 29(a) and 29(b) with Eqs. (38)–(40) gives us the
relation between the electronic and vibronic line shapes,

∑
I,J

wI ∣⟨Jg ∣Ie⟩∣2FA(I−J)(t) = FA(t)e−iωAv t/2,

∑
I,J

wJ ∣⟨Ie∣Jg⟩∣2AA(I−J)(t) = AA(t)e−iωAv t/2.
(41)

To use Eq. (41), however, we first need to remove I − J from the pref-
actors of Eq. (37). This can be accomplished by using time deriva-
tives of F∗AI(t)ABJ(t) and F∗BJ(t)AAI(t), as both of them have I − J
in the exponential. As a result, we can derive the identities

(I − J)h̵ωAvF∗AI(t)ABJ(t)

= [ − (EA0 − λA− − EB0 − λB) − ih̵(ġA−(t) + ġB(t) +
d
dt
)]

×F∗AI(t)ABJ(t), (42a)

(I − J)h̵ωAvF∗BJ(t)AAI(t)

= [ − (EA0 + λA− − EB0 + λB) + ih̵(ġA−(t) + ġB(t) +
d
dt
)]

×F∗BJ(t)AAI(t). (42b)

We plug Eq. (42) in Eq. (37) and reallocate the dependence on I and
J solely to the vibronic line shapes of molecule A by using

F∗AI(t)ABJ(t) = F∗A(I−J)(t)AB(t)e−iωAv t/2,

F∗BJ(t)AAI(t) = F∗B(t)AA(I−J)(t)e
iωAv t/2.

(43)

Then, to the resulting expression, we can now use Eq. (41) to sum
FA(I−J)(t) and AA(I−J)(t). Furthermore, explicitly carrying out the
time derivative in the prefactor by using Eq. (14) makes most terms
cancel out and yields

∑
I,J
[wI(I − J)h̵ωAv ∣⟨Jg ∣Ie⟩∣2F∗AI(t)ABJ(t)]

= −[λAv − ih̵ġAv(t)]F∗A(t)AB(t),

∑
I,J
[wJ(I − J)h̵ωAv ∣⟨Ie∣Jg⟩∣2F∗BJ(t)AAI(t)]

= [λAv − ih̵ġAv(t)]F∗B(t)AA(t).

(44)

Here, we have used the relations λA − λA− = λAv and gA(t) − gA−(t)
= gAv(t) [Eq. (30)]. The prefactor on the right-hand side can be
further simplified by using Eqs. (9) and (31),

λAv − ih̵ġAv(t) = λAv[cos(ωt) − i coth(
βh̵ω

2
) sin(ωt)]. (45)
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Now, from Eqs. (44) and (45), we have

∑
I,J
[wI(I − J)h̵ωAv ∣⟨Jg ∣Ie⟩∣2 Re∫

∞

0
F∗AI(t)ABJ(t) dt]

= −[IBA(ωAv)]λAv ,

∑
I,J
[wJ(I − J)h̵ωAv ∣⟨Ie∣Jg⟩∣2 Re∫

∞

0
F∗BJ(t)AAI(t) dt]

= [IAB(ωAv)]λAv ,

(46)

where IBA(ω) and IAB(ω) are

IBA(ω) = Re ∫
∞

0
F∗A(t)AB(t)

× [cos(ωt) − i coth(
βh̵ω

2
) sin(ωt)] dt,

IAB(ω) = Re ∫
∞

0
F∗B(t)AA(t)

× [cos(ωt) − i coth(
βh̵ω

2
) sin(ωt)] dt.

(47)

Plugging Eq. (46) into Eq. (37) yields

ĖAv(t) = ∑
B≠A
[KBA

AvPA(t) + KAB
AvPB(t)], (48)

with the dissipation rate constants KBA
Av and KAB

Av given by

KBA
Av =

2∣VBA∣
2

h̵2 [IBA(ωAv)]λAv ,

KAB
Av =

2∣VAB∣
2

h̵2 [IAB(ωAv)]λAv .
(49)

To generalize Eqs. (48) and (49) to treat continuous BSDs, based
on Eq. (10), we make substitutions ωAv → ω and λAv → JA(ω)

ω dω
in Eq. (49) and define “dissipative spectral densities” JBA

A (ω) and
JAB
A (ω) as follows:

JBA
A (ω) ≡

2∣VBA∣
2

h̵2 IBA(ω)
JA(ω)
ω

,

JAB
A (ω) ≡

2∣VAB∣
2

h̵2 IAB(ω)
JA(ω)
ω

.
(50)

The dissipative spectral densities quantify the ability of the bath to
induce dissipation and are determined as products of the electronic
coupling VAB = VBA, [Eq. (47)], and the bath reorganization energy
per unit frequency JA(ω)/ω. Although the dissipative spectral densi-
ties are local in the frequency domain, they actually encode the full
structure of the environment as I(ω) is evaluated from the spectral
line shapes {F(t)} and {A(t)}. By substituting KBA

Av and KAB
Av in

Eq. (49) with JBA
A (ω) dω and JBA

A (ω) dω, we can express the rate of
dissipation in the frequency window [ω, ω+ dω] at time t as

DA(ω, t) dω = ∑
B≠A
[J BA

A (ω)PA(t) + J AB
A (ω)PB(t)] dω. (51)

Equation (51) is the main result of this work, which enables
us to calculate the time-dependent dissipation by specific regions
of BSD. Note that all the elements in Eq. (51) are expressed purely
in terms of electronic quantities, {FA(t)}, {AA(t)}, and {PA(t)}, so
the calculations can be done without directly accessing the vibra-
tional manifold. Because Eq. (51) contains {PA(t)}, calculating dis-
sipation requires knowledge of the electronic dynamics. In practice,
both the electronic rate constants {KAB} [Eq. (13)] and dissipative
spectral densities {JBA

A (ω), JAB
A (ω)} [Eq. (50)] are evaluated at the

start of the simulation. Then, {PA(t)} and {DA(ω, t)} are propagated
simultaneously by using Eqs. (12) and (51).

III. ACCURACY AND FEATURES OF vFRET
To assess the utility of Eq. (51) to investigate dissipation, we

benchmark it against PBME-nH,35 a mixed quantum–classical sim-
ulation method recently extended to calculate dissipation by indi-
vidual vibrational modes.19 PBME-nH is based on real-time evo-
lution of the nuclear phase space density and, thus, allows us to
test the assumptions behind vFRET theory such as the Marko-
vian approximation and the choice of thermal equilibrium for the
nuclear DOFs. Furthermore, PBME-nH provides consistent results
regardless of whether RAVM is included either in the subsystem or
bath (Fig. 1),36 which justifies our calculation of dissipation with-
out an explicit treatment of the RAVM. Despite these advantages,
PBME-nH is still an approximate method, so we further check its
accuracy by comparing the electronic dynamics to the results from
the numerically exact hierarchical equations of motion (HEOM)
method.37,38

We note that the formulation for PBME-nH dissipation in
Ref. 19 did not include the contribution from the mode reorgani-
zation energy λAk = ω2

Akd
2
Ak/2 [see the right-hand side of Eq. (20b)].

This makes the vibrational eigenenergies for the ground and excited
state PESs different and introduces spurious effects in the dissipa-
tion as the electronic populations change. Therefore, the PBME-
nH dissipation requires a slight modification as detailed in the
supplementary material.

Section III A describes the simulation procedure and the
model donor–acceptor complex employed to illustrate the theory.
Section III B presents the electronic dynamics of the model and
benchmarks FRET and PBME-nH against HEOM simulations.
Then, in Sec. III C, we compare the dissipation calculated by vFRET
and PBME-nH and numerically demonstrate that our vFRET theory
satisfies the detailed balance condition.

A. Simulation procedure
As a minimal model that allows simple interpretations, we

consider a donor–acceptor complex whose excitation energy dif-
ference is ED0 − EA0 = 400 cm−1 and the electronic couplings are
VDA = VAD = 50 cm−1. As |ED0 − EA0| ≫ VDA, the system satisfies
the first assumption of FRET that requires relatively weak electronic
coupling (Sec. II B). Each molecule is coupled to a Drude–Lorentz
spectral density,

JD(ω) = JA(ω) =
2λph

π
ωcω

ω2 + ω2
c

, (52)
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where λph is the reorganization energy andωc is the cutoff frequency.
In this work, we vary λph while keeping ωc = 0.02 rad fs−1 (h̵ωc

∼ 106 cm−1) constant. The temperature of the bath is T = 300 K.
The electronic excitation is assumed to be initially localized in the
donor molecule.

For FRET and vFRET simulations, the time integrals needed
for calculating the electronic rate constants [Eq. (13)] and {I(ω)}
[Eq. (47)] were evaluated by using the midpoint method with a grid
size of 0.5 fs and an upper limit of integration of t = 50 ps. Elec-
tronic populations [Eq. (12)] and dissipated energies [Eq. (51)] were
propagated by using the fourth-order Runge–Kutta method with a
0.5 fs time step. For PBME-nH simulations, the initial conditions for
the trajectories were sampled according to Ref. 19 and propagated
using the integration scheme described in Ref. 39. The propaga-
tion time steps for PBME-nH were 0.5 fs for simulating electronic
dynamics and 0.05 fs for calculating the dissipation. The number of
PBME-nH trajectories was 105 for simulating the electronic dynam-
ics, 106 for the dissipation calculation with λph = 10 cm−1, and 107

for all other dissipation calculations. The HEOM simulations were
based on an efficient formulation recently developed by Ikeda and
Scholes,40 with the three-term Padé series expansion of the Bose–
Einstein distribution function41 and the hierarchy depth of 7. The
integration time step was 0.1 fs.

B. Electronic population dynamics
Before analyzing the dissipation, we look into the electronic

dynamics and assess the accuracy of FRET and PBME-nH by com-
paring the results to numerically exact HEOM simulations. We note
that HEOM cannot be used toward decomposing the dissipation,
which is the reason why we only use HEOM to benchmark the
accuracy of the electronic dynamics.

As a simulation method based on classical nuclei, PBME-nH
is well-known to suffer from zero-point energy (ZPE) leak of the
phase space density, especially for high-frequency vibrational modes
whose ZPE is much larger than the thermal energy (h̵ω ≫ 2 kT).19

To reduce the influence of ZPE leak on the dissipation, we have set
J(ω) beyond h̵ω = 800 cm−1 identically to zero for all PBME-nH sim-
ulations. The remaining part of the BSD was discretized into 2000
harmonic oscillator modes by using the discretization scheme in Ref.
42, which recovered 91.6% of the original reorganization energy of
the pristine spectral density. For consistency, we also applied the
same BSD cutoff to FRET simulations and calculated the reorgani-
zation energy of the modified BSD by using Eq. (10) instead of λph.
We have confirmed that the cutoff had only negligible effect on the
electronic dynamics simulated by FRET and PBME-nH.

Figure 2(a) displays the time-dependent electronic populations
of the donor and acceptor, calculated by FRET and PBME-nH with
λph = 50 cm−1. Due to the Markovian approximation behind the
FRET theory, the donor and acceptor populations can be precisely
modeled by exponential profiles,

PD(t) = PD(∞) + [1 − PD(∞)]e−γt ,

PA(t) = PA(∞)(1 − e−γt).
(53)

Here, PD(∞) and PA(∞) are the equilibrium donor and acceptor
populations that we take from the end of the simulation, and γ is

FIG. 2. Electronic and dissipation dynamics. (a) Electronic populations of the donor
(solid lines) and acceptor (dashed lines) calculated by FRET and PBME-nH. (b)
Energy dissipated into the donor vibrational modes in the [40, 50] cm−1 window
(solid line) calculated by vFRET and PBME-nH. The dashed line shows correction
due to the spurious linear drift in PBME-nH. The circle on the vertical axis marks
the corrected dissipation at the long time limit, while Eq. (57) generalizes this idea
to arbitrary t.

the effective population transfer rate. It is also known that the
equilibrium populations also satisfy the detailed balance condition,33

PD(∞)
PA(∞)

= e−β(ED0−EA0), (54)

and, hence, is not affected by λph.
In Fig. 3, we summarize the electronic dynamics simulated

by FRET, PBME-nH, and HEOM for various λph. Figure 3(a)
presents the equilibrium acceptor population PA(∞), which shows
that PA(∞) from FRET simulations show excellent agreement with
HEOM results and remain constant for all values of λph, as predicted
by Eq. (54). By contrast, PA(∞) calculated by PBME-nH matches
HEOM results for small values of λph, but increases as λph becomes
larger and eventually exceeds unity for λph > 400 cm−1. It is known
that such unphysical behavior arises from the ZPE leak among elec-
tronic DOFs, which is a common problem for most simulation
methods that employ the semi-classical description of electronic
DOFs39,43,44 as in PBME-nH.

Figure 3(b) plots the effective transfer rate γ extracted from
the time-dependent electronic populations. Because the relaxation
time of the bath (2π/ωc = 50 fs) is much quicker than the picosec-
ond time scale of the electronic dynamics, the electronic dynamics
is in the Markovian regime. As a result, almost perfect exponen-
tial fits were obtained even for HEOM and PBME-nH, which are
not based on the Markovian approximation. One can observe that
FRET slightly overestimates γ for all values of λph, while PBME-nH
underestimates γ for λph > 50 cm−1. Such a deterioration of PBME-
nH for large bath reorganization energies has been already observed
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FIG. 3. The electronic dynamics calculated by HEOM, FRET, and PBME-nH
simulations while varying the bath reorganization energy λph from 10 cm−1 to
500 cm−1. (a) The equilibrium electronic population for the acceptor molecule
PA(∞) and (b) the population transfer rate γ extracted by fitting the time-
dependent population to the exponential model [Eq. (53)].

in a few studies.19,35 Nevertheless, both FRET and PBME-nH cor-
rectly predict that γ increases until λph = 150 cm−1

− 200 cm−1 and
decreases afterward, which is a typical manifestation of the so-called
environment-assisted quantum transport.45,46 Such a behavior can
be readily explained based on spectral line shapes,47 which directly
affects the electronic rate constants [Eq. (13)].

Despite the observed deviation of PBME-nH from exact HEOM
results, the method still provides a qualitatively correct picture
about how the dissipated energy is distributed among individual
vibrational modes that can be employed to assess the utility of
vFRET.

C. Dissipation dynamics
1. Time profile

We now examine the dissipation. To do so, we define

EB(ω, t) = ∫
t

0
DB(ω, t′) dt′, (55)

which quantifies the dissipation by JB(ω) per unit bath frequency
accumulated until time t by either donor (B = D) or acceptor (B = A).
By inserting the time profile of the electronic populations [Eq. (53)]
in the rate of dissipation [Eq. (51)], arranging the expression for
DB(ω, t) by using the fact that the net dissipation must vanish at
equilibrium [DB(ω,∞) = 0], and finally integrating the resulting
expression by using Eq. (55), consequently,

EB(ω, t) =
JAD
B (ω)
γ

(1 − e−γt). (56)

For our model with JD(ω) = JA(ω), Eq. (56) predicts that the dis-
sipation into the donor and acceptor will be identical as JAD

D (ω)
= JAD

A (ω) [Eq. (50)].

Figure 2(b) shows the total energy dissipated into the donor
bath modes in the [40, 50] cm−1 frequency window calculated by
integrating ED(ω, t) [Eq. (55)] in this range. The dissipated energy
for vFRET exhibits an exponential profile and reaches equilibrium
with the electronic dynamics [Fig. 2(a)], as expected by Eq. (56).
However, we also observe that the net dissipation for PBME-nH does
not vanish, even after the electronic dynamics reaches equilibrium.
This artifact arises from the ZPE leakage from the high-frequency
modes to the low-frequency modes (not shown). To remove the arti-
ficial drifts from the PBME-nH dissipation, we correct it according
to

ẼB(ω, t) = EB(ω, t) − t lim
τ→∞

ĖB(ω, τ). (57)

Equation (57) assumes that the contribution from the drift lin-
early increases during the entire simulation period. All PBME-nH
dissipation results discussed below are corrected by Eq. (57).

2. Frequency-dependent decomposition
In this section, we decompose the total dissipation in the fre-

quency domain, ẼD(ω,∞) + ẼA(ω,∞). Figure 4 shows ẼD(ω,∞)
+ ẼA(ω,∞) for four different values of λph, calculated by vFRET and
PBME-nH. Consider the vFRET results in Fig. 4(a) first. When λph

= 10 cm−1, the dissipation is concentrated around ω = 380 cm−1. By
contrast, for larger λph, the dissipation is concentrated in the low-
frequency region. A discussion of the physical origin of this behavior
is included in Sec. IV.

The same trend is also observed for the PBME-nH results
[Fig. 4(b)], confirming the validity of vFRET theory. A notable dif-
ference between vFRET and PBME-nH is the low-frequency region,
where PBME-nH results show a sharp dip, while vFRET results
do not. This implies that the low-frequency modes actually do not

FIG. 4. Frequency-dependent decompositions of dissipation in the frequency
domain by (a) vFRET and (b) PBME-nH, for different values of λph.
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FIG. 5. Frequency-dependent decompositions of dissipation for λph = 200 cm−1

with (a) VDA = 50 cm−1 and (b) VDA = 10 cm−1, calculated by vFRET and
PBME-nH.

participate in the dissipation as actively as expected by vFRET. This
can be explained by considering that the low-frequency modes are
dynamically frozen and, therefore, take longer to undergo relax-
ation. This interpretation is consistent with a previous study,48

which showed a dramatic increase in the accuracy of the Marko-
vian quantum master equation when the low-frequency modes
were separated from the bath and treated as static noise. Such a
quasi-static nature of the low-frequency modes causes violation of
the second assumption of FRET about Markovianity (Sec. II B),
which extends to a wider frequency range as the electronic dynam-
ics becomes faster. Indeed, Fig. 4(b) shows that the low-frequency
dip becomes broader as λph increases up to 200 cm−1, for which
the population transfer is the fastest among the four values of
λph [Fig. 3(b)]. We also expect the dip will become narrower for
λph = 500 cm−1 compared to λph = 200 cm−1, although confirm-
ing this from Fig. 4(b) is difficult because of the statistical error of
PBME-nH. Our observation demonstrates that even when the elec-
tronic dynamics is Markovian, the vibronic dynamics that leads to
dissipation may not be, especially if the movement of the nuclear
DOFs is slow.

To further test our interpretation about the discrepancy in the
low-frequency part, we decreased the electronic coupling VDA, thus
slowing down the electronic dynamics (Fig. 5). As expected, while
decreasing VDA had essentially no effect on the vFRET result, it
made the low-frequency dip in PBME-nH results [Fig. 5(a)] nearly
disappear in Fig. 5(b), leading to almost perfect agreement with
vFRET.

Finally, the λph = 10 cm−1 results also reveal that the peaks in
ẼD(ω,∞) + ẼA(ω,∞) in Fig. 4 are located at slightly different fre-
quencies for vFRET and PBME-nH. The origin of such a difference
is also addressed in Sec. IV.

3. Detailed balance
We now numerically verify that the dissipation calculated by

the vFRET theory satisfies detailed balance. By doing so, we probe
the consistency between the electronic and dissipation dynamics.

FIG. 6. Ratios between the dissipative spectral densities [−JAD
B (ω)/JDA

B (ω)],
evaluated for different values of λph. The black line corresponds to the
Boltzmann population ratio eβ(ED0−EA0) that represents the detailed balance
condition.

We first identify the conditions met by the electronic popu-
lations and dissipation rates at equilibrium. At equilibrium, both
the net population transfer and dissipation vanish so that ṖD(∞)
= ṖA(∞) = 0 and DD(ω,∞) = DA(ω,∞) = 0. By plugging these
conditions into Eq. (51), we get

PA(∞)
PD(∞)

= −
JAD
B (ω)

JDA
B (ω)

. (58)

Equation (58) shows that JAD
B (ω) and JDA

B (ω) must have oppo-
site signs, as the electronic populations are positive. Note that we
do not distinguish the dissipative spectral densities of the donor
and acceptor because JAD

D (ω) = JAD
A (ω) and JDA

D (ω) = JDA
A (ω)

(Sec. III C 2). Because the equilibrium electronic populations sat-
isfy detailed balance,33 all the ratios in Eq. (58) must be equal to
exp[β(ED0 − EA0)] = 6.810 143 83. . . for our simulation conditions.

Figure 6 displays −JAD
B (ω)/JDA

B (ω) calculated for four dif-
ferent values of λph. We observe that −JAD

B (ω)/JDA
B (ω) is prac-

tically equal to exp[β(ED0 − EA0)] for all values of ω and λph,
which confirms that the dissipation calculated by vFRET satisfies the
detailed balance. An analytical proof of the detailed balance remains
outstanding.

IV. ANALYSIS OF THE DISSIPATION RATE
In Sec. III C, we have shown that vFRET can accurately cap-

ture the frequency dependence of the dissipation. We now illustrate
how to use vFRET to interpret the effectiveness of different compo-
nents of the bath to exert dissipation. For this purpose, we scrutinize
the dissipative spectral densities JAD

B (ω) and JDA
B (ω) [Eq. (50)]

that are directly proportional to EB(ω, t) [Eq. (56)]. For definitive-
ness, we analyze cases with small (λph = 10 cm−1) and large (λph

= 500 cm−1) reorganization energies and identify the main factors
that determine the dissipation rate constants. The results for inter-
mediate reorganization energies, λph = 50 cm−1 and λph = 200 cm−1,
can be found in Fig. S1 in the supplementary material.
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According to Eq. (50), the vFRET theory clearly highlights the
three main factors that determine the dissipation rate among indi-
vidual modes: (i) The electronic coupling VDA as it directly affects
the speed of FRET [Eq. (13)]. (ii) The “dissipative potential” I(ω)
[Eq. (47)], which quantifies the ability of the bath mode of a certain
frequency to participate in the dissipation. (iii) The reorganization
energy density JB(ω)/ω quantifying the strength of vibronic coupling
in the frequency domain. The overall contribution of a bath compo-
nent in the dissipation is determined by the product of these three
quantities. We now explain the trend observed in Fig. 4(a) based on
these three factors. Because VDA is fixed in our model, we consider
how JB(ω) is affected by I(ω) and JB(ω)/ω.

Figure 7(a) displaysJAD
B (ω) andJDA

B (ω). The dissipative spec-
tral density for λph = 10 cm−1 is about 20 times smaller than
those for λ = 500 cm−1, reflecting the slower relaxation due to the
smaller spectral overlap between donor and acceptor line shapes.
We focus on JAD

B (ω) as JAD
B (ω) and JDA

B (ω) only differ by a con-
stant prefactor [Fig. 6(b) and Eq. (58)]. The frequency dependence of
JAD
B (ω) is very different for the two reorganization energies. When

λph = 10 cm−1, the major maximum is located at ω = 380 cm−1, while
another maximum faintly occurs at ω = 0 cm−1. By contrast, for λph

= 500 cm−1, ω = 0 cm−1 is the only maximum. The origin of such a
stark contrast can be explained by separately examining IAD(ω) and
JB(ω)/ω.

The frequency dependence of the dissipative potentials
IAD(ω) and IDA(ω) is plotted in Fig. 7(b). When λph = 10 cm−1,
IAD(ω) peaks at ω ∼ 400 cm−1, which coincides with the donor–
acceptor energy gap ED0 − EA0. As VDA ≪ |ED0 − EA0| in

FIG. 7. Analysis of the dissipative spectral densities in the frequency domain,
for λph = 10 cm−1 and λph = 500 cm−1. (a) The dissipative spectral densities
JAD
B (ω) and JDA

B (ω), (b) the dissipative potential IAD(ω) and IDA(ω), and
(c) the reorganization energy density JB(ω)/ω.

our system, ED0 − EA0 = 400 cm−1 is close to the eigenenergy
gap of Ĥe + ĤCoul where vibronic resonance occurs, which is
√
(ED0 − EA0)2 + 4∣VDA∣2 ∼ 412 cm−1. We, therefore, attribute the

maximum of IAD(ω) to the vibronic resonance. On the other hand,
when λph = 500 cm−1, the maximum at ω ∼ 400 cm−1 has now dis-
appeared, and IAD(ω) shows only a moderate variation throughout
the entire frequency range. This is because the vibronic resonance
has been quenched by the strong quasi-static disorder arising from
the low-frequency part of the spectral density.36

Finally, the reorganization energy density JB(ω)/ω [Fig. 7(c)]
shows a much simpler frequency dependence compared to IAD(ω).
For λph = 10 cm−1, JB(ω)/ω has a maximum at ω = 0 cm−1

and monotonically decreases as ω increases. The result for λph

= 500 cm−1 is just a scaled-up version of the λph = 10 cm−1 result
by a constant.

We are now ready to analyze the trend in JAD
B (ω) by combin-

ing the effects of both IAD(ω) and JB(ω)/ω. When λph = 10 cm−1,
the vibronic resonance is so prevalent that JAD

B (ω) shows a simi-
lar behavior as IAD(ω), while the additional weighting by JB(ω)/ω
does not significantly affect the overall trend. Nevertheless, the con-
centration of JB(ω)/ω in the low-frequency region creates a minor
maximum of JAD

B (ω) at ω = 0 cm−1 and also slightly shifts the
main peak from 400 cm−1 [Fig. 7(b)] to 380 cm−1 [Fig. 7(a)]. Such
a shift can be interpreted as the Lamb shift associated with the bath
reorganization. On the other hand, when λph = 500 cm−1, JAD

B (ω)
is primarily determined by JB(ω)/ω as IAD(ω) only exhibits small
dependence on the bath frequency.

Based on the discussions above, we can now also conclude
that it is the difference between the donor–acceptor energy gap ED0

− EA0 and the vibronic resonance frequency
√
(ED0 −EA0)2 + 4∣VDA∣2

that makes the discrepancy of ∼12 cm−1 between the peak loca-
tions for vFRET and PBME-nH (Fig. 4). This reflects that FRET
only treats localized excitation (Sec. II B) and, therefore, neglects the
contribution of VDA in vibronic resonance.

By applying our theory of dissipation to a donor–acceptor sys-
tem with varying reorganization energies, we directly visualized that
increasing the subsystem–bath coupling strength λph changes the
dominant dissipation pathway from the resonant, single-phonon
processes to multi-phonon processes, as implied by earlier studies.33

Overall, vFRET offers a general method of quantifying dissipation
through individual bath components, which allows a detailed inves-
tigation on the dissipative dynamics that is often difficult for typical
quantum dynamics simulation methods.

V. FINAL REMARKS
In this paper, we developed a theory that can efficiently calcu-

late the dissipation into individual bath components, by extending
FRET theory into vibronic description. To do so, we first re-assigned
an individual vibrational mode to the subsystem and constructed
vibronic analogs of the key equations of the FRET theory. Then,
analytical summations of vibronic energy transfer yielded compact
expressions for calculating the dissipation without directly access-
ing the vibrational manifold. Our theory was benchmarked against
a mixed quantum–classical simulation method by using a model
donor–acceptor complex, which showed that our vFRET theory
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provides semi-quantitative frequency-dependent decomposition of
the overall dissipation. We also numerically showed that the dissi-
pation satisfies the detailed balance. Finally, based on the dissipative
spectral densities [Eq. (50)], we identified the three factors determin-
ing the dissipation rate and explained how the dissipation channel
changes as the vibronic coupling increases.

A few additional remarks are in order. Our vFRET theory is
a useful tool that lets us calculate the dissipation with a signifi-
cantly smaller computational cost compared to existing methods.
For example, in our work, vFRET was cheaper than PBME-nH by
a factor of 105–106 in terms of total central processing unit (CPU)
time. Moreover, the electronic rate constants and dissipative spectral
densities [Eqs. (13) and (49)] need to be evaluated only once before
the time propagation, as their values remain constant throughout
the entire simulation. As a result, the time propagation in vFRET
usually takes only a small portion of the total computational cost so
that extending the propagation time does not pose significant addi-
tional computational burden. This is in contrast to other quantum
dynamics simulation methods whose total cost increases linearly
(PBME-nH and HEOM) or even exponentially (stochastic methods)
with time.

The vFRET theory can also serve as a starting point for devel-
oping more sophisticated theories of dissipation by applying the
approach of this work to similar Markovian theories such as Red-
field theory,49 modified Redfield theory,50 or multi-chromophore
version of FRET theory.51 Even non-Markovian effects may be cap-
tured by non-Markovian generalizations of FRET theory,52 mod-
ified Redfield theory,53,54 or hybridizing vFRET with Ehrenfest
dynamics.48 With such extensions, we will be able to study many
interesting aspects of dissipation, such as its dependence on the
temperature or the functional form of J(ω). In addition, although
vFRET predicts that the donor and acceptor identically contribute to
dissipation, there may be some degree of asymmetry that can be
only captured by more advanced formulations. Development of
more accurate benchmarks, possibly based on the state-of-the-art
mixed quantum classical methods,30,31 will benefit assessing the
applicability and limitations of the newly developed theories.

We envision that the vFRET theory and its possible extensions
will enable quantitative investigation on dissipation in a wider vari-
ety of molecular systems, with larger spatial and temporal scales
than those previously studied. The insights gained from such a
detailed level of studies will provide deeper understandings of the
connection between the bath structure and dissipation in various
molecular systems such as photosynthetic complexes, J- and H-
aggregates, charge transfer complexes, electroluminescent materi-
als, and photovoltaic devices. We hope pursuing this direction will
enable us to control and design the open quantum system dynam-
ics by properly engineering the subsystem–bath coupling, ultimately
contributing to developing new molecular systems with enhanced
properties.

SUPPLEMENTARY MATERIAL

See the supplementary material for the modified PBME-nH dis-
sipation that includes the contribution of the RAVM reorganization
energy and J(ω) and I(ω) for λph = 50 cm−1 and λph = 200 cm−1.
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APPENDIX A: CONSISTENCY BETWEEN ELECTRONIC
AND VIBRONIC POPULATION TRANSFER

In this appendix, we demonstrate the physical equivalence
between electronic and vibronic descriptions by showing that the
sum of vibronic population transfer over all vibrational state pairs
(I, J) recovers the electronic population transfer. This is expressed as

∑
I,J

KBJ,AIPAI(t) = KBAPA(t), (A1a)

∑
I,J

KAI,BJPBJ(t) = KABPB(t), (A1b)

∑
I,J

KCJ′ ,BJPBJ(t) = KBCPB(t), (A1c)

for all three types of vibronic rate constants in Eq. (28). As in
Sec. II D, analytical summations over I and J for Eqs. (A1a) and
(A1b) can be done by using Eqs. (41) and (43),

∑
I,J

KBJ,AIPAI(t) =
2∣VAB∣

2

h̵2 ∑
I,J
∣⟨Jg ∣Ie⟩∣2PAI(t)

× Re∫
∞

0
F∗A(I−J)(t

′
)AB(t′)e−iωAv t′/2dt′

=
2∣VAB∣

2

h̵2 PA(t) Re∫
∞

0
F∗A(t′)AB(t′) dt′

= KBAPA(t), (A2a)

∑
I,J

KAI,BJPBJ(t) =
2∣VAB∣

2

h̵2 ∑
I,J
∣⟨Ie∣Jg⟩∣2PBJ(t)

× Re∫
∞

0
F∗B(t′)AA(I−J)(t

′
)eiωAv t′/2dt′

=
2∣VAB∣

2

h̵2 PB(t) Re∫
∞

0
F∗B(t′)AA(t′) dt′

= KABPB(t). (A2b)

Finally, proving Eq. (A1c) is rather trivial compared to the previous
two equations, due to the orthonormality between the ground-state
vibrational eigenstates of the RAVM,

∑
J,J′

KCJ′ ,BJPBJ(t) = ∑
J,J′

KCBδJJ′wJPB(t) = KCBPB(t). (A3)

APPENDIX B: SPECTRAL LINE SHAPES DRESSED
BY A THERMAL PHONON

In this appendix, we derive the expressions for spectral line
shapes dressed by a thermal phonon [Eqs. (38)–(40)], which is a
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generalization of the result of Ref. 34 to nonzero-temperature cases.
This is done by starting from a purely electronic Hamiltonian and
adding the vibrational modes one by one, instead of directly calcu-
lating spectral line shapes from the BSD by using Eq. (15). Specifi-
cally, we prove the relation for the absorption line shape, Eq. (38b),
while the proof for the fluorescence line shape [Eq. (38a)] can be
constructed in a similar manner.

Consider a two-state molecular Hamiltonian that is not coupled
to any vibrational modes,

Ĥ0 = Eg ∣g⟩⟨g∣ + Ee∣e⟩⟨e∣, (B1)

where |g⟩ and |e⟩ denote the ground and excited electronic states,
and Eg and Ee their electronic energies. Suppose the molecule is
initially at |g⟩. As there is only one possible transition between
the ground and excited states, the absorption line shape of Ĥ0 is
monochromatic,

A0(ω) = k ∣⟨e∣μ̂eg ∣g⟩∣
2δ(ω −Ωeg), (B2)

where μ̂eg is the transition dipole operator, h̵Ωeg = Ee − Eg is the
energy gap between the ground and excited states, and k is the
proportionality constant.

We now add the Hamiltonian of a vibrational mode to Ĥ0,

Ĥ1 = Ĥ0 + Ĥv1, (B3)

where Ĥvn is

Ĥvn = ∣g⟩⟨g∣ ⊗ (
p̂2
n

2
+
ω2
n

2
x̂2
n) + ∣e⟩⟨e∣ ⊗ (

p̂2
n

2
+
ω2
n

2
(x̂n + dn)2

), (B4)

with the vibrational mode index n. Here, p̂n and x̂n are the posi-
tion and momentum operators of the vibrational mode, ωn is the
characteristic frequency of the vibrational mode, and dn is the dis-
placement between the ground and excited state PESs along xn. To
construct the absorption line shape of Ĥ1, we consider its eigen-
bases {|e, I1⟩ ≡ |e⟩|I1,e⟩} and {|g, J1⟩ ≡ |g⟩|J1,g⟩}, where |I1,e⟩ and |J1,g⟩

are the vibrational eigenstates of the excited and ground-state PESs
of the vibrational mode. Then, the vibronic transition energy from
|g, J1⟩ to |e, I1⟩ is

Ee,I1 − Eg,J1 = h̵Ωeg + (I1 − J1)h̵ω1. (B5)

Let us assume that the molecule is in thermal equilibrium on
the ground-state PES, which is described by the density matrix
∑J1 wJ1 ∣g, J1⟩⟨g, J1∣ where the vibrational state populations {wJ1}

obey Boltzmann distribution [Eq. (33)]. With these considerations,
the absorption line shape of Ĥ1 is constructed as a thermally
weighted sum of individual vibronic transitions whose frequencies
are determined by Eq. (B5),

A1(ω) = k ∣⟨e∣μ̂eg ∣g⟩∣
2
∑
I1 ,J1

wJ1 ∣⟨I1,e∣J1,g⟩∣
2

× δ(ω −Ωeg − (I1 − J1)ω1), (B6)

where we have used the fact that μ̂eg is an operator in the elec-
tronic subspace so that ⟨e, I1∣μ̂eg ∣g, J1⟩ = ⟨e∣μ̂eg ∣g⟩⟨I1,e∣J1,g⟩. It is now
straightforward to show that

A1(ω) = ∫
∞

−∞
dω′ A0(ω′)L1(ω − ω′), (B7)

where

L1(ω) = ∑
I1 ,J1

wJ1 ∣⟨I1,e∣J1,g⟩∣
2δ(ω − (I1 − J1)ω1) (B8)

is the phonon sideband of the vibrational mode. If we continue in
this direction by adding more vibrational modes, we can generalize
Eqs. (B7) and (B8) to an arbitrary number of vibrational modes,

An(ω) = ∫
∞

−∞
dω′ An−1(ω′)Ln(ω − ω′), (B9)

where An(ω) is the absorption line shape of a molecule coupled to n
vibrational modes, represented by the Hamiltonian

Ĥn = Ĥ0 +
n

∑
k=1

Ĥvk, (B10)

and Ln(ω) is the phonon sideband of the nth vibrational mode,

Ln(ω) = ∑
In ,Jn

wJn ∣⟨In,e∣Jn,g⟩∣
2δ(ω − (In − Jn)ωn). (B11)

The physical meaning of Eqs. (B9)–(B11) can be summarized as fol-
lows: The addition of Ĥvn to Ĥn−1 dresses An−1(ω), and Eqs. (B9)
and (B11) state that the effect of the dressing can be implemented in
the line shape by convoluting An−1(ω) with Ln(ω).

We can now deduce Eqs. (38)–(40) from Eqs. (B9) and (B11)
by considering the RAVM as the nth mode.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1U. Weiss, Quantum Dissipative Systems, Series in Modern Condensed Matter
Physics (World Scientific, 1999).
2H. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford
University Press, 2002).
3A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and
W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys. 59,
1–85 (1987).
4F. Fassioli, R. Dinshaw, P. C. Arpin, and G. D. Scholes, “Photosynthetic
light harvesting: Excitons and coherence,” J. R. Soc., Interface 11, 20130901
(2014).
5N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggre-
gates: The effects of vibronic coupling and intermolecular charge transfer,” Chem.
Rev. 118, 7069–7163 (2018).

J. Chem. Phys. 154, 084109 (2021); doi: 10.1063/5.0038967 154, 084109-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1103/revmodphys.59.1
https://doi.org/10.1098/rsif.2013.0901
https://doi.org/10.1021/acs.chemrev.7b00581
https://doi.org/10.1021/acs.chemrev.7b00581


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

6A. Ishizaki and G. R. Fleming, “Theoretical examination of quantum coherence
in a photosynthetic system at physiological temperature,” Proc. Natl. Acad. Sci.
U. S. A. 106, 17255–17260 (2009).
7E. Y. Wilner, H. Wang, M. Thoss, and E. Rabani, “Sub-ohmic to super-ohmic
crossover behavior in nonequilibrium quantum systems with electron–phonon
interactions,” Phys. Rev. B 92, 195143 (2015).
8P. Nalbach, C. A. Mujica-Martinez, and M. Thorwart, “Vibronically coher-
ent speed-up of the excitation energy transfer in the Fenna–Matthews–Olson
complex,” Phys. Rev. E 91, 022706 (2015).
9C. Duan, C.-Y. Hsieh, J. Liu, J. Wu, and J. Cao, “Unusual transport properties
with noncommutative system-bath coupling operators,” J. Phys. Chem. Lett. 11,
4080–4085 (2020).
10M. K. Lee, K. B. Bravaya, and D. F. Coker, “First-principles models for biologi-
cal light-harvesting: Phycobiliprotein complexes from cryptophyte algae,” J. Am.
Chem. Soc. 139, 7803–7814 (2017).
11C. W. Kim, B. Choi, and Y. M. Rhee, “Excited state energy fluctuations in
the Fenna–Matthews–Olson complex from molecular dynamics simulations with
interpolated chromophore potentials,” Phys. Chem. Chem. Phys. 20, 3310–3319
(2018).
12S. Maity, B. M. Bold, J. D. Prajapati, M. Sokolov, T. Kubař, M. Elstner, and
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