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Abstract

Necessary conditions for generating phase-controllable asymmetry in spatially symmetric
systems using lasers are identified and are shown to be identical in quantum and classical
mechanics. First, by studying the exact dynamics of harmonic systems in the presence of an
arbitrary radiation field, it is demonstrated that anharmonicities in the system’s potential are a
necessary requirement for phase controllability. Then, by analysing the space-time symmetries
of the laser-driven Liouville dynamics for classical and quantum systems, a common set of
temporal symmetries for the driving field that need to be violated to induce transport is
identified. The conditions apply to continuous wave lasers and to symmetry breaking effects
that do not rely on the control of the absolute phase of the field. Known examples of laser
fields that can induce transport in symmetric systems are seen to be particular cases of these

symmetry constraints.

1. Introduction

Recent years have witnessed the birth and rapid development
of the coherent control field [1-6], in which the coherence
properties of applied laser fields are employed to steer a given
quantum dynamical process in a desired direction. Of the
different control schemes that have so far been developed,
there is a general class that has the ability to induce phase-
controllable transport in spatially symmetric systems without
introducing a bias voltage in the potential, a phenomenon that
is referred to as laser-induced symmetry breaking.

This symmetry breaking effect is typically achieved by
driving the system with ac fields with frequency components
nw and mw, where n and m are integers of different parity [1].
The nonlinear response of the system to such fields results
in net dipoles or currents whose magnitude and sign can be
manipulated by varying the relative phase between the two
frequency components of the radiation [7]. For the popular
caseof n = 1 and m = 2, the rectification effect first appears in
the third-order response of the system to the incident radiation.
At this order the system mixes the frequencies and harmonics
of the field, generating a phase-controllable zero-harmonic
(dc) component in the response.

Laser-induced symmetry breaking has been demonstrated
in a wide variety of systems ranging from atoms to solid-
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state samples. Experimentally, it has been implemented for
generating anisotropy in atomic photoionization [8], symmetry
breaking effects in molecular photodissociation [9] (see also
[10]), photocurrents in quantum wells [11] and intrinsic
semiconductors [12] as well as directed diffusion in symmetric
optical lattices [13]. Theoretically, it has been studied for
generating transport in doped [14] and bulk semiconductors
through interband [15] and intraband [16] excitations, in
graphene and carbon nanotubes [17] and molecular wires
[18, 19], among others. The scenario is of interest since,
with current laser technology, it can be employed to generate
transport on a femtosecond timescale.

An interesting feature of this laser control scenario is that
it has both a quantum [11, 12, 14, 20] and a classical [21, 22]
manifestation. Furthermore, the two versions of the effect
correspond to the same physical phenomenon [7], arising
from the nonlinear response of material systems to symmetry
breaking radiation fields. In this contribution, we isolate
minimum conditions on the driving field and the system that
is being driven that are necessary for the symmetry breaking
effect to occur in quantum and classical mechanics. As shown,
the minimum requirements in both cases are identical and,
further, the effect can be accounted for in both mechanics
through a single symmetry analysis of the equations of motion.

© 2008 IOP Publishing Ltd  Printed in the UK
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Specifically, in section 2 we demonstrate that laser
rectification can only occur in systems with anharmonic
potentials. Subsequently, in section 3 temporal symmetries of
the field that need to be violated to induce transport are isolated.
This is done by studying the space-time symmetries of the
Liouville equations of motion for laser-driven quantum and
classical systems, and by isolating symmetries of the field that
rule out any nonzero average currents or dipoles at asymptotic
times. In doing so, we considerably extend a previous analysis
[21] that identified conditions on the field necessary for laser
rectification in classical ergodic systems. It applies to both
quantum and classical systems and makes no assumption of
ergodicity.

2. Conditions on the system

Consider first the exact solution for the dynamics of a harmonic
oscillator in the presence of an arbitrary space-homogeneous
radiation field E(¢). The Hamiltonian of the system reads
2
Hx, p)= L + lma)(z))c2 —qE()x, (1)
2m 2

where x and p are the position and momentum of the particle
of mass m and charge ¢, and wy is the natural frequency of
the oscillator. Symmetry breaking here would correspond
to the production of a net dipole moment. In the quantum case,
the dynamics of the position Xy(#) and momentum operators
pu(?) in Heisenberg picture is dictated by the Heisenberg
equations of motion

diu(r)

1 A 1
h[fcﬁ(l), Hu()] = —pu(?), (2a)
m

dr in

dp 1 .
p;t(t) — ﬁ[f)H(t), HH(Z‘)] = —mwg)’eﬂ(t) +6]E(l), (2b)

where Hy is the Hamiltonian operator in Heisenberg picture
and [j‘, Hyl = fI:IH - ﬁ]Hf for any operator } In the
classical case, the position x () and momentum p(¢) variables
obey Hamilton’s equations

dx (1) 1
T {x(®), H®)} = —p(@), (3a)
t m
d
‘;ﬁ’) = {p(0), HD)} = —moix () +qE@),  (3b)
where {f, H} = AL oM _ 9/ 9H ¢ the Poisson bracket. The

i dx ap L dp ox X
difference between equations (2) and (3) is that the former

is a differential equation for operators, with operator initial
conditions Xg(0) = x and py(0) = p, while the latter is an
equation for functions.

These two sets of equations can be solved exactly using
Laplace transforms. In fact, for a general external field of the
form

E@t) = /00 dwe (w) e, “4)

o0

the usual procedure [23] yields

f(t) = &1(0) cos(wot) + Pu0)
mawgo

sin(wogt)

+/°° dwqe(w) iw sin(wpt) + wo COS(;oOt) — wp et 5

o mawy w? — wy

x(1) = x(0) cos(eor) + 2 sin(wor)
nawo

®  ge(w) iw sin(wot) + wp cos(wyt) — wp el
+ dw

> P - (6)

0o mawo w~ — W
The first two terms in equations (5) and (6) describe the
field-free evolution of the oscillator, while the third one
characterizes the influence of E(¢) on the dynamics.

Note that a driven harmonic system can only oscillate
at its natural frequency wp and at the frequency of the field
. That is, there are no frequency components of the dipole
that oscillate at multiples or combinations of the frequencies
of the field. Hence, if E(f) is unbiased (¢(0) = 0) then
no net dipole can be induced. Thus, we conclude that a
necessary requirement for symmetry breaking in quantum
and classical mechanics is that the potential of the system
is anharmonic. As seen below, the anharmonicities permit
the nonlinear response of the system to the incident radiation
that mixes the frequencies and harmonics of the field and, for
a certain class of radiation sources isolated below, can lead
to the generation of a phase-controllable zero-harmonic (dc)
component in the response.

3. Conditions on the field

We now isolate those temporal symmetries of the field that
need to be violated to induce transport in both quantum and
classical mechanics. To do so, we consider a symmetric one-
dimensional system composed of N charged particles coupled
to an external field E(¢) in the dipole approximation. This
is done without loss of generality since the polarization of
the field effectively defines an axis along which symmetry
breaking can arise. The system’s Hamiltonian is then

N 2 N
D T
H= ; ot V(x)— ;q,-ij (z +oz§) .

where x;, p;, m; and g; denote the coordinate, momenta, mass
and charge of the j th particle and = (x1, x2, ..., xy). The
systems of interest have a potential V () that is invariant under
coordinate inversion V(—x) = V(x), and the driving field
E (t + a%) is an arbitrary time-periodic zero-mean function,
with period 7 and global phase «.

In order to maintain a close analogy between the quantum
and classical case we frame this analysis in phase space and
adopt the Wigner representation of quantum mechanics [24,
25]. In it, the state of the quantum system is described by the
Wigner distribution function pw(x, p, t), which constitutes
a map of the system density matrix p in the phase space of
position & and momentum p variables. For N-particle one-
dimensional systems it is defined by [25]

1\Y [ 00

X P x — w/2(p(0)]T +u/2), ®)
where |&) = |x)[x2)---|xy) and p-u = YN pu;. In
this way, the quantum or classical Liouville evolution can be
expressed as

Dgpp(x, p,t) =0, 9a)
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where the label 8 indicates either classical (8 = c) or quantum
(B = W), with p.(x, p, t) denoting the classical phase-space
density. For the Hamiltonian in equation (7), the operator Dg
determining the dynamics is given by [25, 26]

0
T o
N IV (z) T\ 0
-3 1= —qiE(t+a—])) —]|,
= mj 8xj 0x; 2w op;
(9b)
- Z (ih/z)kl+<-»+AN—l 8)\]+<-»+ANV(w)
W = e — A x
N Al Anl o 9xpt - axyY
A+ +AN 35
8A1+ Ay
(9¢)

x aplt - opy
where the last summation in Dy runs over all positive integer
values of A, ..., Ay for which the sum A; + A, +--- + Ay is
odd and greater than one. In phase space, the formal structure
of the quantum and classical evolution is remarkably similar
[27, 28]. In the limit 7 — 0, the second term in equation (9¢)
vanishes and the quantum equation of motion reduces to the
classical evolution (Dy, — D.). Note that equations (8) and
(9) are fully consistent with the Hamiltonian in equation (7).
However, when the radiation—matter interaction term in the
Hamiltonian goes beyond the dipole approximation both of
them need to be modified in order to ensure gauge invariance
[26].

In the absence of an external field the equations of motion
[equation (9)] are invariant under reflection (x — —x,p —
—p). Hence, if the system is initially prepared with a given
phase-space symmetry this initial symmetry is preserved at all
times during the subsequent dynamics. Symmetry breaking
is achieved by coupling the system to E(¢). However, if
E(t) has a zero temporal mean (ac field) then not every
E(t) will generate transport. As shown below, by properly
lowering the temporal symmetry of E(¢) it is possible to
induce rectification in the response. Furthermore, the resulting
symmetry constraints on E () are identical for the classical and
quantum case. As will become evident, this is a consequence
of the important fact that the quantum corrections in Dy have
the same symmetry properties as a};fj”) ﬁ under inversion of
position and momentum coordinates.

We focus on rectification effects that survive time
averaging and that are independent of the global phase « of the
laser beam. Typically, symmetry breaking effects that depend
on « are difficult to control (although not impossible [29])
since this requires an experimental setup that both locks the
absolute phase of the laser and has control over the centre-of-
mass motion with respect to the laboratory frame. Hence, the
quantities of interest are the mean position and momentum
averaged over time and over «:

_ ) /2 dr 27 do

(T)p = lim - — Tr(zpg(z, p,1));  (10a)
=00 ) _1n T Jo 2

= (TP dt (7 da

(P)p = lim */ ~— Tr(pps(z, p,1));  (10b)
= ) _1n T Jo 2T

where the double overbar indicates this kind of averaging.
Here the notation (- - -) g denotes the classical ensemble average
(B = ¢) or quantum expectation value (8 = W), and the trace
is an integration over the 2N -dimensional phase-space (x, p).
When the symmetry of the system is not broken, both (z) B
and (p) p are zero. Below, we determine symmetries of the
field and the initial condition that guarantee that this is indeed
the case. When these symmetries are violated a net dipole or
current is expected to appear.

The fact that we are only interested in «-independent
properties eliminates the necessity to invoke ergodicity in the
analysis. The average over « is sufficient to obviate any
initial-time preparation effects, which is the main role of the
ergodicity assumption in the purely classical analysis of [21].

We now tabulate the symmetries of the field that will be
relevant for our purposes. The field may change sign every
half a period 7,

E(t+T/2) = —E@), (11a)

or be symmetric or antisymmetric with respect to some time
t':
E(t—1)=+E(-( —1"),
E(t—1t)=—E(—(t—1)).

(11b)
(11¢)

Each of the symmetries in equation (11) leads to a
transformation that leaves the equations of motion invariant
while changing the sign of the position and/or momentum
variables. They are identical for the quantum and classical
case. For example, if E(¢) satisfies equation (11a), then D is
invariant under 7; defined as

Ti: t—>t+T/2; x— —x;, p— —p; (12a)
where we have taken into account that under inversion

.. Ry A 4t
of position and momenta > —3- — —-%"_ and

x N P N
Oxy " --0xy dxy " -0xy
0A1+ Ay

— T h W since A + Ay + -+ + A in
ap apN apyLapy ! 2 N

equation (9¢) is odd. Similarly, if E (¢) satisfies equation (11b)
[or equation (11c)] then Dg is invariant under 7, [or 73], where

())Ll“‘ Ay

L: t—t —-—t—-t);, x=— x

(12b)
(12¢)

pP— —p;
Ti: t—t—>—@—-1t), =z—> -z p-—p.
Other temporal symmetries of the field exist but play no
role in this analysis since they do not lead to invariance
transformations that change the sign of the position and/or
momentum variables.

Now, given a solution to equation (9), pg(x, p,t), if
Dy is invariant under 7, one can generate another solution
to the same equation by applying 7, to pg(x,p,t). The
new solutions p("’)(m, p,t) = T,pp(x, p, t) generated by the
invariance transformations in equation (12) are

p};”(w, p,t) = Tipg(z, p, 1)

= pg(—x, —p,t + T /2); (13a)
2) _ /
pg (x,p,t) ="TDpg(x,p,t —1)
= pp(x, —p, —(t —1)); (13b)
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pp (. p.1) = Tapp(w.p.t — 1)

= pp(—z,p, —(t —1). (130)

Further, if ihe original solution | Op (z, p, t) predicts an average

position (Z)s and momenta (p)g, the transformed solutions

()

pg')(x,p, t) will predict a mean position () 8 and/or

momenta (p)f_;’) that has the same magnitude but is opposite
in sign:

@ =—@p D)y =D (14a)
@) =+@)p: @)y =-®s: (14b)
@ =-@p @) =+Ds- (14c)

The argument is completed by showing that the
average position and momenta predicted by pg(x, p, t) and
pg’)(w, p, t) coincide. If this is the case, it follows from
equation (14) that symmetry breaking cannot occur. For this
we exploit the possible symmetries of the initial state:

pg(x, P, to) = pg(—x, —p, to); (15a)
pg(x, P, to) = pg(x, —p, l); (15b)
pp(x, p, o) = pg(—x, P, 1H). (15¢)

The first one corresponds to a state with zero-mean position
and momenta, while the second and third describe an initial
state with either zero-mean momenta or zero-mean position,
respectively.

Consider the case in which the equations of motion are
7, invariant. The distributions pg(z, p,t) and pél)(a:,p, t)
satisfy the same equation of motion but do not, in
general, coincide. However, if the initial condition for the
original solution pg(x, p,fp) is invariant under reflection
(equation (15a)) then

Py (@, p. 1o — T/2) = ps(—x, —p. o) = ps(. P, o)
= py’ (. —p. 1o — T/2). (16)

That is, the original and transformed solutions start from the
same initial distribution but at initial time they experience a
different value for the global phase of the field, £ (to +o %) and
E(to + (o — n)%) = —E(to + a%), respectively. Since the
averages in equation (10) are independent of «, they coincide
for the two solutions. Hence, no rectification can be induced
when the field satisfies equation (11a) and the initial condition
satisfies equation (15a).

The argument for the two other cases is very similar. If the
field satisfies equation (11b) (or equation (11c¢)), the equation
of motion is 7; (or 73) invariant. Even when the original
pp(x, p,t) and transformed plgz) (z,p,t) [or ,o/(;) (x, p, 1)]
solutions obey the same equation of motion, they do not
need to coincide. However, if the initial condition of the
original solution satisfies the symmetry in equation (15b)
(or equation (15c¢)), then

2
py (@.p. —to +1) = pp(x, —p. 1o) = pp(. P. 10)

=pg) (@, —p, —to +1)), (17)

Py (@, p, —to+1') = pp(—, p, 10) = py(. P, to)
(18)

The transformed solution has the same initial condition as the
original one but as we had prepared the system a time 27y — ¢’
before. The difference between the two solutions is that they
experience a different global laser phase at preparation time.
Since we are not interested in effects that depend on the global
laser phase, the mean position and momenta in equation (10)
for the original and transformed solution need to coincide.
However, from equation (140) (or equation (14¢)) we conclude
that this can only happen if (p)s = 0 [or () = 0].

In summary, for spatially symmetric classical or quantum
systems initially prepared in a symmetric state that satisfies
equation (15), net transport using time-periodic external fields
with zero temporal mean can only be generated if the field
violates the temporal symmetries in equation (11). Further,
any symmetry breaking effect that may be achieved with a
field that satisfies equation (11) is necessarily due to an effect
that depends on the global phase of the laser (cf [29]).

It is natural to ask what kind of fields have sufficiently low
temporal symmetry to induce net transport. Monochromatic
sources satisfy all the symmetries in equation (11) and, as a
consequence, cannot be used to induce symmetry breaking.
However, by adding a second frequency component to a
monochromatic source it is possible to lower the symmetry
of the field and induce symmetry breaking. For instance, a
field like

3
=pg (@, p. —tg +1).

E(t) = €, cos(nwt + ¢py) + €ne cOS(mat + ¢e),  (19)

where n and m are coprime integers so that E(¢) has a
period T = 27 /w, satisfies equation (11) only under special
conditions. It satisfies (11a) only if n and m are odd. Thus,
a field with n = 3 and m = 1, like that used in the 1 versus
3 photon control scenario [1], will not be symmetry breaking.
However, a field with n = 2 and m = 1, like that employed in
the 1 versus 2 scenario, does not satisfy equation (11) and is
expected to induce net dipoles and currents. These dipoles and
currents are phase-controllable since, by varying the relative
phase between the two components of the beam, the w + 2w
field may satisfy equation (115) or (11¢) and thus rule out
the possibility of inducing currents or dipoles, respectively.
Explicitly, when ¢, — 2¢, = 0, £7, +27, ... an w + 2w
field satisfies equation (11b) and zero currents are expected.
Similarly, when ¢, —2¢,, = :I:%, :l:‘%”, ... it fulfils symmetry
(11¢) and no dipoles can be induced. For all other choices of
the phases an w + 2w field is expected to induce symmetry
breaking.

4. Conclusions

In conclusion, we have shown that the minimum conditions
for the generation of phase controllable asymmetry in
spatially symmetric quantum and classical systems using time-
periodic external fields with zero temporal mean are identical:
anharmonicities in the system’s potential are required as
is a driving field that violates the temporal symmetries in
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equation (11). These conditions refer to symmetry breaking
effects that do not rely on the control of the absolute phase
of the field. The derived results provide necessary conditions
for the generation of asymmetry, applicable to all systems.
Additional sufficient conditions may be required, but these
depend upon the specific system under consideration.

Further, we have shown that both quantum and classical
versions of the symmetry breaking effect can be accounted for
through a single space-time symmetry analysis of the equations
of motion. The anharmonicities in the potential permit the
nonlinear response of the system to the incident radiation
that, through harmonic mixing and for fields that violate
equation (11), can lead to the generation of a phase-
controllable dc component in the photoinduced dipoles or
currents.
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