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ABSTRACT
Ultrafast control of electron dynamics is essential for future innovations in nanoelectronics, catalysis, and molecular imaging. Recently, we
developed a general scheme (Stark Control of Electrons at Interfaces or SCELI) to control electron dynamics at interfaces [A. J. Garzón-
Ramírez and I. Franco, Phys. Rev. B 98, 121305 (2018)] that is based on using few-cycle lasers to open quantum tunneling channels for
interfacial electron transfer. SCELI uses the Stark effect induced by non-resonant light to create transient resonances between a donor level in
material B and an acceptor level in material A, resulting in B→ A electron transfer. Here, we show how SCELI can be employed to generate
net charge transport in ABA heterojunctions without applying a bias voltage, a phenomenon known as laser-induced symmetry breaking.
The magnitude and sign of such transport can be controlled by simply varying the time asymmetry of the laser pulse through manipulation
of laser phases. In particular, we contrast symmetry breaking effects introduced by manipulation of the carrier envelope phase with those
introduced by relative phase control in ω + 2ω laser pulses. The ω + 2ω pulse is seen to be far superior as such pulses exhibit a larger difference
in field intensity for positive and negative amplitudes. The results exemplify the power of Stark-based strategies for controlling electrons using
lasers.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0013190., s

I. INTRODUCTION

Controlling electron dynamics using lasers is a central goal
of science and technology.1–4 This is because electrons and their
interactions determine many physical properties of matter, and
lasers open up opportunities to manipulate them on an ultrafast
timescale.5–28 This opens new ways to control the ability of matter to
chemically react,29–36 conduct charge,6–10,16,21,24,26,28,37–43 and absorb
light44–48 or other properties in a femto to attosecond timescale,
something that is unachievable by conventional means such as
chemical/thermodynamic control or through applied voltages.

A major challenge in the laser control of electrons in matter
is to overcome the deleterious effects of decoherence. The fact that
such decoherence is ultrafast (typically in ∼10 s fs)49–52 has tradi-
tionally limited the applicability of coherent control scenarios as
they are based on quantum interference and thus are fragile to such
decoherence.53

As an alternative, Stark-based strategies11,26,34–36,54–56 can
be used to control electrons even in the presence of strong

decoherence.11,26,57 The Stark effect refers to the shifts of energy
levels in matter due to the application of an electric field. In laser–
matter interactions, such an effect becomes dominant when the laser
frequency is chosen to be far detuned from any transition in the sys-
tem such that near-resonance photon absorption is suppressed. This
route for control employs non-resonant lasers of intermediate inten-
sity (non-perturbative but non-ionizing) to dramatically distort the
electronic structure of the material, and as such, it is a Hamiltonian
type of control.11,26,56 The reason why this control route is robust
to decoherence is because it does not rely on creating electronic
superposition states with fragile coherence properties. Instead, the
control is based on pushing energy levels around; on modifying the
Hamiltonian.

Recently, we introduced a Stark-based Control scenario that is
able to induce ELectron transfer across Interfaces (SCELI) in hetero-
junctions.26 The scenario uses few-cycle non-resonant laser pulses
to induce transient resonances among the electronic energy levels
of the different semiconductors that compose the heterojunction.
When the transient resonances involve valence band (VB) levels
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of one semiconductor and conduction band (CB) levels of the sec-
ond semiconductor, quantum tunneling channels for electron trans-
fer between the two adjacent semiconductors are opened. SCELI
can be used to control electron dynamics at interfaces and turn
insulating heterojunctions into conducting ones on a femtosecond
timescale.

In this paper, we demonstrate how SCELI26 can be extended
to induce phase-controllable currents in spatially symmetric het-
erojunctions even in the absence of bias voltage, a phenomenon
known as laser-induced symmetry breaking.8–10,16,58–60 We focus on
symmetry-breaking effects that can be generated by few-cycle laser
pulses as such pulses enable the use of intense electric fields of
1011 W/cm2–1013 W/cm2 before the onset of dielectric break-
down.10,27,61 Using them, the electronic dynamics can be con-
trolled by the instantaneous value of the electric field of
light,5–10,14–19,21–24,26,28 as opposed to dynamic Stark effects that
depend on the laser envelope.34–36,54,55

Laser-induced symmetry breaking arises because of the non-
linear response of matter to fields of low temporal symmetry.1,59 In
its most basic form, laser pulses E(t) = �ω cos(ωt + ϕω) + �2ω cos(2ωt
+ ϕ2ω) with frequency components ω and 2ω are used to photoexcite
a spatially symmetric system from a bound state to a given energy
in the continuum by means of a near-resonance one-photon and
two-photon excitation. Since odd-photon processes connect states
with opposite parity, while even-photon processes connect states
with the same parity, simultaneous photoexcitation via a one- and a
two-photon process creates a state in the continuum of no definitive

parity. This breaks the spatial symmetry of the system and generates
a net phase-controllable current I ∼ E(t)3 = 3

4 �2ω�
2
ω cos(2ϕω − ϕ2ω),

where the overline denotes time-averaging.
More generally, the effect emerges in the odd-order nonlinear

response of matter to resonant or non-resonant laser fields that vio-
late the following temporal symmetries:59 (i) E(t + T/2) = −E(t),
(ii) E(t − t′) = + E(−(t − t′)), and (iii) E(t − t′) = −E(−(t − t′)),
where T is the period of the field and t′ is some reference time.
If the field changes sign every half a period [symmetry (i)], no net
dipoles/currents that survive time-averaging can be photogenerated.
In turn, if the field violates (i) but is symmetric with respect to time
inversion [symmetry (ii)], no net currents can be produced. Finally,
if the field violates (i) but is antisymmetric with respect to time inver-
sion [symmetry (iii)], no net dipoles can be produced. If all three
conditions are violated, net dipoles and currents are expected.

Few-cycle laser pulses are of low temporal symmetry, and the
degree of time asymmetry can be manipulated by varying the carrier
envelope phase (CEP) ϕ.8–11,16,53,58–60,62–64 Gaussian few-cycle pulses
with ϕ = 0, ±π violate symmetry condition (i) but satisfy (ii) and
can induce net dipoles. Those with ϕ = ±π/2 violate (i) but satisfy
(iii) and can induce net momenta when an energy continuum is
accessible to photoexcitation.59 Such lasers allow generating ultrafast
electronic currents6–10,16,24,26,28 that can be employed to design pho-
toelectronic actuators,7 imaging techniques,5,6 and routes to catalysis
that operates on a femto to attosecond timescale.

Here, we contrast the symmetry breaking effects in SCELI
introduced by few-cycle laser pulses with a Gaussian spectrum to

FIG. 1. Laser-induced transient reso-
nances among the single-particle elec-
tronic energy levels of the ABA hetero-
junction. (a) Insulating ABA heterojuntion
composed of two semiconductors A and
B (tight-binding parameters hA

odd = 1.0
eV, hA

even = 7.0, hB
odd = −3.0 eV, hB

even= 3.0 eV, and tiodd = tieven = 3.0 eV,
i = A, B) with no spectral overlap.
(b) Eigenenergies for different electric
field amplitudes E0. Under the influ-
ence of a non-resonant laser field,
the laser-dressed eigenenergies of the
ABA heterojunction fan out as the laser
field amplitude E0 changes, resulting in
multiple trivial and avoided crossings.
Avoided crossings between VB levels of
B and CB levels of A, such as those
signaled by the colored lines (red: CB
level of AR; green: CB level of AL;
and blue: VB levels of B), open tun-
neling pathways for B → A electron
transfer. For E0 > 0 (or E0 < 0) B→ AL (or B → AR), electron trans-
fer dominates. Panel (c) [or (d)] details
the most effective avoided crossing (with
the average energy offset for clarity)
between CB of AL (or AR) and VB of
B [colored lines in (b)]. [(e) and (f)]
Wavefunctions of the associated diabatic
states. Their overlap at the interface
leads to the anticrossings in [(c) and (d)].
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that introduced byω + 2ω few-cycle laser pulses. As discussed below,
to maximize the symmetry breaking effect, it is desirable to design
pulses with a large difference in intensity for positive and negative
field amplitudes. This makes the ω + 2ω fields superior for symmetry
breaking purposes.

We demonstrate this phenomenology in the context of spatially
symmetric heterojunctions composed of a semiconductor B sand-
wiched in between two semiconductors A [see Fig. 1(a)]. The hetero-
junction is chosen to be insulating to both resonant photoexcitation
and an applied voltage. The few-cycle laser pulse is employed to
open tunneling channels for interfacial electron transfer. By vary-
ing the CEP, one can selectively control the direction of the electron
transport across the ABA heterojunction.

This paper is organized as follows: Section II describes the tight-
binding Hamiltonian model for the ABA heterojunction and the
method employed to solve the time-dependent Schrödinger equa-
tion during and after photoexcitation. Section III details the symme-
try breaking effect and contrasts the effectiveness of pulses with a
Gaussian spectrum around frequency ω, with those with two cen-
tral frequencies centered around ω and 2ω. Our main results are
summarized in Sec. IV.

II. MODEL AND METHODS

A. Hamiltonian
We consider a neutral insulating ABA heterojunction, where

a slab of semiconductor B is sandwiched in between slabs of semi-
conductor A [Fig. 1(a)]. The heterojunction is modeled as a one-
dimensional chain, where each of the materials that form it is
described by a tight-binding Hamiltonian. The Hamiltonian for the
whole system is given by

Ĥ(t) = Ĥ(L)A (t) + ĤB(t) + Ĥ(R)A (t) + ĤAB + ĤBA, (1)

where ĤB is the Hamiltonian for semiconductor B and Ĥα
A is the

Hamiltonian for semiconductor A to the left (α = L) or to the right
(α = R) of B. The term ĤAB/ĤBA refers to the interfacial coupling.
Each material is modeled as a two-band tight-binding semiconduc-
tor with Nj = 50 unit cells (j = A or B) in dipole interaction with a
laser field E(t),

Ĥj(t) = 2Nj�
n=1(h

j
n,n + �e�E(t)xn)â†

nân +
2Nj−1��n,m� h

j
n,m(â†

nâm + H.c.). (2)

Here, ân(â†
n) annihilates (creates) a fermion in site or Wannier func-

tion n, â†
n� 0� = �n�, where |0� is the vacuum state, and satisfies the

usual fermionic anti-commutation relations. Each unit cell is com-
posed of two Wannier functions with alternating on-site energies
(hjn,n = hjevenδn,even + hjoddδn,odd) and tight-binding coupling among
them [hjn,n+1 = −(tjevenδn,even + tjoddδn,odd)]. Here, xn is the position
of each Wannier function |n� along the junction, |e| is the electron
charge, �n, m� denotes nearest neighbors, and H.c. is the Hermitian
conjugate. The interaction of the semiconductors at the interface is
taken to be

ĤAB = −tAB(â†
2NB

â2NB+1 + H.c.), (3a)

ĤBA = −tAB(â†
2NB+2NA

â2NB+2NA+1 + H.c.), (3b)

where tAB is the interfacial tight-binding coupling. As a represen-
tative lattice constant for a semiconductor, we use a = 5.0 Å and
a distance between sites in each cell of 1.7 Å for both materials.
As an interfacial distance, we employ aAB = 7.7 Å and coupling
tAB = 0.2 eV. The remaining tight-binding parameters are defined
in Fig. 1. The parameters were chosen to yield semiconductors with
a 6 eV bandgap and 3.7 eV bandwidths. The energetic alignment
between the semiconductors were chosen such that there is no spec-
tral overlap among the bands (the case of partial overlap was consid-
ered previously26). This ensures that the heterojunction is insulating
to both an applied voltage and resonant photo-excitation and that all
electron transfer events are due to SCELI.26 This choice enables us to
cleanly assess the ability of SCELI to be employed in laser-induced
symmetry breaking.

B. Laser pulse
Unless noted otherwise, the laser pulse employed in the simu-

lations is a few-cycle laser of central frequency �hω = 0.5 eV, width
τ = 5.85 fs, centered around tc = 50 fs, and carrier envelope phase
(CEP) ϕ. A few-cycle laser is chosen to suppress the onset of dielec-
tric breakdown10,27,61 even for moderately strong fields. Such a laser
pulse is far detuned from electronic transitions in the system such
that Stark effects dominate the photoresponse. The vector potential
associated with the laser pulse is of the form

A(t) = E0
ω e−(t−tc)2�2τ2 sin(ω(t − tc) + ϕ). (4)

The associated electric field E(t) = − dA(t)
dt is given by

E(t) = E0
ω e−(t−tc)2�2τ2

× �(t − tc)τ2 sin(ω(t − tc) + ϕ) − ω cos(ω(t − tc) + ϕ)�. (5)

This form guarantees that E(t) remains as an ac source even for few-
cycle lasers as �∞−∞ E(t)dt = A(−∞) − A(∞) = 0.
C. Equation of motion

Since the Hamiltonian in Eq. (1) is a single-particle operator,
all the electronic properties are determined by the single-particle
electronic reduced density matrix,

ρnm(t) = �Ψ(t)�â†
nâm�Ψ(t)�, (6)

where |Ψ(t)� is the many-body wavefunction. The dynamics of
ρnm(t) is governed by the Liouville–von Neumann equation

i�h d
dt
ρnm(t) = �[â†

nâm, Ĥ]�, (7)

with initial condition ρnm(0) = �Ψ(0)�â†
nâm�Ψ(0)�.

To integrate Eq. (7), it is useful to employ an orbital decom-
position for ρnm(t). Taking |ε� as the eigenorbitals of the system at
initial time, defined by the relation Ĥ(t = 0)|ε� = ε|ε�, the initial
single-particle electronic reduced density matrix can be expressed as

ρnm(0) = N�
ε=1�ε�n��m�ε�f (ε), (8)
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where N is the total number of eigenorbitals, â†
ε creates a fermion in

the orbital with energy ε, and f (ε) = �Ψ(0)�â†
ε âε�Ψ(0)� = 0, 1 is the

initial electronic distribution among the single-particle states. Here,
we have used the basis transformation

â†
n = N�

ε=1�ε�n�â
†
ε . (9)

Upon time evolution, we adopt the ansatz that ρnm(t) maintains the
form in Eq. (8). That is,

ρnm(t) = N�
ε=1�ε(t)�n��m�ε(t)�f (ε). (10)

The utility of this ansatz is that if the time-dependent orbitals |ε(t)�
satisfy the single-particle Schrödinger equation,

i�h d
dt
�ε(t)� = Ĥ(t)�ε(t)�, (11)

with initial condition |ε(t = 0)� = |ε�, the single-particle electronic
reduced density matrix automatically satisfies the correct equation
of motion [Eq. (7)].

Equation (11) is numerically integrated for 110 fs using the
predictor-corrector Adams–Moulton method with an adaptive time
step in the SUNDIALS package.65 The heterojunction is taken to be
neutral such that the number of electrons N = 6Nj = 300. Snapshots
of selected observables are recorded every �tobs = 0.01 fs.

D. Main observables
The electron transfer dynamics is monitored through changes

in the total charge �Qi of each material. Specifically, we focus on

�QAα(t) = �
n�Aα
(ρnn(t) − ρnn(0)), (12a)

�QB(t) =�
n�B
(ρnn(t) − ρnn(0)). (12b)

Any symmetry breaking in the charge transfer processes leads
to a charge imbalance between AL and AR. This is quantified by
monitoring

QSB(t) = �QAL(t) − �QAR(t). (13)

III. RESULTS AND DISCUSSION

A. Symmetry breaking with few-cycle laser pulses
Throughout, we study the charge transfer across ABA hetero-

junctions induced by few-cycle non-resonant laser pulses of inter-
mediate intensity via Stark shifts. The ABA heterojunction is mod-
eled as a 1D tight-binding chain, as described in Eq. (2). The model
parameters are chosen to create a perfectly insulating material with
no spectral overlap between the bands of semiconductor B and semi-
conductor A [Fig. 1(a)]. This prevents the emergence of charge
transfer across the heterojunction upon resonant photoexcitation or
due to the application of an external voltage.

1. Basic electron transfer mechanism behind SCELI
When the ABA heterojunction interacts with an electric field,

its electronic structure is distorted through Stark shifts. This distor-
tion destroys the periodicity of the potential of the semiconductors
that compose the heterojunction.66–68 As a consequence, the energy
spectrum shows equally spaced resonances known as the Wannier–
Stark ladder (WSL), and the wavefunctions become localized. This
is best appreciated in a tight-binding one-bandmodel66–68 where the
energy of the Wannier–Stark states are given by

εm = ε0 + �e�maE, (14)

where ε0 denotes the center of the energy band for the field-free
model,m = . . ., −2, −1, 0, 1, 2, . . . denotes the site, a denotes the lat-
tice constant, and E denotes the electric field. That is, the energy lev-
els of each band of the semiconductor fan out due to the Stark shifts.
Additionally, because the electric field introduces a linear poten-
tial, with a �e�aE drop between consecutive sites, the wavefunctions
become localized. In fact, for the one-band model, the wavefunction
of the Wannier–Stark state with energy εm is given by

�Ψm� =�
n
Jn−m(t0�2�e�aE)�n�, (15)

where Jn−m(t0/2�e�aE) is a Bessel function and t0 is the tight-binding
coupling between sites. In the presence of an electric field, the wave-
functions become localized around sitem. The degree of localization
increases as the electric field, and thus the potential drop between
consecutive sites, increases.

In the ABA heterojunction, the formation of Wannier–Stark
states leads to transient resonances among the electronic energy lev-
els of the semiconductors that compose it [Fig. 1(b)]. As the magni-
tude of the electric field of light increases, the first set of levels that
cross are the VB levels of B and the CB levels of A as they are the
closest in energy. Two representative pairs are signaled by colored
lines in Fig. 1(b), where the color indicates the material associated
with them (blue represents B, red AR and green AL). At these tran-
sient resonances, quantum tunneling channels for B → A electron
transfer are opened. These tunneling events are particularly effec-
tive when the wavefunction of the Wannier–Stark states involved
overlap at the interface between the two materials, as those shown in
Figs. 1(e) and 1(f). This strong overlap leads to large hybridization
between them, enhanced tunneling, and large avoided crossings in
the adiabatic energies [Figs. 1(c) and 1(d)].

More explicitly, for a given electric field E(t), the Wannier–
Stark diabatic basis is defined by

Ĥj�Ψj
m� = εjm�Ψj

m�, (16)

where Ĥj is the Hamiltonian for material j in the presence of such
an electric field [Eq. (2)]. In this basis, during a B → Aα electron
transfer event, the Hamiltonian of the two levels involved in a given
crossing is

Ĥ = ��
εA

α

m ��2
��2 εBn

�
�, (17)
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where ��2 = �ΨAα

m �ĤAB�ΨB
n� = �ΨB

n �ĤAB�ΨAα

m� is the coupling between
the diabatic states. The adiabatic states |ψ±� are obtained by diago-
nalizing this Hamiltonian,

�ψ−� = cos ξ�ΨB
n� + sin ξ�ΨAα

m�, (18a)

�ψ+� = − sin ξ�ΨB
n� + sin ξ�ΨAα

m�, (18b)

with sin 2ξ = ����2 + (εAα
m − εBn)2. The adiabatic energies

ε± = (εAαm +εBn)
2 ±��2+(εAαm −εBn)2

4 are those shown in Figs. 1(c) and 1(d).
The energy gap at the crossing � and the effectiveness of the B →
Aα electron transfer increase with the overlap of the diabatic states
at the interface.

Importantly, transient resonances between the VB levels of B
and CB levels of AL are induced when the sign of the electric field
E0 is positive, which leads to B → AL electron transfer. By contrast,
negative field amplitudes lead to B→ AR electron transfer. This sug-
gests that the direction of the electron transfer can be controlled by
using laser pulses that have a difference in intensity for negative and
positive field amplitudes, as those offered by few-cycle laser pulses.

To demonstrate that this idea can be realized through actual
laser photoexcitation, we follow the dynamics of the ABA hetero-
junction under the influence of few-cycle laser pulses in Eq. (5)
by directly solving the time-dependent Schrödinger equation.
Figure 2(a) shows the electron transfer dynamics induced by the
laser pulse (�hω = 0.5 eV, ϕ = 0, and E0 = 0.24 V/Å) detailed in the
upper panel of the figure. The dynamics is characterized by following
charge flow into the two A semiconductors through �QAα , α = L, R.
As can be seen, electron transfer is onset by the laser pulse through
the Stark mechanism described above.

FIG. 2. Femtosecond charge transfer dynamics across the ABA heterojunction
induced by non-resonant few-cycle laser pulses. (a) As the laser pulse with ϕ = 0
and E0 = 0.24 V/Å is turned on (upper panel), it opens quantum tunneling channels
for interfacial electron transfer from B to A through Stark shifts (lower panel). (b)
Net charge transfer after the pulse �QAα(∞) to the left (α = L) and right (α = R)
of B and the degree of spatial symmetry breaking QSB(∞) as a function of laser
amplitude E0.

Notice that the electron transfer consists of alternating bursts
of charge transfer from B→ AL and then from B→ AR as is reflected
in the dynamics of �QAα . In agreement with the picture in Fig. 1,
the bursts of charge transferred from B→ AL arise when the ampli-
tude of the electric field of the laser pulse is positive. This is because
for these amplitudes, the induced transient resonances are between
the VB levels of B and the CB levels of AL. In turn, for negative
field amplitudes, we observe bursts of charge being transferred from
B→ AR.

Additionally, note that once the laser pulse is turned off, the
transferred charge �QAα does not change. This is because the het-
erojunction is an insulating material, and electron transfer can only
occur during the interaction with the laser field.

Figure 2(b) shows the asymptotic charge in AR and AL

[�QAα(∞)] as a function of the laser amplitude E0 (ϕ = 0, �hω
= 0.5 eV) and the net degree of symmetry breaking QSB(∞). Both
�QAR and �QAL show similar behavior as a function of E0. Their
response can be divided into three regions26 labeled I, II, and III
in Fig. 2(b). In region I (0 < E0 ≤ 0.076 V/Å), the amplitude of
the electric field induces several transient resonances between VB
levels of B and CB levels of A. However, these are trivial crossings
that do not lead to electron transfer as the wavefunction of the dia-
batic levels involved do not spatially overlap (see Fig. 3). By contrast,
in region II (0.076 < E0 ≤ 0.5 V/Å), the induced transient reso-
nances between VB levels of B and CB levels of A lead to avoided
crossings because the diabatic wavefunction overlap along the inter-
face, as seen in Figs. 1(e) and 1(f). Therefore, quantum tunneling
channels for interfacial electron transfer are opened. Increasing the
magnitude of the electric field E0 opens more of these channels,
which leads to an increase in charge transfer �QAα(∞). In region III
(E0 > 0.5 V/Å), the amplitude of the electric field is strong enough
to induce avoided crossings between the VB levels of A and the CB
levels of B that lead to A → B charge transfer events and between
the VB and CB of each material that lead to large Zener interband
tunneling.69 The competition of these processes leads to a com-
plicated dependence of the effect on the laser amplitude in this
region.

2. Spatial symmetry breaking
Because of the spatial symmetry of the ABA heterojunction, as

the field develops from zero to a given positive or negative ampli-
tude ±|E0|, the number and the effectiveness of the level crossings
that induce B → AR (for −|E0|) and B → AL (for +|E0|) electron
transfer are identical. Symmetry breaking is achieved by using a
pulse that has a difference in intensity for positive and negative field
amplitudes. For such pulses, the number of induced transient res-
onances that lead to interfacial electron transfer for B → AL and
B → AR differs, leading to a net transferred charge QSB(∞) ≠ 0.
For few-cycle laser pulses, this difference in intensity for positive
and negative field amplitudes, and thus the direction and magni-
tude of QSB(∞), can be manipulated by changing the CEP. Figure 4
shows the dependence of the shape of the laser and QSB(∞) on the
CEP. The maximum QSB(∞) is obtained for ϕ = 0, π as those phases
maximize the difference in intensity of the field for positive and neg-
ative amplitudes. In turn, for ϕ = π/2, QSB(∞) = 0 because such laser
pulses have equal intensity for positive and negative field amplitudes
as E(t − t′) = −E(−(t − t′)) in this case. By changing the CEP by π,
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FIG. 3. Trivial crossings in the Stark control of electrons at interfaces. (a) Electric
fields in region I in Fig. 2(b) induce multiple crossings among the levels of B and
those of A. As an example, the colored lines highlight a particular crossing between
a VB level of B (in blue) and a CB level of A (in green). (b) Trivial energetic crossing
between the levels (with the average energy offset for clarity) and (c) associated
wavefunctions. There is no avoided crossing because the wavefunctions do not
appreciably spatially overlap and the levels do not hybridize. These crossings do
not open channels for interfacial electron transfer.

it is possible to change the direction of the symmetry breaking as
E(ϕ + π) = −E(ϕ).

Figure 2(b) shows the dependence of QSB(∞) for ϕ = 0 as a
function of laser amplitude E0. The symmetry breaking effect is

FIG. 4. Asymptotic laser-induced symmetry breaking QSB(∞) in a ABA hetero-
junction induced by few-cycle laser pulses of varying CEP (�hω = 0.5 eV and
E0 = 0.24 eV/Å). The CEP controls the shape of the laser field (insets) and thus
the direction and magnitude of the symmetry breaking.

robust to changes in field amplitude. However, the direction of the
symmetry breaking QSB is very sensitive to E0. This effect arises
because for this pulse, the ratio of positive and negative peak ampli-
tudes (Γ ≈ 1.2) is not large enough to guarantee that the number of
B → AL quantum tunneling channels sampled during the pulse is
larger than those for B→ AR for all values of E0, which could lead to
QSB(∞) < 0.
B. Enhancing the symmetry breaking

Clearly, to enhance the ability of a laser pulse to induce symme-
try breaking, it is desirable to make Γ� 1 or Γ� 1. This quantity is
defined as Γ = E+0

E−0 , where E+�−
0 is the global maximum/minimum

of the electric field of light. One path to do so is to change the
time width τ of the laser pulse. The quantity Γ increases by decreas-
ing τ [Fig. 5(a)]. By selecting a τ with a bigger Γ, the direction of
QSB becomes robust to changes in E0. For example, Fig. 5(b) com-
pares the behavior of QSB(∞) as a function of E0 for laser pulses
with τ = 1.0 fs (black line, Γ = 1.97) and 5.85 fs (red line, Γ = 1.2).
Notice that for τ = 1.0 fs, the direction of QSB(∞) becomes robust
to changes of E0 in region II. However, creating such ultrafast laser
pulses demands increasingly more frequency bandwidth.

An alternative is to use ω + 2ω few-cycle laser pulses with the
vector potential

A(t) = e−(t−tc)2�2τ2� �ωω sin(ω(t − tc) + ϕω)
+

�2ω
2ω sin(2ω(t − tc) + ϕ2ω)�, (19)

FIG. 5. Effect of the laser pulse time width τ on the symmetry breaking. (a) Ratio Γ
between the maximum positive and negative values of the electric field of light as
a function of τ for ϕ = 0. (b) Total photoinduced charge transfer as a function of the
laser amplitude for τ = 1.0 fs and τ = 5.85 fs. The direction of the effect becomes
robust to changes in E0 when Γ is increased.
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FIG. 6. Optimizing Γ for ω + 2ω laser pulses. The figure shows the effect of laser parameters on Γ, which quantifies the difference in laser intensity for positive and negative
field amplitudes for �hω = 0.5 eV. (a) Dependence on �ω/�2ω for τ = 5.85 fs and ϕω = ϕ2ω = 0. (b) Dependence on ϕ2ω for τ = 5.85 fs and �ω = 2�2ω. Each curve corresponds
to different values of ϕω. (c) Dependence on the laser pulse time width τ for �ω = 2�2ω and ϕω = ϕ2ω = 0.

where the peak electric field amplitude is given by E0 = �ω + �2ω.
The presence of the second harmonic leads to fields with different
intensities for positive and negative field amplitudes even for pulses
with many cycles in the laser envelope. The ω + 2ω few-cycle laser
pulses have four parameters that control Γ: �ω/�2ω, τ, ϕω, and ϕ2ω. To
determine how to maximize Γ, we explore its behavior as a function
of these parameters. Figure 6(a) shows Γ as a function of �ω/�2ω. The
maximum Γ is found for �ω = 2�2ω. With this relation for the laser
amplitude, Fig. 6(b) explores how Γ changes with laser phases. Here,
several combinations of ϕ2ω and ϕω show the same maximum value
of Γ. For definitiveness, we choose ϕ2ω = ϕω = 0. Finally, Fig. 6(c)
shows Γ vs τ for �hω = 0.5 eV, �ω = 2�2ω, and ϕω = ϕ2ω = 0. The
ratio Γ decreases as the pulse includes more cycles, as observed for
Gaussian pulses [Fig. 5(a)]. However, contrary to Gaussian pulses,
the asymptotic value of Γ as τ increases for this type of pulses is 2.
This means that even for long pulses, the ω + 2ω laser breaks the
spatial symmetry of the system.11,53

Figure 7 compares the shape of the regular few-cycle laser pulse
(red line) with the ω + 2ω laser pulse (black line) and their effec-
tiveness for symmetry breaking for fixed τ = 5.85 fs. Notice that the
ω + 2ω laser has a larger difference in intensity for positive and neg-
ative field amplitudes than the laser pulse in Eq. (5) (Γ = 2.01 vs 1.2,
respectively). We observe that the larger Γ for ω + 2ω lasers guar-
antees that in region II, the number of effective B → AL quantum
tunneling channels that are opened is greater than those for B→ AR

for ϕ = 0. As a result, QSB(∞) ≠ 0, and its direction is robust to
changes in E0 in region II [see in Fig. 7(b)]. These results show that
laser pulses with high Γ optimize the control over the symmetry
breaking. The ω + 2ω laser pulses are far superior than Gaussian
few-cycle pulses because they maintain a large Γ even as the number
of cycles in the pulses is increased.

By varying the shape of the ω + 2ω laser pulses through ϕω
and ϕ2ω, the direction and magnitude of the symmetry breaking
QSB(∞) can be controlled. Figure 8 shows the behavior of QSB(∞) as
a function of ϕ2ω for ϕω = 0. The maximum QSB(∞) is obtained for

ϕ2ω = 0, π as those maximize the difference in intensity of the field
for positive and negative amplitudes (see Fig. 6(b). In turn, for ϕ2ω
= 0.48π, QSB(∞) ≈ 0 because for this pulse, Γ = 1.1, and its shape is
approximately antisymmetric (see inset Fig. 8). Notice, that the ω +
2ω laser pulses does not satisfy the condition E(ϕ2ω + π) = −E(ϕ2ω).

FIG. 7. Control of charge transfer using few-cycle ω + 2ω pulses in the ABA het-
erojunction. (a) Comparison of a few-cycle ω (red) pulse with CEP of zero and
ω + 2ω (black) pulse with phase ϕω = ϕ2ω = 0. (b) Total photoinduced charge
transfer as a function of the laser amplitude. The direction of the effect induced by
the ω + 2ω is robust to changes in the laser amplitude E0.
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FIG. 8. Phase dependence of photoinduced charge transfer using few-cycle
ω + 2ω laser pulses. The largest symmetry breaking effect is observed for ϕ2ω
that maximizes the difference in laser intensity for negative and positive field
amplitudes.

Therefore, changing ϕ2ω by π does not completely reverse the
symmetry breaking.

C. Evidence for quantum tunneling
To demonstrate that the mainmechanism of the electron trans-

fer in SCELI is quantum tunneling, the numerical simulations are
contrasted with the results obtained from a rate equation with transi-
tion probabilities determined by Landau–Zener (LZ) theory.70,71 We
focus on region II [see Fig. 2(b)] where only the single-particle states
in the VB of B and the CB of A play a prominent role in the photoin-
duced process. Therefore, we consider a minimal model in which
only those single-particle states are allowed to exchange charge.26
The charge change from time t to time t + �t is determined by

ηA
α

l (t + �t) = ηAα

l (t) + (ηBk (t) − ηAα

l (t))PkB→lAα(t), (20)

where ηA
α

l is the population of the lth diabatic level of material A to
the left (α = L) or right (α = R) of B and ηBk is the kth diabatic level
population of material B. In turn, PlAα→kB(t) = PkB→lAα(t) is the LZ
tunneling probability,

PkB→lAα(t) = 1 − e−βkBlAα , (21)

with

βkBlAα = 2π(�kB
lAα)2�h� ddt �εBk [E(t)] − εAα

l [E(t)]��t=tcrossing
, (22)

at the time (tcrossing) where the kth VB level of B and the lth CB level
of A become degenerate and zero otherwise. Here, �kB

lAα is the gap
between the associated adiabatic levels at the avoided crossing, while
εil are the energies of the diabatic states. For strong laser fields, the
Stark shifted energies vary linearly with the electric field such that
dεil
dt = Mi

l
dE(t)
dt [see Eq. (14)]. To calculate the population dynamics

in Eq. (20), the slopes Mi
l are obtained by fitting the diabatic energy

states εil to a linear function around the avoided crossing. In this case,

the symmetry breaking in the charge transfer processes is tracked by
monitoring

QSB(t) = N�
l=1
(ηAL

l (t) − ηAR

l (t)), (23)

where N is the total number of CB energy levels in A.
Figure 9 compares the net charge transfer dynamics obtained

with the LZ rate equation with that obtained by solving the time-
dependent Schrödinger equation for a few-cycle ω + 2ω laser pulse
of E0 = 0.24 V/Å and �hω = 0.5 eV. The results obtained with the
LZ rate equation reproduce qualitatively well the features of the
charge transfer dynamics. Note that the LZ rate equation repro-
duces well the dynamics until tω/2π ≈ 0.97, where it overestimates
the charge transferred. This overestimation arises because LZ theory
was developed for diabatic energies that change linearly with time72
in the crossing region, and this condition is not satisfied around
tω/2π ≈ 0.97 where the electric field of light is near a maximum.
These results indicate that quantum tunneling induced by Stark
shifts is the main mechanism of the charge transfer.

D. Decoherence effects
To demonstrate that the SCELI is robust to decoherence, we

repeated the LZ rate computations but using a modified version
of Eq. (21), which takes into account the effect of strong decoher-
ence.73–75 In this case, the transition probability is given as

Pincoh
kB→lAα(t) = 1 − e−2βkBlAα

2
. (24)

Figure 9 compares the electron transfer dynamics for the LZ rate
equation with (black dashed line) and without (red dashed line)

FIG. 9. Comparison of Landau–Zener rate theory (red dashed line) with the full
quantum dynamics (red solid line) and effect of decoherence (black dashed line).
The plot shows the net charge transfer induced by a few-cycle ω + 2ω laser pulse
(upper panel: E0 = 0.24 V/Å, �hω = 0.5 eV). Note the LZ rate equations qualitatively
reproduce the basic features of the quantum dynamics, indicating that the effect is
due to quantum tunneling processes induced by Stark shifts.
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FIG. 10. Comparison of Landau–Zener rate theory with (black dashed line) and
without (black line) decoherence effects. The plot shows the symmetry breaking
QSB(∞) as function of the photon energy �hω of few-cycle ω + 2ω laser pulses
(E0 = 0.32 V/Å). The ratio between the Landau–Zener rate theory without and
with decoherence effects (red line) shows that these effects are quite mild on the
electron transfer.

decoherence effects. Notice the electron transfer dynamics in both
cases is essentially identical, which indicates that decoherence has a
minor effect on the scheme of control. This is because in the regime
in which the control takes place, βkBlAα is small for most crossings,
leading to Pincoh

kB→lAα(t) ≈ PkB→lAα(t).
Figure 10 quantifies the effect of decoherence for different laser

frequencies. Even for small frequencies for which βkBlAα is sizable,
the effect remains robust to decoherence. Decoherence is seen to
decrease the effect in 3.5%–8% in the range studied. Reducing the
laser frequency increases the magnitude of the symmetry breaking
as there is more time for electrons to tunnel at the relevant energy
crossing.

IV. CONCLUSIONS
In conclusion, we have demonstrated that the Stark Control

of Electrons at Interfaces (SCELI) can be extended to induce laser-
induced symmetry breaking on an ultrafast timescale. The scheme
can be used to induce directional charge transfer in spatially sym-
metric systems whose magnitude and sign can be controlled by vary-
ing laser phases, without exciting carriers through near-resonance
photon absorption. Instead, the scheme is based on using the Stark
effect introduced by non-resonant lasers to distort the electronic
structure of interfaces and open opportunities for interfacial charge
transfer. This is done by using the instantaneous electric field of light
to create transient resonances between the VB and CB of two adja-
centmaterials. This contrasts with Zener tunneling effects that create
transient resonances between the VB and CB of the same mate-
rial. The scheme requires lasers with a difference in intensity for
positive and negative field amplitudes, such as those offered by few-
cycle laser sources. A major advantage of SCELI is that the effect is
robust to decoherence since it does not rely on creating fragile elec-
tronic superposition states. In this sense, SCELI is a superior route
for exerting laser control of electrons in matter with respect to tra-
ditional interference-based laser control strategies as the latter are
fragile to decoherence.

The phenomenon was exemplified in a two-band tight-binding
model of an ABA heterojunction driven by few-cycle lasers with the

well-defined carrier envelope phase (CEP). Few-cycle lasers exhibit
a difference in intensity for positive and negative field amplitudes
and have the advantage that strong electric fields (1013 W/cm2–1014
W/cm2) can be applied before inducing dielectric breakdown. For
definitiveness, we have focused on model atomistically sharp inter-
faces and have not taken into account additional effects that may
arise due to screening and band bending. These effects are expected
to influence the magnitude of SCELI but to leave the basics of the
rectification mechanism intact.

There are a growing number of reports5–10,15,16,18,19,24,28 using
few-cycle laser pulses for laser-induced symmetry breaking and
other effects that rely on radiation with different intensity for pos-
itive and negative field amplitudes. Such effects are controllable by
varying the CEP since this quantity determines the ratio Γ between
the maximum positive and negative values of the electric field. Most
studies use fields with one central frequency ω for which decreas-
ing the number of cycles contained in the laser envelope increases Γ
and thus themagnitude of the CEP-controllable effect.We have con-
trasted the effectiveness of such fields for symmetry breaking against
fields with two central frequencies ω and 2ω. Except in the limit of
impulsive pulses (of time width τ → 0) with the infinitely broad fre-
quency spectrum, the ω + 2ω laser fields were found to be superior
for symmetry breaking purposes because they have a larger differ-
ence in intensity for positive and negative field amplitudes that is
largely insensitive to τ.

The control of interfacial charge transfer in a semiconductor–
semiconductor interface is seen to be the largest for the CEP of 0, π
when the fields exhibits the largest difference in intensity for pos-
itive and negative field amplitudes. Such a CEP dependence was
also observed in experiments inducing currents in gold–silica–gold
junctions9,10 as both effects depend on controlling interfacial charge
transfer through Stark shifts.16

The simulations exemplify the power of Stark-based strate-
gies for the laser control of electrons at interfaces. Future prospects
include quantifying the role of band bending and screening in the
effectiveness of this general control route.
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