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ABSTRACT
Controlling electronic decoherence in molecules is an outstanding challenge in chemistry. Recent advances in the theory of electronic
decoherence [B. Gu and I. Franco, J. Phys. Chem. Lett. 9, 773 (2018)] have demonstrated that it is possible to manipulate the rate of elec-
tronic coherence loss via control of the relative phase in the initial electronic superposition state. This control emerges when there are
both relaxation and pure-dephasing channels for decoherence and applies to initially separable electron–nuclear states. In this paper, we
demonstrate that (1) such an initial superposition state and the subsequent quantum control of electronic decoherence can be created via
weak-field one-photon photoexcitation with few-cycle laser pulses of definite carrier envelope phase (CEP), provided the system is initially
prepared in a separable electron–nuclear state. However, we also demonstrate that (2) when stationary molecular states (which are gen-
erally not separable) are considered, such one-photon laser control disappears. Remarkably, this happens even in situations in which the
initially factorizable state is an excellent approximation to the stationary state with fidelity above 98.5%. The laser control that emerges for
initially separable states is shown to arise because these states are superpositions of molecular eigenstates that open up CEP-controllable
interference routes at the one-photon limit. Using these insights, we demonstrate that (3) the laser control of electronic decoherence
from stationary states can be recovered by using a two-pulse control scheme, with the first pulse creating a vibronic superposition state
and the second one inducing interference. This contribution advances a viable scheme for the laser control of electronic decoherence
and exposes a surprising artifact that is introduced by widely used initially factorizable system-bath states in the field of open quantum
systems.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0002166., s

I. INTRODUCTION

One of the greatest challenges in using molecules for quan-
tum technologies including quantum control and quantum infor-
mation is to overcome the deleterious effects due to decoherence.1–3
Such decoherence arises from the unavoidable interactions of the
system of interest with environmental degrees of freedom and lim-
its the ability of quantum systems to fully exhibit their quantum
mechanical features.1,2,4,5 Developing methods to preserve coher-
ence of electronic, vibrational, and vibronic degrees of freedom
is essential to observe non-trivial quantum mechanical effects in
molecules, to enhance molecular function through coherence,5–13

and to exert quantum control of chemical processes2,14 as desirable
for femto- and attochemistry,15–17 quantum information sciences,1
and the development of enhanced spectroscopies.18

During decoherence, a system changes from a pure state
with density matrix σ(t) = |ψ⟩⟨ψ| to a statistical mixture of states
σ(t) = ∑ipi|ψi⟩⟨ψi| (pi > 0) due to the entanglement of the system
(the degrees of freedom of interest) with the surrounding bath.4,19
To quantify the degree of decoherence, it is useful to follow the
purity defined as P(t) = TrS[σ2(t)] ≤ 1, where the trace TrS[O]
is over the system degrees of freedom. Purity is a well-defined basis-
independent measure of decoherence20 that quantifies the degree of
non-idempotency of the reduced density matrix of the system of
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interest. The quantity P = 1 for pure states and P < 1 for mixed
states.

A challenging and important problem in decoherence is
to identify viable methods to preserve electronic coherence in
molecules. Such decoherence arises due to electron–nuclear entan-
glement21 and has a typical timescale of ∼10 s. It accompanies
photoexcitation, passage through conical intersections, electron
transfer, or any other process that creates superpositions of elec-
tronic states. Its consequences can be monitored through purely
electronic observables such as currents as in Refs. 22–25 or
in laser spectroscopies that measure polarization response after
photoexcitation. This is because the photoinduced polarization
decays with the decay of electronic coherences. In fact, for a
general electron–nuclear state |Ψ(t)⟩ = ∑i|χi(t)⟩|ϕi⟩, where {|ϕi⟩}
are orthonormal electronic energy eigenstates and |χi(t)⟩ are
nuclear wavepackets associated with the ith electronic state, the
time-dependent dipole that determines the polarization is ⟨μ(t)⟩
= ⟨ μe + μn⟩ = ∑i ,j⟨ϕi|μe|ϕj⟩⟨χi(t)|χj(t)⟩ + ∑i⟨χi(t)|μn|χi(t)⟩, where
μe is the electronic component of the dipole operator and μn is
the nuclear one. Thus, a decay in nuclear wave packet overlaps
|⟨χj(t)|χi(t)⟩| for i ≠ j leads to a decay in the coherences of the
electronic density matrix σ = ∑i ,j⟨χj(t)|χi(t)⟩|ϕi⟩⟨ϕj|, polarization∝⟨μ(t)⟩, and electronic purity P(t) = ∑i,j ∣⟨χj(t)∣χi(t)⟩∣2.

In this context, a recently developed theory of electronic
decoherence26,27 revealed an opportunity to enhance electronic
coherence through the manipulation of initial phases in an elec-
tronic superposition state. Specifically, in Refs. 26 and 27, it
was demonstrated that for molecular systems with configuration-
varying diabatic couplings, such as those that lead to conical
intersections in the Franck–Condon region that is accessed via
vertical photoexcitation, it is possible to manipulate the rate
of electronic decoherence by controlling the relative phase in
the initial electronic superposition state. This possibility of con-
trolling decoherence was subsequently numerically demonstrated
by Arnold et al.28 They found that the control of electronic
decoherence is possible, given that a coherent electronic wave
packet embodying the phase difference passes through a conical
intersection.

The initial theory26,27 and subsequent simulations28 suppose a
separable initial electron–nuclear state of the form

∣Ψ⟩ = (cg ∣g⟩ + ce∣e⟩)⊗ ∣χ0⟩, (1)

where χ0(R) = ⟨R|χ0⟩ is the nuclear state and |g⟩ and |e⟩ refer to
the ground and excited electronic states, respectively. By manipu-
lating the relative phase θ, cgc∗e = ∣cg∥ce∣eiθ, of this initial super-
position, it is possible to control the decoherence rate when pure-
dephasing and relaxation decoherence mechanisms, the latter being
opened by the diabatic couplings, are simultaneously at play.
The challenge then is to physically create such a separable state
with various relative phases before electronic decoherence takes
place.

In this paper, we investigate the possibility of using few-
cycle laser pulses to create such states and control electronic
decoherence in molecules. Recent developments in ultrafast laser
science allow for the production of laser pulses with just a
few cycles and a well-defined carrier envelope phase φCEP.23,24,29

The advantage of using few-cycle laser sources is that they
can be used to impulsively excite the molecule in an ultrafast
timescale such that the nuclear environment remains frozen dur-
ing photoexcitation, as is needed to create a state of the form in
Eq. (1).

Specifically, we first demonstrate that photoexcitation of a
molecular system initially prepared in a separable electron–nuclear
state |Ψ(0)⟩= |g⟩ ⊗ |χ0⟩ using a few-cycle laser pulse in the weak-field
limit leads to states as in Eq. (1) and to a decoherence dynamics that
can be manipulated by varying the φCEP. Thus, such laser pulses, in
principle, offer a possible route to exert the laser control of electronic
decoherence.

Despite this progress, a key assumption in Refs. 26–28 and in
the above analysis is that the molecule can be prepared in an initially
separable electron–nuclear state. Such separable states are often-
invoked in the theory of open quantum systems1,4 as they are con-
venient in theoretical considerations. However, they are clearly an
idealization. In fact, for molecules separable, electron–nuclear states
only arise in the limit in which the Born–Oppenheimer approx-
imation is exact.21 Nevertheless, such states can be a very good
approximation to the true eigenstates, e.g., for an electronic ground
state that is electronically decoupled to higher lying electronic
states.

Below, we examine the influence of the initial state on the
laser control and show that, surprisingly, the one-photon laser con-
trol disappears when the molecule is initially prepared in a station-
ary molecular state. Remarkably, this happens even in situations in
which the separable state is an excellent approximation to the true
molecular eigenstate with fidelities above 98.5%. This is also sur-
prising from a coherent control perspective as subsystem purity is
beyond the scope of existing theorems that preclude the existence
of one-photon phase control.30,31 Thus, the often-invoked initially
factorizable state introduces spurious routes for the laser control.

Through a detailed analysis of the origins of these intriguing
observations, we demonstrate that the non-stationary character of
the initial separable state opens interference channels that can be
controlled through laser phases at the one-photon limit. We then
use these insights to develop a two-pulse laser control scheme of
electronic decoherence that can be used for arbitrary initial states.
In it, the first pulse creates a superposition state between the desired
levels, and the second pulse introduces the interference that can be
used for control.

The structure of this paper is as follows: In Sec. II, we briefly
summarize the theory of electronic decoherence timescales that
revealed the possibility of controlling decoherence via manipula-
tion of initial phases. Then, in Sec. III, we introduce our computa-
tional methods and the exemplifying (photoisomerization and dis-
placed harmonic oscillator) models employed to test the feasibility
of implementing such a theory through actual laser photoexcita-
tion. The achieved laser control of electronic decoherence from ini-
tially separable states in these models and its disappearance from
stationary states are discussed in Secs. IV A and IV B. Then, in
Sec. IV C, we provide an analysis of these phenomena in the con-
text of a minimal analytical model that captures the essential fea-
tures of the problem. In Sec. IV D, we summarize our main find-
ings and discuss the qualitative origin and the minimum require-
ments for the laser phase control of electronic decoherence. Based
on this analysis, in Sec. V, we propose a laser control strategy of
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electronic decoherence that can be employed for arbitrary initial
states.

II. THEORY OF ELECTRONIC DECOHERENCE
TIMESCALES

In the interest of clarity, we first summarize the theory of elec-
tronic decoherence timescales that forms the starting point of this
analysis. Consider a system interacting with an environment with
HamiltonianH = HS+HB+HSB, whereHS describes the system,HB
describes the bath, and

HSB =∑
α
Sα ⊗ Bα (2)

describes their interaction. Here, Sα refers to an operator in the
Hilbert space of the system, while Bα are operators in the Hilbert
space of the bath. To define a decoherence time, in Ref. 26, we
assumed that the system is initially in a pure state that decoheres as a
result of the dynamics. This implies that at initial time, the system–
bath state ρ(0) = σ(0) ⊗ ρB(0) is not entangled and the purity
P(0) = 1, where ρB(t) is the reduced density matrix for the bath.
To capture the early time purity dynamics, we performed a second
order expansion of the Liouville–von Neumann equation satisfied
by the composite system ih̵ d

dt ρ = [H, ρ] around initial time t = 0,
ρ(t) = ρ(0) + t d

dt ρ(t)∣t=0 + t2
2

d2
dt2 ρ(t)∣t=0. By tracing over the bath

to obtain a short-time expansion of the density matrix of the sys-
tem σ(t) and calculating purity, we isolated a general and simple
relation for the initial purity decay. The procedure revealed that for
early times, the purity decays like a Gaussian P(t) = e−t2/τ2d with the
decoherence timescale

τd = h̵⎛⎝2∑αβ ΔB
αβ × ΔS

αβ
⎞⎠
−1/2

. (3)

Here, ΔS
αβ ≡ ⟨SαSβ⟩ − ⟨Sα⟩⟨Sβ⟩ and ΔB

αβ = ⟨BαBβ⟩ − ⟨Bα⟩⟨Bβ⟩ are
the initial-time crossed fluctuations (covariances) of the system
and the bath operators entering HSB. If the long time limit of
the system purity P∞ ≡ limt→∞P(t) is known, one can inter-
polate the short and asymptotic purity behavior as P(t) − P∞≈ (1 −P∞)e−(1−P∞)−1(t/τd)2 .

The result in Eq. (3) is universal. It applies to any initially pure
system in interaction with a bath and does not invoke common
approximations employed in open quantum system dynamics, such
as Markovian dynamics, harmonic baths, or rotating-wave approxi-
mations. The physical idea conveyed by Eq. (3) is that the larger the
quantum fluctuations of the operators that enter into HSB at initial
time the faster the decoherence. The Gaussian shape of the decoher-
ence decay is fundamental and can be regarded as a consequence of
the quantum Zeno effect.32 The often-assumed exponential coher-
ence decay arises in the particular limit in which the environment is
Markovian.4 Such a limit is beyond the applicability of the early time
expansion.

Equation (3) makes it straightforward to calculate decoherence
timescales for any system–bath model. In particular, in Ref. 27, we
used it to develop a generalized theory of electronic decoherence in
molecules that we now summarize. Consider a general two-surface

molecular Hamiltonian of the form

HM = Hg ∣g⟩⟨g∣ +He∣e⟩⟨e∣ + Vge(R)∣g⟩⟨e∣ + Veg(R)∣e⟩⟨g∣= Hg ⊗ Ie + Eeg(R)∣e⟩⟨e∣ + Vge(R)∣g⟩⟨e∣ + Veg(R)∣e⟩⟨g∣. (4)

Here, |g⟩ and |e⟩ refer to electronic ground and excited diabatic
states (eigenstates of the electronic Hamiltonian of the molecule for
a fixed reference nuclear geometry R0), respectively. The operators
Hg = TN + Vg(R) andHe = TN + Ve(R) denote the nuclear Hamilto-
nians in ground and excited electronic states, respectively, Ie is the
identity in electronic subspace, and Eeg(R) ≡ He − Hg is the energy
gap operator between the ground and excited diabatic potential
energy surfaces (DPES). The quantity Vge(R) [= V∗eg(R)] represents
the diabatic couplings betweenDPES caused by the electron–nuclear
couplings.

To apply the theory of decoherence timescales, the molecule
is taken to be in a initially separable electron–nuclear state
ρ(0) = σ(0) ⊗ ρB(0), where the electronic state σ(0) = |ψ⟩⟨ψ| is
a superposition |ψ⟩ = (cg |g⟩ + ce|e⟩). The electron–nuclear interac-
tion terms in Eq. (4) are of the form in Eq. (2) and thus can be
directly inserted into Eq. (3) to generate a timescale for electronic
decoherence,

τ−2d = 2
h̵2
[∣cg ∣2∣ce∣2⟨δ2Eeg⟩ + (1 − 4∣cg ∣2∣ce∣2 cos2 θ)⟨δ2Veg⟩

+ 2(∣cg ∣2 − ∣ce∣2)∣cg∥ce∣ cos θ⟨δEegδVeg⟩]. (5)

Here, θ is the relative phase in the initial superposition cgc⋆e= ∣cg∥ce∣eiθ, δO = O − ⟨O⟩, and δ2O = O2 − ⟨O⟩2, where ⟨O⟩≡ Tr{ρ(0)O} = TrB{ρB(0)O} for O defined in the nuclear Hilbert
space.

The physical meaning of the terms in τd is as follows: The
first term due to the quantum fluctuations of the energy gap
(⟨δ2Eeg⟩) is the decoherence between two DPES that represent pure-
dephasing effects previously identified by Rossky.33 It is pure-
dephasing because it leads to decoherence without net exchange
of energy between the system and surroundings as it arises from
the Eeg(R)∣e⟩⟨e∣ term in the Hamiltonian. In addition, the theory
reveals that electronic transitions among diabatic states induced by
the nuclei introduce an additional important channel for electronic
decoherence quantified by the term proportional to ⟨δ2Veg⟩. Such
electronic transitions and the resulting energy exchange between
electrons and nuclei are necessary for the emergence of relaxation.
Surprisingly, contrary to Bloch equations ideas where dephasing and
relaxation effects contribute separately to decoherence,34 we find
that these two contributions interfere as revealed by the third term
in Eq. (5). For definitiveness, Eq. (5) focuses on two-surface mod-
els. However, the theory has been extended to the many-surface
case.27

Importantly, the theory reveals that when both relaxation and
pure dephasing effects are at play, it is possible to control the deco-
herence rate by simply changing the phase θ of the initial super-
position, thus opening opportunities for the quantum control of
decoherence. Such θ dependent terms arise when the diabatic cou-
plings Vge(R) vary spatially with R such that their initial-state fluc-
tuations are non-zero. This is the case, for example, in conical
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intersections and underlies the observations in Ref. 28. However,
conical intersections are not a necessary requirement.

The phase dependence in the purity can be employed to
enhance or suppress the decoherence with respect to what would
have been obtained if such phase was uncontrollable. To see this,
contrast the purity dynamics for a given θ, P(θ), with that obtained
by considering θ as a uniformly distributed random variable,
Pin = 1

2π ∫2π0 dθP(θ). Their difference
P(t) −Pin(t) = 4t2h̵2 [∣cg ∣2∣ce∣2 cos(2θ)⟨δ2Veg⟩ − (∣cg ∣2 − ∣ce∣2)

× ∣cg∥ce∣ cos θ⟨δEegδVeg⟩] +O(t4) (6)

can be positive or negative, indicating that the phase dependence can
be used to mitigate or enhance the decoherence.

III. MODEL AND METHODS
To study the possibility of using lasers to control electronic

decoherence, we simulated the decoherence dynamics in a model
of internal torsion photoisomerization (Model I) and a displaced
harmonic oscillator model (Model II), which are two basic models
for the photoexcited dynamics of molecules. We focus on mini-
mal exemplifying models with two electronic states and one nuclear
degree of freedom. As shown in Ref. 35, one nuclear degree of
freedom is enough to induce the electronic coherence loss. The
models are generic enough to reveal the basic features of the laser
control.

A. Model I: Photoisomerization
Model I describes photoisomerization along a torsional coordi-

nate ϕ with DPES shown in Fig. 1(a). It is adapted from the model
in Ref. 36 for the cis–trans photoisomerization of rhodopsin. Here,
in the notation of Eq. (4), Hg = − 1

2I
d2
dϕ2 + 1

2Wg(1 − cosϕ) and

He = − 1
2I

d2
dϕ2 + h̵ω0 − 1

2We(1 − cosϕ), where h̵ω0 denotes the ver-
tical transition energy of ϕ = 0, π, I is the moment of inertia, and
Wn (n = g, e) denotes the first coefficient of the Fourier series expan-
sion of the periodic torsional potential. As diabatic couplings, we
choose Vge = Veg = λ0 − λ1 cosϕ, where λ0 and λ1 characterize the
strength of the constant and space-dependent diabatic couplings,
respectively. This type of coupling respects the periodic nature of

the DPES. Furthermore, for λ1 ≠ 0, the fluctuations ⟨δ2Veg⟩ and⟨δEegδVeg⟩ in Eq. (5) are non-zero, and coherent control of electronic
decoherence should, in principle, be possible (Sec. II).

Contrary to the rhodopsin model in Ref. 36, for simplicity, this
model only has one nuclear degree of freedom, and the diabatic
coupling is taken to be along the torsional coordinate. In the simu-
lations, we employ the same parameters identified for the rhodopsin
model with h̵ω0 = 2.48 eV, I−1 = 4.84 × 10−4 eV, Wg = 3.6 eV, and
We = 1.09 eV. The laser control of electronic decoherence for molec-
ular systems with space-dependent (λ0 = 0 eV and λ1 = 0.19 eV),
constant (λ0 = 0.19 eV and λ1 = 0 eV), and zero (λ0 = λ1 = 0 eV)
diabatic couplings are studied in Sec. IV.

B. Model II: Displaced harmonic oscillator
Model II is a one-dimensional displaced harmonic oscillator

model with DPES shown in Fig. 1(b). In this model, Hg = − h̵2
2m

d2
dx2

+ 1
2Kg(x − xg)2 and He = − h̵2

2m
d2
dx2 + h̵ω0 + 1

2Ke(x − xe)2, where x
is a dimensionless nuclear coordinate.37,38 Here, m is the nuclear
effective mass, Kn (n = g, e) is the force constant, and xn (n = g,
e) indicates the equilibrium nuclear geometry of the nth diabatic
potential energy surface. As diabatic couplings, we choose Vge = Veg
= λ0 + λ1x, where λ0 and λ1 characterize the strength of the con-
stant and the space dependent diabatic couplings, respectively. For
λ1 ≠ 0, the fluctuations ⟨δ2Veg⟩ and ⟨δEegδVeg⟩ in Eq. (5) are non-
zero as required by the theory for the emergence of quantum control
of electronic decoherence. In thismodel, the values of parameters are
chosen asm = 86.65 eV fs2, h̵ω0 = 0.44 eV,Kg ,e = 0.02 eV, xg = −8.67,
and xe = 5.62. The molecular systems with the space dependent
(λ0 = 0 eV and λ1 = 0.02 eV), constant (λ0 = 0.19 eV and λ1 = 0 eV),
and zero (λ0 = λ1 = 0 eV) diabatic couplings are studied in Sec. IV. As
described below, for these parameters, the decoherence process can
be slower than the photoexcitation process as required to generate
states of the form in Eq. (1).

C. Laser induced dynamics
To photoexcite the model molecules, we employ a 2 fs few-cycle

Gaussian laser pulse. Such a short laser pulse enables impulsive exci-
tation and generating states of the form in Eq. (1). Through such
excitation, we assess the possibility of enacting the theory of elec-
tronic decoherence through actual laser photoexcitation. The vector
potential A⃗(t) associated with the electric field F⃗(t) = − ˙⃗A(t) of such

FIG. 1. The diabatic potential energy surfaces of (a) Model
I describing photoisomerization along a torsional coordi-
nate ϕ and (b) Model II describing a displaced harmonic
oscillator model. The blue (green) lines refer to the ground
(excited) electronic diabatic state.
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laser can be described as

A⃗(t) = ϵ⃗(F0/ω) exp[−(t − tc)2/t2w] sin(ω(t − tc) + φCEP). (7)

Here, ϵ⃗ is the unit polarization vector, tw = 2 fs is the pulse width,
F0 is the pulse amplitude at pulse center tc = 7 fs, ω is the cen-
tral frequency, and φCEP is the carrier envelope phase (CEP). This
form guarantees that the electric field F⃗(t) = ϵ⃗F(t) is an ac source as∫∞−∞F⃗(t)dt = A⃗(−∞) − A⃗(∞) = 0. In this case,

F(t) = − F0e
− (t−tc)2

t2w cos(ω(t − tc) + φCEP)
+ F0

ω
e− (t−tc)

2

t2w sin(ω(t − tc) + φCEP)2(t − tc)
t2w

, (8)

where the second term in the expression of F(t) guarantees that the
pulse remains as an ac source even in the few-cycle limit.

The light–matter interaction HRM is described in dipole
approximation where HRM = −μ⃗ ⋅ F⃗(t). Assuming that the neutral
molecular system does not have a permanent dipole moment, HRM
= −F(t) (μge|g⟩⟨e| + μeg |e⟩⟨g|) with μge = μeg = ⟨g∣μ⃗ ⋅ ϵ⃗∣e⟩ and μgg = μee
= 0. The total time-dependent HamiltonianHT(t) =HM +HRM(t) is

HT(t) =Hg ∣g⟩⟨g∣ +He∣e⟩⟨e∣ + (Vge(R) − μgeF(t))∣g⟩⟨e∣
+ (Veg(R) − μegF(t))∣e⟩⟨g∣. (9)

The central laser frequency h̵ω = (Ve(Rg) − Vg(Rg)) = 2.48 eV is
chosen to be at resonance with the energy difference between the
two surfaces at the ground-state nuclear equilibrium geometry Rg in
both cases. Here, R refers to the ϕ coordinate for Model I and the x
coordinate forModel II. Furthermore, throughout, we choose a laser
amplitude such that |F0μge| = 0.09 eV. This guarantees that the laser
is in the weak-field limit, where the magnitude of the excited state
amplitude |ce| increases linearly with the laser amplitude |F0| (see
Fig. S1 of the supplementary material).

The quantum dynamics is propagated using a multi-state split
operatormethod in the Condon approximation.39 We employ a time
step propagation Δt1 = 0.0005 fs during the laser excitation and
Δt2 = 0.001 fs after the laser pulse. For Model I, periodic boundary
conditions are used with a period range of [−π/2, 3π/2] andN = 1024
grids points. For Model II, the grid is defined in the [−24.38, 35.62]
range with N = 1024 grid points. Results were checked for con-
vergence by checking for energy conservation after the laser pulse
(Fig. S2), and invariance of the results by decreasing the time step
(Fig. S3) and the number of grid points N (Fig. S4).

IV. LASER CONTROL WITH A FEW-CYCLE LASER
PULSE
A. Laser control starting from initially separable states

We first focus on the laser control of electronic decoherence
when the system is initially prepared in a separable electron–nuclear
state of the form

∣Ψsp(0)⟩ = ∣g⟩ ⊗ ∣χ0⟩. (10)

While clearly an idealization, initially separable system–bath states
are often assumed when dealing with open quantum systems as they

simplify theoretical considerations and can be an accurate represen-
tation to the true eigenstates. In particular, they are the starting point
of previous analyses that showed that electronic decoherence can be
controlled by manipulating the relative phase of the model superpo-
sition in Eq. (1).26–28 Here, we study the possibility of generating the
state in Eq. (1) through actual laser photoexcitation from Eq. (10)
as needed for the physical realization of this possible route for the
coherent control of electronic decoherence.

The initial vibrational state is taken to be the ground state of the
ground diabatic surface for both models. In particular, for Model I,
it is given by

χg(ϕ) = ⟨ϕ∣χg⟩ = ⎛⎝
√

WgI
2

1
π
⎞⎠

1
4

e−
√

Wg I
2

ϕ2

2 . (11)

This state is obtained by performing a harmonic approximation of
the ground torsional potential around ϕ = 0. Similarly, for Model II,
the initial state is

χg(x) = ⟨x∣χg⟩ = ( 1π)
1
4
e−(x−xg)2/2. (12)

In the photoexcitation, we employ a few-cycle laser pulse of width
tw = 2 fs of the form in Eq. (8). Such a short laser pulse is expected
to create an exact replica of the vibrational wavepacket in the
excited state potential energy surface leading to a state as that in
Eq. (1).

1. Intersection model ( λ0 = 0 and λ1 ≠ 0)
We first focus on the laser-induced dynamics when λ0 = 0 and

λ1 ≠ 0. In this case, both Model I and Model II have space-varying
diabatic couplings as needed for the emergence of relative-phase
control of electronic decoherence in Eq. (5). These models develop
conical intersections in higher dimensional configurational space.38
Figures 2 and 3 show the decoherence dynamics during and after
photoexcitation for Model I and Model II, respectively. At initial
times, the curves coincide as all cases start from a pure state. How-
ever, the early time dynamics where the decoherence decays like a
Gaussian strongly depends on the CEP. As shown, changing the CEP
of the laser pulse leads to significantly different rates of electronic
coherence loss and can be used to suppress or enhance the decoher-
ence rate. Note that the net energy absorbed by the system during
photoexcitation also depends on the CEP (see Fig. S2). However,
once the diabatic couplings are turned off and the dynamics becomes
pure dephasing (λ0 = λ1 = 0), all decoherence dynamics coincide and
the phase control is lost. This behavior is consistent with Eq. (5) that
indicates that for pure dephasing dynamics, only the first term due
to the quantum fluctuations of the energy gap (⟨δ2Eeg⟩) determines
the electronic decoherence between two DPES, and such a term does
not depend on the relative phase.

Thus, the laser control of electronic decoherence can be
achieved in both models when the dynamics starts from a sep-
arable state and the diabatic couplings are non-zero and space-
dependent. This observation is what would have been expected
from the theory of electronic decoherence timescales summarized in
Sec. II.

We note that due to the low dimensionality of the mod-
els employed, here and throughout, partial revivals of purity are
observed at longer times (see Fig. S5). Such partial revivals have
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FIG. 2. [(a) and (b)] Laser control of elec-
tronic decoherence in Model I starting
from a separable electron–nuclear state.
The plot shows the purity dynamics dur-
ing and after photoexcitation with a few-
cycle laser pulse with various CEPs. The
top panels contrast the purity dynamics
with non-zero (λ1 = 0.19 eV) and zero
(λ1 = 0 eV) space dependent diabatic
couplings, while λ0 = 0. The bottom pan-
els show the employed 2 fs laser pulse
for φCEP = 0.

been described in details elsewhere35 and are not expected in higher
dimensional systems where the electronic decoherence dynamics is
dominated by the initial Gaussian purity decay.40,41

2. Avoided crossing model ( λ0 ≠ 0 and λ1 = 0)
The theoretical analysis in Sec. II indicates that the laser control

of electronic decoherence requires space-dependent diabatic cou-
plings for which δVeg ≠ 0 (or λ1 ≠ 0 in this case). To determine if
the control survives even when λ1 = 0 (but λ0 ≠ 0), we computed
the decoherence dynamics with λ1 = 0 in both models. In this case
(Fig. 4), changing the CEP leads to significantly different rates of
electronic coherence loss for both Model I and Model II that go
beyond the theory in Sec. II. Here, to make these models compa-
rable, the constant diabatic coupling strength is set as λ0 = 0.19 eV
for both models.

To demonstrate that this feature is inherent to the sys-
tem and not to the photoexcitation process, we propagated the

dynamics of both models starting with an initial superposition
∣Ψ⟩ = (√ 2

3 e
iθ∣g⟩ + √

1
3 ∣e⟩) ⊗ ∣χ0⟩. The results, shown in Fig. S6,

show clear modulation of the purity dynamics by changing θ, which
demonstrates that this is an effect that goes beyond the early time
expansion in Refs. 26 and 27.

B. Laser control starting from eigenstates
The results above indicate that it is possible to use few-cycle

laser pulses to create states of the form in Eq. (1) and control the
electronic decoherence by varying the CEP. Despite these encour-
aging results, one important assumption thus far has been the use
of a factorizable initial electron–nuclear state Eq. (10). The impul-
sive excitation of such a state retains the initially factorizable form
to generate a state like that in Eq. (1) used in previous theory
and simulations.27,28 We now investigate how the laser control is
modified when the system is initially prepared in a stationary state of

FIG. 3. [(a) and (b)] Laser control of elec-
tronic decoherence in Model II starting
from a separable electron–nuclear state.
The organization of the plot is identical to
that in Fig. 2.
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FIG. 4. [(a) and (b)] Laser control of
electronic decoherence starting from
a separable electron–nuclear state for
models with space-independent diabatic
couplings (λ0 ≠ 0, λ1 = 0). The plot
shows the purity dynamics during and
after photoexcitation with a few-cycle
laser pulse with various CEPs when
λ0 = 0.19 eV and λ1 = 0 eV. The bot-
tom panels show the employed 2 fs laser
pulse for φCEP = 0.

the molecular Hamiltonian. Such states are readily available through
cooling or laser purification.

Specifically, as an initial state, we choose the ground vibronic
state |Ψg(0)⟩ obtained by directly diagonalizing the molecular
Hamiltonian. In the diagonalization, the Hamiltonian in Eq. (4) is
represented in the tensor product basis of diabatic electronic states
and a grid representation for the nuclei by

HM = ∑
R,R′

[(⟨R∣TN∣R′⟩ + Vg(R)δRR′)∣g⟩⟨g∣
+ (⟨R∣TN∣R′⟩ + Ve(R)δRR′)∣e⟩⟨e∣
+ Vge(R)δRR′ ∣g⟩⟨e∣ + Veg(R)δRR′ ∣e⟩⟨g∣]∣R⟩⟨R′∣, (13)

with

⟨R∣TN∣R′⟩ =∑
k,k′
⟨R∣k⟩⟨k∣ h̵2k2

2m
∣k′⟩⟨k′∣R′⟩

=∑
k

1
N
exp[ik ⋅ (R − R′)] h̵2k2

2m
. (14)

The exact decoherence dynamics forModel I and II induced via
resonant photoexcitation with a 2 fs laser is shown in Fig. 5 (λ0 = 0
and λ1 ≠ 0) and Fig. 6 (λ0 ≠ 0 and λ1 = 0), respectively. In strik-
ing contrast with the observations in Sec. IV A, changing the CEP
of the laser pulse has no significant influence on the purity dynam-
ics in all cases. This is particularly surprising when one realizes
that the factorizable initial states |Ψsp(0)⟩ used in Sec. IV A closely

FIG. 5. [(a) and (b)] Electronic deco-
herence dynamics during and after pho-
toexcitation starting from a vibronic
eigenstate. The plot shows the purity
dynamics during and after photoexcita-
tion with a few-cycle laser pulse for vari-
ous CEPs. The bottom panel shows the
2 fs laser pulse employed for photoex-
citation with phase φCEP = 0. Note that
there is no appreciable laser phase con-
trol even for λ1 ≠ 0 as all curves essen-
tially overlap. A magnification of the plots
(inset) reveals that the control is negligi-
ble but nonzero.
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FIG. 6. [(a) and (b)] Electronic decoher-
ence dynamics during and after photoex-
citation starting from a vibronic eigen-
state for space independent diabatic
couplings (λ0 ≠ 0, λ1 = 0). The plot
shows the purity dynamics during and
after photoexcitation with a few-cycle
laser pulse for various CEPs. Note that
there is no appreciable CEP control. The
bottom panel shows the 2 fs laser pulse
employed for photoexcitation with phase
φCEP = 0.

resemble the stationary states |Ψg(0)⟩ used in Figs. 5 and 6 with
a fidelity |⟨Ψsp(0)|Ψg(0)⟩|2 of 0.9942 for Model I and 0.9873 for
Model II. That is, even when the initial separable state is an excel-
lent approximation to the true molecular ground state, it leads to
qualitatively different behavior under laser excitation.

C. Minimal theoretical model
The simulations above demonstrate that when the dynamics

is initiated from a separable electron–nuclear state, it is possible
to exert laser coherent control of the decoherence. However, all
laser control dies when a vibronic eigenstate is employed as the
initial state even in cases where the factorizable initial state is an
excellent approximation to the true eigenstate. To understand the
physical principles behind these observations, we analytically study
the laser control in a minimal model that captures the essential
physics.

1. Hamiltonian
For simplicity, we focus on a minimal vibronic system with

a Hilbert space spanned by two states |g⟩|χg⟩ and |e⟩|χe⟩, where
|χg⟩ and |χe⟩ are purely nuclear states. In this basis, the molecular
Hamiltonian in Eq. (4) is

HM = (Eg Λ
Λ Ee), (15)

where Eg = ⟨χg |Hg |χg⟩, Ee = ⟨χe|He|χe⟩, and Λ = ⟨χg |Vge|χe⟩
= ⟨χe|Veg |χg⟩. The eigenstates of this Hamiltonian are

∣E0⟩ = cosα∣εg⟩∣χg⟩ + sinα∣εe⟩∣χe⟩,∣E1⟩ = − sinα∣εg⟩∣χg⟩ + cosα∣εe⟩∣χe⟩, (16)

with corresponding eigenenergies E0 = Ē − √
Δ2 +Λ2 and

E1 = Ē+√Δ2 +Λ2 with Ē = (Eg + Ee)/2 andΔ = (Ee − Eg)/2. Here, the
mixing angle α is defined as sin(2α) = −Λ/√Δ2 +Λ2 and cos(2α)= Δ/√Δ2 +Λ2. Conversely, the separable states can be represented

in the basis of eigenstates as

∣εg⟩∣χg⟩ = cosα∣E0⟩ − sinα∣E1⟩,∣εe⟩∣χe⟩ = sinα∣E0⟩ + cosα∣E1⟩. (17)

The electronic purity of an arbitrary state |Ψ(t)⟩ = a(t)|εg⟩|χg⟩
+ b(t)|εe⟩|χe⟩ in this model is given by

P(t) = ∣a(t)∣4 + ∣b(t)∣4 + 2∣a(t)∣2∣b(t)∣2∣S∣2, (18)

where S = ⟨χg |χe⟩ ≠ 0 is the overlap between nuclear states.

2. First order perturbation theory
We are interested in the electronic purity after photoexcita-

tion. Since the control is in the weak-field one-photon limit, we
limit our considerations to first-order perturbation theory in the
laser–matter interaction. Let HT(t) = HM + HRM(t), where HRM= −μ⃗ ⋅ F⃗(t) is the perturbation due to the laser. To the first order in
perturbation theory,42 |Ψ(t)⟩ = |Ψ(0)(t)⟩ + |Ψ(1)(t)⟩, where ∣Ψ(0)(t)⟩= e− i

h̵ HMt ∣Ψ(0)(0)⟩ represents the perturbation-free evolution of the
system and

∣Ψ(1)(t)⟩ = 1
ih̵ ∫

t

0
dt′e− i

h̵ HM(t−t′)HRM(t′)e− i
h̵ HMt′ ∣Ψ(0)(0)⟩ (19)

is the photoexcited component. The state at t = 0 can be represented
in the basis of eigenstates ofHM as ∣Ψ(0)(0)⟩ = ∑

n
cn∣En⟩. In this basis,

∣Ψ(1)(t)⟩ = i
h̵ ∑n,n′ ∫

t

0
dt′F(t′)e−iωn′nt′μn′ne− i

h̵ En′ tcn∣En′⟩
≈ i
h̵ ∑n,n′[∫

∞
−∞ dt′F(t′)eiωnn′ t′]μn′ne− i

h̵ En′ tcn∣En′⟩, (20)

where μn′n = ⟨En′ ∣μ⃗ ⋅ ϵ⃗∣En⟩ is the transition dipole between states |En⟩
and |En′⟩ and ωnn′ = En′−En

h̵ is the transition frequency. For simplic-
ity of presentation, we take tc = m2π/ωnn′ with positive integers m
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such that tc − 2tw > 0. In this case, the lower limit of the integral in
the above equations can be extended to −∞ as the amplitude of the
electric field is negligible for t < 0. Similarly, the upper limit can be

extended to +∞ as we are only interested in t ≫ tc + 2tw when the
pulse is over. Under such conditions, the time integral in Eq. (20)
becomes

ϵ(ωnn′) = ∫ ∞
−∞ dt′F(t′)eiωnn′ t′ = F0

√
πtw

2ω
ωnn′e−

t2w(ω+ωnn′ )2
4 eiφCEP − F0

√
πtw

2ω
ωnn′e−

t2w(ω−ωnn′ )2
4 e−iφCEP , (21)

where we have used Eq. (8). For absorption (or stimulated emission), ω ≈ ωnn′ > 0 (or ω ≈ −ωnn′ ) and the system picks a phase −e−iφCEP

(or −eiφCEP ) during photoexcitation, i.e., ϵ(ωnn′) = −∣ϵ(ωnn′)∣e−iφCEP [or ϵ(ωnn′) = −∣ϵ(ωnn′)∣eiφCEP ], where ∣ϵ(ωnn′)∣ = F0
√

πtw
2 . Thus, the

photoexcited state after the pulse is

∣Ψ(1)(t)⟩ = ⎧⎪⎪⎨⎪⎪⎩
− i

h̵ ∑n,n′ ∣ϵ(ωnn′)∣e−iφCEPμn′ ,ne− i
h̵ En′ tcn∣En′⟩, for ωnn′ ≥ 0 (absorption)− i

h̵ ∑n,n′ ∣ϵ(ωnn′)∣eiφCEPμn′ ,ne− i
h̵ En′ tcn∣En′⟩, for ωnn′ < 0 (stimulated emission)

. (22)

For the two-level model,

∣Ψ(1)(t)⟩ = − i
h̵
∣ϵ(ω01)∣e−iφCEPμ10e− i

h̵ E1tc0∣E1⟩
− i

h̵
∣ϵ(ω10)∣eiφCEPμ01e− i

h̵ E0tc1∣E0⟩ (23)

so that the molecular state after photoexcitation is

∣Ψ(t)⟩ = ∣Ψ(0)(t)⟩ + ∣Ψ(1)(t)⟩
= (c0 − i

h̵
∣ϵ(ω10)∣eiφCEPμ01c1)∣E0⟩e− i

h̵ E0t

× (c1 − i
h̵
∣ϵ(ω01)∣e−iφCEPμ10c0)∣E1⟩e− i

h̵ E1t . (24)

Note that the relative phase between the initial and excited state
can be controlled by CEP as after photoexcitation matter picks up
the CEP of the laser; e−iφCEP during absorption and eiφCEP during
stimulated emission.

Using this setup, we are in a position to study the dependence
of decoherence on CEPs for different initial states.

3. Decoherence dynamics: Initially separable state
Consider the case in which the system is prepared in an initially

separable state |εg⟩|χg⟩, as numerically investigated in Sec. IV A.
Expanding this initial separable state in the eigenstates basis as in
Eq. (17) and employing the results of first order time dependent per-
turbation theory in Eq. (24), the total state after photoexcitation is

∣Ψ(t)⟩ =(cos(α) − i sin(α)ΩeiφCEP)e− i
h̵ E0t ∣E0⟩

+ (− sin(α) + i cos(α)Ωe−iφCEP)e− i
h̵ E1t ∣E1⟩. (25)

Here, the parameter Ω is defined as Ω = − ∣ϵ(ω01)∣μ10
h̵ and |ϵ(ω01)|

= |ϵ(ω10)|. In addition, as in the simulations, we choose μ01 = μ10.

To calculate the purity of state Eq. (25), it is convenient to express
the total state |Ψ(t)⟩ in the basis {|g⟩|χg⟩, |e⟩|χe⟩} as this facilitates
taking the trace over the nuclei. In the notation of Eq. (18), in this
case,

a(t) = e− i
h̵ E0t(A1 + A2e−iω01t),

b(t) = e− i
h̵ E0t(B1 + B2e−iω01t), (26)

with

A1 = cos2(α) − i sin(2α)
2

ΩeiφCEP ,

A2 = sin2(α) − i sin(2α)
2

Ωe−iφCEP ,

B1 = sin(2α)
2

− i sin2(α)ΩeiφCEP ,

B2 = i cos2(α)Ωe−iφCEP − sin(2α)
2

.

(27)

We are interested in systematic changes in the purity that survive
time-averaging. We thus focus on

P = lim
t→∞

∫ t
te P(t′)dt′
t − te

= ∣a(t)∣4 + ∣b(t)∣4 + 2∣a(t)∣2∣b(t)∣2S2 (28)

for t after photoexcitation, where the overbar denotes time-
averaging and te is an arbitrary time after the laser pulse.

Proceeding in this way, we find that

∣a(t)∣4 = ∣A1∣4 + ∣A2∣4 + 4∣A1∣2∣A2∣2,
∣b(t)∣4 = ∣B1∣4 + ∣B2∣4 + 4∣B1∣2∣B2∣2, (29)

∣a(t)∣2∣b(t)∣2 =(∣A1∣2 + ∣A2∣2)(∣B1∣2 + ∣B2∣2)
+ (A1A∗2B∗1B2 + A∗1A2B1B∗2 ).

Substituting Eq. (29) into Eq. (28) yields
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P = P0 + [κ0(α)Ω(1 −Ω2) sinφCEP + κ1(α)Ω2 sin2 φCEP](1 − S2),
(30)

where

κ0(α) = (2 cos6(α) − 2 sin6(α) − 5
2
sin2(2α) cos(2α)) sin(2α),

(31)
κ1(α) = (2 cos4(α) + 2 sin4(α) − 2 sin2(2α)) sin2(2α).

Here, P0 is a term independent of φCEP. This equation reveals that
the electronic decoherence depends on CEPs, and this dependence
varies with sinφCEP and sin2 φCEP, in agreement with Eq. (5). The
above equation can be further simplified by substituting sin(2α)= −Λ/√Δ2 +Λ2 and cos(2α) = Δ/√Δ2 +Λ2 to yield

P =P0 +
(2Δ2 −Λ2)ΛΩ(1 − S2)(Δ2 +Λ2)2(1 +Ω2)2

× [Δ(Ω2 − 1) sinφCEP +ΛΩ sin2 φCEP], (32)

where the factor 1/(1 + Ω2)2 takes into account the normalization
of the state to first order in perturbation theory. To test the valid-
ity of this equation, we contrasted the predictions of Eq. (32) with
numerically exact computations showing identical behavior (see
Fig. 7).

In the following, we discuss several physical limits and features
of Eq. (32).

a. The coherent advantage. A basic question here is if there is
any advantage in using coherent lasers with well-defined phases to
control decoherence. To address this question, we contrast Eq. (32)

FIG. 7. Laser control map of the minimal vibronic model. The plot compares
the control map (time-averaged purity vs φCEP) predicted by Eq. (32) against
the numerical results obtained by solving the time-dependent Schrödinger equa-
tion, showing excellent agreement. The dotted line indicates the average purity
expected when the laser phase is uncontrollable. Simulations were performed by
propagating the two-level vibronic system in Eq. (15) with Eg = 0 eV, Ee = 2.48 eV,
and Λ = 0.19 eV. The laser parameters employed were h̵ω = E1 − E0, tw = 2 fs,
|F0μge| = 0.09 eV, and tc = 20π/ω. The P0 value for the theory was taken from the
numerical simulation for φCEP = 0 as P = P0 in this case.

with the average result expected when the laser phase is uncontrol-
lable between realizations Pin = 1

2π ∫2π0 dφCEPP(φCEP),
P −Pin = (2Δ2 −Λ2)ΛΩ(1 − S2)(Δ2 +Λ2)2(1 +Ω2)2

× [Δ(Ω2 − 1) sinφCEP − ΛΩ
2

cos(2φCEP)]. (33)

Since this quantity can be positive or negative depending on laser
phases, thus, the laser control can mitigate or enhance the deco-
herence with respect to the case in which the laser phases are
uncontrollable (see Fig. 7).

b. Diabatic couplings. For null diabatic couplings (Λ = 0), the
laser control of purity disappears. In agreement with Eq. (5), the
laser control only emerges when electronic transitions due to dia-
batic couplings play a role. However, beyond Eq. (5), these diabatic
couplings Λ do not need to be spatially dependent, in agreement
with the results in Fig. 4.

c. Energy gap dependence of the control. Given a fixed diabatic
coupling constant Λ, the larger the energy gap Δ the smaller the
range of control. The reason for this is that the larger the energy gap
the closer the initial separable state becomes to the ground vibronic
eigenstate for which there is no control.

d. Nuclear overlaps S. The range of control is maximum when
there is zero overlap between nuclear wavepackets (S = 0). By con-
trast, for S = 1, the laser control disappears as there is no decoherence
in this case.

e. Dominant phase dependence of the control. The control
depends on φCEP as sinφCEP and sin2 φCEP. To determine which
phase dependence dominates, consider the ratio of the coefficients
in front of them, r( sin φCEP

sin2 φCEP
) = Δ

Λ(Ω− 1
Ω). With |Ω|≫ 1 and |Ω|≪ 1,

the dominant phase dependence is sinφCEP. However, with |Ω| ≈ 1,
both sinφCEP and sin2 φCEP play a role in determining the decoher-
ence timescale. In the specific case in which |Ω| = 1, the control only
depends on sin2 φCEP.

f. Central time of laser pulse tc. We note that the above analysis
is based on tc =m2π/ωnn′ with positive integersm such that tc − 2tw> 0. For tc ≠m2π/ωnn′ , there is an extra phase term that depends on
tc in the calculation of the integral in Eq. (21). In fact, with different
tc ≠ m2π/ωnn′ , the laser control of electronic decoherence P(φCEP)
is shifted because the phase that is picked up by the molecule during
photoexcitation can be modulated by tc. Nevertheless, the range of
control of P remains unaffected. To exemplify this, Fig. S7 shows
simulations with different central time tc for Model I (λ0 = 0, λ1 ≠ 0).
As shown, the control mapP(φCEP) is rigidly shifted by changing tc,
but the range of control remains unaffected.

4. Decoherence dynamics: Initial stationary state
We now focus on the dependence of decoherence on the CEPs

when the system is initially prepared in a vibronic eigenstate, i.e., a
stationary state of HM. Choosing the ground eigenstate |E0⟩ as the
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initial state, the state of the system after photoexcitation is obtained
from Eq. (24) by setting c1 = 0 and c0 = 1,

∣Ψ(t)⟩ = e− i
h̵ E0t ∣E0⟩ + iΩe− i

h̵ E1te−iφCEP ∣E1⟩. (34)

In this case,
A1 = cos(α),
A2 = −i sin(α)Ωe−iφCEP ,
B1 = sin(α),
B2 = i cos(α)Ωe−iφCEP ,

(35)

where we have substituted Eq. (16) and used the notation in Eq. (26).
The average purity can be calculated by substituting Eq. (35) into
Eqs. (28) and (29). Note that in this case, because there is no initial
population on the |E1⟩, all the coefficients A1, A2, B1, and B2 only
include one term as Eq. (35) shows. Because of this, the CEP depen-
dence gets canceled when calculating purity. That is, all the terms in
Eq. (29) become independent of the CEP, and the laser control of
decoherence dies as observed in Sec. IV B.

D. Discussion
1. Summary of observations

To summarize, we have observed laser control of electronic
decoherence when the system is initially prepared in a separable
electron–nuclear state and has non-zero diabatic couplings. This is
consistent with the theory of electronic decoherence timescales and
the perturbative analysis in Sec. IV C, which shows that few-cycle
laser pulses with definitive CEP can be used to create superpositions
of the form in Eq. (1) with the relative phase that can be manip-
ulated through the CEP. Beyond the theory of electronic decoher-
ence timescales, we have observed that the effect can survive even
in cases where the diabatic couplings have no space dependence. A
discussion of the origin of this effect is included in Sec. IV D 2.

While these results suggest that the laser control of electronic
decoherence is possible, a more detailed investigation reveals that
such laser control essentially disappears when the system is prepared
in a stationary state. Thus, the observed laser control is an artifice of
the assumed initially separable state. This artifice arises even in cases

where such a state is an excellent approximation to the true ground
state.

Below, we introduce a qualitative picture of the control that
clarifies all these observations. As discussed, the non-stationary
character of the initially factorizable state opens interference chan-
nels at the one-photon limit that lead to spurious laser control. We
then use these insights to develop a laser control scheme of electronic
decoherence that survives for arbitrary initial states.

2. Qualitative origin of the control
To develop a basic qualitative picture of the observations, it is

useful to take advantage of the theoretical analysis in Sec. IV C and
view the control in the molecular eigenstate basis |E0⟩, |E1⟩. When
the system is prepared in an initial stationary state, the laser pulse
induces a transition of the form

∣E0⟩ → b0e− i
h̵ E0t ∣E0⟩ + b1e−iφCEPe− i

h̵ E1t ∣E1⟩; (36)

see Fig. 8(a). During resonant photoexcitation, the system picks a
phase e−iφCEP from the laser. However, the population of the eigen-
states |b0|2 and |b1|2 is independent of the CEP. In other words, no
one-photon control of the eigenstate population is possible.31

By contrast, when starting from a separable electron–nuclear
state, one begins in a superposition of eigenstates |Ψ(0)⟩ = c0|E0⟩
+ d0|E1⟩. Upon photoexcitation, both absorption and stimulated
emission events occur. As a consequence, the laser pulse induces a
transition of the form

c0∣E0⟩ + d0∣E1⟩ → (c1 + c2eiφCEP)e− i
h̵ E0t ∣E0⟩

+ (d1 + d2e−iφCEP)e− i
h̵ E1t ∣E1⟩,

where we have taken into account that a phase e−iφCEP (eiφCEP ) is
picked up during absorption (emission), see Fig 8(b). In this case, the
population of the eigenstates can be manipulated by simply varying
the laser’s CEP as ∣c1 + c2eiφCEP ∣2 and ∣d1 + d2e−iφCEP ∣2 depend on the
CEP.

This laser phase control of the eigenstate populations for sep-
arable states ultimately leads to the control of the average purity at
the subsystem level. To understand this, it is useful to note that for a
general state after photoexcitation

FIG. 8. Qualitative origin of the laser con-
trol of decoherence. The average purity
depends on the populations of eigen-
states. (a) When the system is prepared
in an initial stationary state, there is no
dependence of the eigenstates popula-
tions on CEP after the photoexcitation.
Thus, no laser control of electronic deco-
herence is possible. (b) However, for ini-
tially separable states, the system is pre-
pared in a superposition of eigenstates.
This makes the eigenstates populations
dependent on CEP after the photoexci-
tation, thus opening routes for the laser
control of electronic decoherence.
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∣Ψ(t)⟩ = a0e− i
h̵ E0t ∣E0⟩ + a1e− i

h̵ E1t ∣E1⟩, (37)

the eigenstate populations |a0|2 and |a1|2 are related to the coeffi-
cients A1, A2, B1, and B2 that determine the average purity as in
Eqs. (28) and (29) in the following form:

A1 = a0 cos(α),
A2 = −a1 sin(α),
B1 = a0 sin(α),
B2 = a1 cos(α),

(38)

where we have used Eq. (26). Substituting Eq. (38) into Eq. (29), it is
found that the eigenstate populations determine the dependence of
average purity on the CEP. Therefore, the laser phase control of the
eigenstate populations for separable states leads to control of purity
and thus of the electronic decoherence.

Summarizing, the basic requirement for the CEP control of
electronic decoherence is that the molecule is initially in a super-
position of eigenstates that are resonantly connected by using the
laser (Fig. 8). For vibronic models, this can occur when the sys-
tem is initially in a separable electron–nuclear state, and the diabatic
couplings Veg are non-zero. If Veg = 0, the separable initial state
becomes a molecular eigenstate and the situation reduces to that
schematically depicted in Fig. 8(a).

3. Is this no one-photon coherent control?
At first glance, the lack of laser control at the one-photon limit

appears to be a particular case of the no one-photon coherent con-
trol theorem.30,31 Such theorem states that the coherent control of
eigenstate populations—and any other observable that commutes
with the Hamiltonian—is impossible to first order in perturbation
theory when the system is initially prepared in a stationary state.
Even for observables that do not commute with the Hamiltonian, the
theorem applies when one is interested in time-averaged quantities

and the observable has no intrinsic time-dependence31 (i.e., when
the operator Ô in the Schrödinger picture has no time-dependence).
In theminimalmodel, the calculation reveals that the purity depends
on the eigenstate populations, and therefore, if such populations are
not controllable, the purity is also not controllable. Thus, the time-
averaged purity for the minimal model clearly satisfies the no one-
photon coherent control theorem. In addition, the numerical results
in two generic models show that the control essentially disappears
when the system is prepared in an eigenstate.

However, at least formally, the electronic purity should be con-
trollable at the one-photon limit. This is because the electronic den-
sity matrix σ(t), which is the observable associated with electronic
purity, does not commute with the Hamiltonian and has an intrin-
sic time dependence. Subsystem purity is thus beyond the scope of
the one-photon theorem of coherent control. In fact, the numeri-
cal computations show that the laser control is technically non-zero,
albeit small (see insets in Fig. 5).

V. TWO-PULSE COHERENT CONTROL
OF ELECTRONIC DECOHERENCE

From the analysis above, it becomes clear that to exert active
control of electronic decoherence through laser phases starting from
an eigenstate, one can propose the following two-pulse scenario: (1)
First, a few-cycle laser pulse with fixed CEP (i.e. φ(1)CEP = 0) is used to
resonantly photoexcite the system and create a superposition state of
the form

∣Ψ(t)⟩ = c0∣E0⟩ + d0∣E1⟩. (39)

(2) Subsequently, a second few-cycle laser pulse resonant with the
same two levels with varying CEP φ(2)CEP can be employed to generate
interference in the eigenstate populations and thus the control of the
electronic decoherence.

To demonstrate this, Figs. 9 and 10 show the decoher-
ence dynamics starting from the ground nuclear eigenstate under

FIG. 9. Two-pulse laser control of elec-
tronic decoherence in Model I starting
from the ground stationary state. The plot
shows the purity dynamics during and
after photoexcitation with two few-cycle
laser pulses. The CEP of the first pulse is
fixed at φ(1)CEP = 0, while that of the sec-

ond one φ(2)CEP is varied. The top panels
contrast the purity dynamics with (a) non-
zero (λ0 = 0 eV, λ1 = 0.19 eV) and (b)
zero (λ0 = λ1 = 0 eV) diabatic couplings.
The bottom panels show the train of laser
pulses employed for φ(1)CEP = φ(2)CEP = 0.
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FIG. 10. [(a) and (b)] Two-pulse laser
control of electronic decoherence in
Model II starting from the ground station-
ary state. The organization of the plot is
identical to that in Fig. 9.

the influence of this two-pulse control scheme with varying φ(2)CEP of
the second pulse. Figure 9 details the dynamics of Model I, while
Fig. 10 focuses onModel II. For both models, the width of employed
laser pulses is t(n)w = 2 fs (n = 1, 2) and the pulse center of the
first laser is t(1)c = 7 fs, while t(2)c = 14 fs. As shown, the purity
dynamics can be stronglymanipulated by varying φ(2)CEP in both cases.
This type of control emerges even without diabatic couplings [see
Figs. 9(b) and 10(b)]. The reason why the diabatic couplings are not
needed is that the first laser pulse creates the superposition of eigen-
states required for the emergence of the control. This two-laser pulse
control scenario is reminiscent to pump–probe and bichromatic
control strategies.2

To understand if this laser control arises due to the control
of the populations (σ00, σ11) or the coherence (σ01) in the elec-
tronic density matrix expressed in the basis of diabatic states, we

decomposed the purity dynamicsP = σ200+σ211+2∣σ01∣2 into these two
contributions. Figures 11 and 12 show this decomposition forModel
I and II, respectively. As shown, the laser control scenario manip-
ulates both the populations and the coherences. After the laser, the
coherences decay and the asymptotic purity is due to the populations
of the diabatic states.

The next question that arises is the extent to which the two laser
pulses can be separated in time while still maintaining the laser phase
control. To test this, we performed simulations with pulses separated
by increasingly longer times Δt. In Model I (Fig. 13), we observe
that the effect survives for pulses separated by Δt = 0 fs, 4 fs, 143 fs,
and even 223 fs! By contrast, in Model II (Fig. 14), we observe that
the control is lost when the pulses are separated even by just 13 fs.
We observe that to generate control, the two pulses need to interact
with the system before the coherences in the diabatic basis induced
by the first pulse disappear. While for Model I, such coherence

FIG. 11. Model I. (a) Population (σ200
+ σ211) and (b) coherence (2|σ01|) con-
tributions to the purity dynamics in the
two-pulse laser control of electronic
decoherence (λ0 = λ1 = 0 eV). Model-
ing conditions are identical to those in
Fig. 9(b).
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FIG. 12. Model II. (a) Population (σ200
+ σ211) and (b) coherence (2|σ01|) con-
tributions to the purity dynamics in the
two-pulse laser control of electronic
decoherence (λ0 = λ1 = 0 eV). Model-
ing conditions are identical to those in
Fig. 10(b).

persists for ∼200 fs [see Fig. 11(b)], in Model II, they decay in ∼20 fs
[see Fig. 12(b)]. Such coherences are essential for the emergence of
the effect.

In the single pulse schemes in Sec. IV, the control map is shifted
by changing the turn-on time of the laser pulse (see Sec. IV C and
Fig. S7). By contrast, here, the control depends on relative quanti-
ties that are simpler to manipulate: the phase difference φ(1)CEP − φ(2)CEP
and the time delay between pulses t(1)c − t(2)c . This result follows

by considering the two-pulse photoexcitation using second order
perturbation theory.

While this route to control was exemplified in low-dimensional
models, the basic strategy is expected to work in higher dimensional
systems too. This is because the low-dimensional models contain all
the decoherence channels for a generic molecule43,44 and the con-
trol does not rely in recurrences in wavepacket motion that are not
typically observed in systems of higher dimensionality.35

FIG. 13. Two-pulse laser control of elec-
tronic decoherence for varying laser-
pulse time separation Δt in Model I
(λ0 = 0 eV, λ1 = 0.19 eV) starting from the
ground stationary state. The plot shows
the purity dynamics and the correspond-
ing laser pulses with Δt (a) 0 fs, (b)
4 fs, (c) 143 fs, and (d) 223 fs. Note
that the laser control persists even with
Δt = 223 fs.
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FIG. 14. Two-pulse laser control of elec-
tronic decoherence for varying laser-
pulse time separation Δt in Model II
(λ0 = 0 eV, λ1 = 0.02 eV) starting from the
ground stationary state. The plot shows
the purity dynamics and the correspond-
ing laser pulses with Δt (a) 0 fs, (b) 4 fs,
(c) 13 fs, and (d) 73 fs. Note that the
laser control disappears when the Δt is
beyond 13 fs.

VI. CONCLUSION
In this work, we investigated the possibility to achieve laser con-

trol of electronic decoherence using ultrafast few-cycle laser pulses
with well-defined carrier envelope phase (CEP). This possibility was
opened by recent advances in the theory26,27 and simulations28 of
electronic decoherence, which indicates that it is possible to manip-
ulate the rate of electronic coherence loss via the control of the
relative phase in the initial electronic superposition state. How-
ever, the actual laser implementation of such a concept is an open
challenge. By computing the purity dynamics in two exemplify-
ing molecular models (photoisomerization and displaced harmonic
oscillator) through actual laser photoexcitation, we found that such
initial superposition state and the subsequent laser control of elec-
tronic decoherence can be created using a few-cycle laser pulse with
various CEPs in the weak-field limit, provided that the system is
initially prepared in a separable electron–nuclear state. This one-
photon laser control, however, disappears when the molecule is ini-
tially prepared in a stationary molecular state. Through a detailed
analysis of the origins of these intriguing observations, we found that
the non-stationary character of the initial separable state is essential
for the laser control. That is, the one-photon laser control of elec-
tronic decoherence is an artifice introduced by the often-used initial
separable state. This artifice emerges even when the initially separa-
ble state is an excellent approximation to the eigenstate of the com-
posite system with fidelities above 98.5%. The fact that we observe
similar behavior in two different exemplifying models highlights the
generality of the observations.

To better understand these observations, we introduced a min-
imal theoretical model that showed that the reason why initial sep-
arable states open one-photon control pathways is because these
states are superpositions of stationary molecular states. Such a

superposition opens interference channels even at the single-photon
limit that can be manipulated through laser phases.

Based on this theoretical analysis, we designed a two-pulse con-
trol scheme that enables the laser control of electronic decoher-
ence even when the molecule is initially prepared in a stationary
molecular state. In this scheme, the first pulse is used to create a
vibronic superposition state and the second one to generate phase-
controllable interference. By varying the relative carrier envelope
phase between the two pulses, it is possible to suppress or enhance
the purity decay.

These results identify a viable scheme for the laser control of
electronic decoherence and expose a surprising artifact that is intro-
duced by often-used initially factorizable system–bath states in the
field of open quantum systems. The control scenario is based on
impulsive excitation with lasers with a well-defined carrier envelope
phase in the weak-field limit. Future prospects include determining
the utility of other strategies such as chirping45,46 and strong field
strategies for the laser control of electronic decoherence beyond the
impulsive limit.

SUPPLEMENTARY MATERIAL
See the supplementary material for additional figures testing

the convergence of the method and further exploring the parameter
space of the identified phenomenology.
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