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ABSTRACT
Quantum decoherence arises due to uncontrollable entanglement between a system and its environment. However, the effects of decoherence
are often thought of and modeled through a simpler picture in which the role of the environment is to introduce classical noise in the
system’s degrees of freedom. Here, we establish necessary conditions that the classical noise models need to satisfy to quantitatively model
the decoherence. Specifically, for pure-dephasing processes, we identify well-defined statistical properties for the noise that are determined by
the quantum many-point time correlation function of the environmental operators that enter into the system-bath interaction. In particular,
for the exemplifying spin-boson problem with a Lorentz-Drude spectral density, we show that the high-temperature quantum decoherence is
quantitatively mimicked by colored Gaussian noise. In turn, for dissipative environments, we show that classical noise models cannot describe
decoherence effects due to relaxation through spontaneous emission of photons/phonons. These developments provide a rigorous platform
to assess the validity of classical noise models of decoherence.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099499., s

I. INTRODUCTION

The inevitable interaction between a quantum system and its
surrounding environment leads to decoherence.1–6 The decoherence
occurs because such interaction leads to system-bath entanglement
that turns a pure system state into a statistical mixture of states.
Understanding quantum decoherence is important for a wide range
of fields such as quantum computation and quantum information
processing,7 quantum control,8 measurement theory, spectroscopy,
and molecular structure and dynamics.9

There are several theoretical frameworks to understand quan-
tum decoherence and the effective dynamics of open quantum sys-
tems.1 The most rigorous one of them consists of explicitly solv-
ing the time-dependent Schrödinger equation for the system and
its environment and then tracing out the environmental degrees
of freedom to obtain the system’s reduced density matrix. How-
ever, this approach, while desirable,6,10,11 is often intractable due
to the exponentially increasing computational cost of solving the

time-dependent Schrödinger equation with system/environment
size. This limitation has led to significant advances developing
methods in which the effect of the bath is considered implicitly1,12
such as perturbative quantummaster equations,13 path integral tech-
niques,14 and hierarchical equations of motion.15,16 Despite this
important progress, following the reduced dynamics of a primary
system of interest interacting with a general quantum environment
remains an outstanding challenge.

Due to the conceptual and technical complexities in deal-
ing with the system plus environment fully quantum mechani-
cally, an alternative approach is to simply consider that the effect
of the environment is to introduce classical noise in the sys-
tem’s degrees of freedom.17–25 In this picture, quantum dissipa-
tion is mimicked by stochastic terms in the equation of motion
that introduce random transitions between system energy eigen-
states. In turn, pure-dephasing processes are modeled by intro-
ducing dynamic disorder (or, equivalently, spectral diffusion) in
which classical noise perturbs the energy of the system eigenstates,
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leading to an accumulated random phase. Decoherence is simu-
lated by averaging over an ensemble of these stochastic but unitary
quantum dynamics.

The conceptual difference between decoherence and classical
noise is known.2,26,27 In “true” decoherence, a single quantum sys-
tem becomes entangled with environmental degrees of freedom. The
unitary deterministic evolution of the system plus environment leads
to a nonunitary evolution of the reduced density matrix of the sys-
tem. By contrast, in the classical noise model, the decay of coherence
can manifest itself only in an ensemble. This is because in any indi-
vidual realization of the noise process the dynamics of the system is
completely unitary since the system is not coupled to any external
environment, and thus, no coherence can be lost from the system.
The decay of coherence emerges by averaging over an ensemble of
realizations of such a noise process. Nevertheless, unless this dif-
ference is probed explicitly, the noise model can mimic well the
effects of decoherence since they both effectively lead to a damp-
ing of coherences. In fact, this stochastic picture with classical noise
has been widely used in chemistry and physics to capture the loss of
interference,19,25 optical line shapes,20,21 noise-assisted energy trans-
port,22 non-Markovian dynamics,23 Landau-Zener,28,29 and central-
spin problems18 and in the quantum simulation of open many-body
systems.24

The fundamental question that arises in this context is what is
the regime of validity and the limitations of the classical noise pic-
ture. An initial discussion of this problem was provided by Stern
et al.19 where it is argued that the loss of quantum interference
can be mimicked by the phase uncertainty introduced by the clas-
sical noise. However, no formal criteria for the validity of clas-
sical noise were provided. Here, we identify necessary conditions
under which the decoherence effects induced by a quantum envi-
ronment in a quantum system can be understood and modeled
through classical noise. Such conditions are obtained by comparing
the reduced dynamics of an open quantum system to the ensem-
ble average of a series of unitary quantum trajectories generated
by a stochastic Hamiltonian. We consider the effects of dissipation
and pure dephasing independently and do not take into account
their possible interference which was recently demonstrated in
Ref. 4.

This paper is organized as follows. Section II introduces deco-
herence functions that arise due to system-bath entanglement and
due to classical noise in the pure dephasing limit. Through a term-
by-term comparison of their cumulant expansion, we isolate con-
ditions on the classical noise that need to be satisfied to mimic the
quantum dynamics. These conditions are determined by the many-
point time correlation functions of the environment operators that
enter into the system-bath interaction. The application of these con-
ditions to the spin-boson model shows that the decoherence effects
can be captured through colored Gaussian noise provided that the
environment time-correlation function can be described by a set
of exponentially decaying functions. In turn, Sec. III focuses on
decoherence through quantum relaxation. We show that classical
noise cannot describe decoherence induced by spontaneous emis-
sion and thus these models are of limited applicability when spon-
taneous fluctuations play a critical role. The analysis pertains to
any spontaneous emission process that leads to dissipation such as
the emission of phonons in vibrational environments or photons in
electromagnetic environments.

II. PURE DEPHASING DYNAMICS
We first focus on pure dephasing dynamics and establish gen-

eral criteria that need to be satisfied to employ classical noise to
mimic quantum decoherence. Pure dephasing refers to a process in
which the decoherence arises without energy transfer between the
system and the environment. For a general composite system with
Hamiltonian,

H = HS +HB +HSB, (1)
where HS is the Hamiltonian of the quantum system, HB is the
Hamiltonian of the environment, andHSB is the interaction between
the system and the bath; the pure-dephasing condition arises when
[HS, HSB] = 0. Even when this condition is not strictly satisfied,
the pure-dephasing effects may still be the dominant effect when
the environment dynamics is nonresonant with the transition fre-
quencies of the system such that the dissipation is much slower
compared to pure-dephasing effects. For this reason, the pure-
dephasing limit has been useful in describing electronic decoherence
inmolecules,4,6 elastic electron-phonon interaction in solid state sys-
tems, loss of quantum interference,19 line shape in spectroscopic
measurements,20 vibrational dephasing in solvents,30 and the central
spin problem.18

Below, we define decoherence functions that arise from system-
bath entanglement and from noise-induced pure dephasing. By con-
trasting them, we isolate conditions that the classical noise needs to
satisfy to mimic the quantum decoherence.

A. Quantum decoherence function
For pure-dephasing dynamics, the system-bath interaction can

be written as

HSB =�
α
�α��α�⊗ Bα , (2)

where {|α�} are the eigenstates ofHS and Bα is a bath operator. Here,
we assume that the system and bath are uncorrelated at initial time
such that the density matrix can be written as

ρ(0) = ρS(0)⊗ ρB(0), (3)

where ρS is the reduced density matrix for the system and ρB is the
reduced density matrix for the bath. The Liouville-von Neumann
(LvN) equation in the interaction picture of H0 = HS + HB reads

i
d
dt
ρ̃(t) = [H̃SB(t), ρ̃(t)], (4)

where Ã(t) = U†
0 (t)AU0(t) is the operator A in this interaction

picture and U0(t) = e−iH0t . For notational convenience, for system
operators, ÃS(t) ≡ U†

SASUS, where US = e−iHSt . Similarly, for bath
operators, ÃB(t) ≡ U†

BABUB, where UB = e−iHBt . Here and through-
out, we employ atomic units where �h = 1. The solution to the LvN
equation can be written as

ρ̃(t) = Ũ(t)ρ(0)Ũ†(t), (5)

where Ũ(t) = Te−i ∫ t
0 H̃SB(t′) dt′ is the propagator in the interaction

picture and T is the time-ordering operator. Using Eq. (2), it follows
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that H̃SB(t) = ∑α �α��α�⊗ B̃α(t) and
Ũ(t) = T ∞�

n=0
(−i)n
n!
�� t

0
dt′�

α
�α��α�⊗ B̃α(t′)�n

=�
α
�α��α�⊗ T

∞�
n=0
(−i)n
n!
�� t

0
dt′B̃α(t′)�n

=�
α
�α��α�⊗Vα(t), (6)

where Vα(t) ≡ T exp�−i �t0 B̃α(t′)dt′�. Inserting Eq. (6) into Eq. (5),
taking into account the uncorrelated initial system-bath state in
Eq. (3), and tracing out the bath degrees of freedom (which is
denoted by TrB[�]) yields the reduced density matrix for the
system

ρ̃Sαβ(t) = �α�TrB[ρ̃(t)]�β� = ρSαβ(0)Φαβ(t). (7)

Here,

Φαβ(t) ≡ TrB[ρB(0)V†
β(t)Vα(t)] = �V†

β(t)Vα(t)� (8)

is the quantum decoherence function (QDF), which characterizes
the decoherence effects for pure-dephasing dynamics. In this pure-
dephasing dynamics, the diagonal matrix elements of the reduced
density matrix representing populations in the energy eigenstates
are not influenced by the environment as �V†

α(t)Vα(t)� = 1. How-
ever, the off-diagonal elements of the density matrix decay with a
rate determined by Φαβ (t).

If the initial state of the environment is pure, i.e., ρB(0) = |χ ��χ |,
the QDF becomes

Φαβ(t) = �χ �V†
β(t)Vα(t)�χ �. (9)

In this case, the absolute square of decoherence function |Φαβ |2 is
known as the Loschmidt echo L(t).31 The Loschmidt echo measures
the stiffness of the environment to the perturbation by the system
and is deeply connected to quantum decoherence.32 A particular
interesting case is that for a two-level system with an initial state
|ψ0� = c0|0� + c1|1�, the Loschmidt echo connects directly to the
purity of the system, defined asP(t) = TrS[ρ2S(t)], with the following
relationship:

P(t) = 1 + 2�c0�2�c1�2(L01(t) − 1). (10)

B. Noise-induced decoherence function
Consider now a quantum system that is subject to classical

noise. The noise is supposed to cause spectral diffusion, i.e., to intro-
duce stochastic dynamics to the energy eigenvalues of the system.
The effective Hamiltonian of the system for a particular realization
of the noise is

H(t) = HS +�
α
ηα(t)�α��α�, (11)

where {ηα(t)} are real stochastic processes. For theHamiltonian to be
Hermitian, ηα(t) must be real. The density matrix for a single real-
ization of the noise can be obtained from the LvN equation in the
interaction picture of HS to yield

i
d
dt
ρ̃αβ(t) = (ηα(t) − ηβ(t))ρ̃αβ(t). (12)

Taking a statistical average of the solution of Eq. (12) yields

ρ̃αβ(t) = Φnoise
αβ (t)ραβ(0), (13)

where we have introduced the noise-induced decoherence function
(NIDF)

Φnoise
αβ (t) = e−i ∫ t

0 ∆αβ(s) ds, (14)

∆αβ (s) ≡ ηα(s) − ηβ (s), and the overline denotes statistical averaging.

C. Contrasting quantum and noise-induced
decoherence functions

Comparing Eqs. (7) and (13), it is clear that if the classi-
cal decoherence function coincides with the quantum decoherence
function, i.e.,

Φαβ(t) = Φnoise
αβ (t) ∀α,β , (15)

the noise picture of decoherence accurately mimics the entangle-
ment process that leads to the decoherence. This formal relation
offers a general structure to understand how classical noise mod-
els can be related to physical pure dephasing processes. However,
it does not offer a practical prescription to relate the decoherence
dynamics with the statistical properties of the noise as the quantum
decoherence function involves two time-ordered exponentials of the
bath operators which are generally not available.

To make further progress, below we introduce a useful oper-
atorial identity for products of time-ordered exponentials and use
it to develop a cumulant expansion of the quantum decoherence
function.

1. A useful operatorial identity
We now show that given two general Hermitian operators A(t)

and B(t),

T̄ei ∫ t
0 B(τ) dτTe−i ∫ t

0 A(τ) dτ = TCe−i ∫ t
0 (A(τ+)−B(τ−)) dτ , (16)

where T̄ is the antichronological time-ordering operator and TC is
the contour-ordering operator defined in a complex time contour C
as specified in Fig. 1. The antichronological time ordering operator
rearranges earlier-time terms to the left of the later-time ones, and
the contour-ordering operator rearranges earlier-in-contour terms
to the right of the later-in-contour ones. This contour consists of
two time branches: the upper branch going forward in time from

FIG. 1. The complex time contour that is used in Eq. (16).
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t0 + i✏ → t + i✏ and the lower one going backward in time from
t − i✏→ t0 − i✏, where ✏ = 0+ is an infinitesimal positive number.

Equation (16) can be understood as a direction exten-
sion of the semigroup property of the evolution operator
[U(t, t′) = U(t, t′′)U(t′′, t′)] from real time to a complex time
contour. A formal proof is provided as follows. We first note that

T̄ei ∫ t
0 B(τ) dτTe−i ∫ t

0 A(τ) dτ = TCei ∫ t
0 B(τ−) dτe−i ∫ t

0 A(τ+) dτ (17)

due to the fact that the effects of the two time-ordering opera-
tors in the left-hand side are being taken care of by the contour-
ordering operator. Here, the subindex ± indicates the upper/lower
time branch of the contour. Using the Baker-Campbell-Hausdorff
formula33 eXeY = eX+Y+ 1

2 [X,Y]+� yields

TCei ∫ t
0 B(τ−) dτe−i ∫ t

0 A(τ+) dτ = TC exp�i� t

0
(B(τ−) − A(τ+))dτ

− i2

2 �
t

0
[B(τ−),A(τ′+)]dτdτ′ +��.

(18)

Now, commutators vanish under the contour-ordering operator

TC{[A(τ),B(τ′)]} = TC{A(τ)B(τ′) − B(τ′)A(τ)} = 0 (19)

as the two terms will be ordered in the same way by the contour-
ordering operator. Then, all commutators and nested commutators
in Eq. (18) vanish, yielding the identity in Eq. (16).

The utility of Eq. (16) is that it enables us to express the two
time-ordered exponentials in Φαβ (t) in terms of a single contour-
ordered exponential. As shown below, such an exponential admits a
simple cumulant expansion that will enable us to connect the desir-
able statistical properties of the noise with quantum time-correlation
functions.

2. Decoherence function in the contour
Using Eq. (16), it follows that

V†
β(t)Vα(t) = TC exp�i� t

0
(B̃β(τ−) − B̃α(τ+))dτ�. (20)

This equation can be simplified further if we define a function in the
contour as

Bαβ(τ) = θC(t − τ)B̃α(τ) + θC(τ − t)B̃β(τ), (21)

where θC(τ − τ′) is the Heaviside step function defined in the con-
tour, θC(τ − τ′) = 1 if τ is later than τ′ in the contour, and
θC(τ − τ′) = 0 otherwise. Using this definition, Eqs. (20) and (8),
the QDF can be written as a single contour-ordered exponential,

Φαβ(t) = �TC�e−i ∫C Bαβ(τ) dτ��, (22)

where the contour integral is defined as �C = �t+iη0+iη − �t−iη0−iη.
3. Cumulant expansion

With Eqs. (22) and (13), the condition Eq. (15) becomes

e−i ∫ t
0 ∆αβ(s) ds = �TCe−i ∫C Bαβ(τ) dτ�. (23)

While formally exact, it is still nontrivial to directly infer from
Eq. (23) whether it is possible to find random processes {ηα(t)} that
satisfy it. Further progress can be made by performing a cumulant
expansion for both sides of Eq. (23),

lnΦαβ(t) ≡ Kq
αβ(t) =

∞�
n=1
(−i)n
n!

κq,(n)αβ (t),
lnΦnoise

αβ (t) ≡ Kc
αβ(t) =�

n

(−i)n
n!

κc,(n)αβ (t).
(24)

The cumulant expansion is the Taylor expansion of the logarithm of
the decoherence function with respect to the system-bath coupling
strength. This can be readily seen by parameterizing the system-bath
interaction as HSB → λHSB.

For the classical and quantum decoherence functions to be
equivalent irrespective of the system-bath interaction strength, the
cumulants of Φαβ (t) and Φnoise

αβ (t) need to match order by order.
This condition is, in fact, stricter than Eq. (23). For the NIDF, the
cumulant expansion can be obtained through the following recursive
formula:34

κc,(n)αβ = µc,(n)αβ − n−1�
m=1�

n − 1
m − 1�κc,(m)αβ µc,(n−m)αβ , (25)

where

µc,(n)αβ = � �� t

0
∆αβ(s1)�∆αβ(sn)ds1�dsn (26)

are the moments of the stochastic variable ∆αβ and �nm� denote
the binomial coefficients. One of the advantages of recasting the
quantum decoherence function into a single exponential is that
it becomes simpler to perform a cumulant expansion. A straight-
forward extension of the cumulant expansion for time-ordered
exponentials by Kubo35 leads to the conclusion that the quantum
cumulants satisfy the same recursive formula Eq. (25), that is,

κq,(n)αβ = µq,(n)αβ − n−1�
m=1�

n − 1
m − 1�κq,(m)αβ µq,(n−m)αβ , (27)

with the generalized quantum moments of operator Bαβ defined as

µq,(n)αβ = � ��
C
�TC n�

i=1 Bαβ(τi)� n�
i=1 dτi. (28)

With the cumulant expansion for both sides of Eq. (23),
the problem of whether classical noise can mimic quantum pure-
dephasing dynamics can now bemapped to themuchmoremanage-
able task of whether one can find a classical noise having correlation
functions equivalent to the quantum time-correlation functions.

The first-order cumulant of the quantum and noise-induced
decoherence function reads

κq,(1) = �
C
dτ�Bαβ(τ)� = � t

0
�B̃α(s) − B̃β(s)�ds, (29)

κc,(1) = � t

0
∆αβ(s)ds = � t

0
ηα(s) − ηβ(s)ds. (30)
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At a quantum level, this cumulant is determined by the expectation
value of the environment operators entering HSB. At a noise level, it
is determined by the expectation value of the noise. Since the expec-
tation value of the environment operator is merely a real number, it
is always possible to find noise with its average ηα(t) = �B̃α(t)� such
that κq,(1) = κc,(1).

A more stringent requirement comes from the second cumu-
lant. As it is always possible to redefine the system Hamiltonian
to make the expectation value of the environment operator vanish,
we assume that the first cumulant vanishes in the following. From
Eqs. (25)–(28), it is straightforward to obtain the second cumulant
for the QDF and NIDF,

κc,(2)αβ =� t

0
dsds′∆αβ(s)∆αβ(s′) (31)

and

κq,(2)αβ (t) =�C
dτdτ′�TCBαβ(τ)Bαβ(τ′)�

= 2� t

0
ds� s

0
ds′(Dαα(s, s′) +Dββ(s′, s))

− 2� t

0
dsds′Dβα(s, s′), (32)

where Dαβ(s, s′) = �B̃α(s)B̃β(s′)� is the quantum time-correlation
function of the environment. Because the classical noise is real, if the
second cumulant for the QDF is complex, the classical noise cannot
fully capture the effects of a quantum environment. Thus, a nec-
essary condition to mimic the quantum decoherence with classical
noise is that the cumulants are real.

Higher-order cumulants can be important for anharmonic and
many-body environments. Using Eq. (25), it is now straightforward
to obtain higher-order cumulants for QDF. For example, the third
cumulant is given by

κq,(3)αβ =�
C
�TCBαβ(τ1)Bαβ(τ2)Bαβ(τ3)�dτ1dτ2dτ3. (33)

If the higher-order quantum cumulants make significant contribu-
tions to decoherence, it requires the classical noise to have the cor-
responding higher-order correlations. This implies that, for such
environments, the commonly used Gaussian noise model can be
inadequate.18,36 We expect that such environments can arise in elec-
tronic decoherence in molecules where the environment consists of
molecular vibrations which can be far from harmonic and also in
central spin model where the environment consists of interacting
spins.

Surprisingly, the cumulants, often considered as a convenient
computational tool, carry direct physical meaning. To see this, we
take the time-derivative of Eq. (7) and use the definition of the
cumulants to obtain

d
dt
ρ̃Sαβ(t) = K̇q

αβ(t)ρ̃Sαβ(t). (34)

Equation (34) is the equation of motion for the coherences in the
interaction picture. Clearly, the time-derivative of the cumulants is
the generator of decoherence and each cumulant corresponds to a

particular order on the system-bath interaction. Explicitly, express-
ing the coherence in the polar form ρ̃Sαβ(t) = Aαβ(t)ei�αβ(t), it follows
from Eq. (34) that

Ȧαβ(t) = ReK̇q
αβ(t)Aαβ(t), �̇αβ(t) = ImK̇q

αβ(t). (35)

Equation (35) indicates that the real parts of the time-derivative of
cumulants is responsible for decoherence, and the imaginary parts
account for the environment-induced energy shifts.

D. Spin-boson model
We now illustrate how the above criteria can be applied using

a concrete example: the quintessential spin-boson problem. The
Hamiltonian for the pure-dephasing spin-boson model is

H = −ω0

2
σ z + σ z�

k
gk(a†

k + ak) +HB, (36)

where σ z is the Pauli z matrix and ω0 is the transition frequency
for the two-level system. Here, HB = ∑k ωka†

kak describes a bosonic
environment consisting of a distribution of harmonic oscillators of
frequency ωk with ak, a†

k being the creation and annihilation opera-
tors for the kth mode, respectively. The coupling of the system with
the environment leads to shifts in the system’s energy levels, where
gk is the coupling constant to the kth harmonic mode.

The environment is assumed to be initially in thermal equi-
librium at inverse temperature β = 1/(kBT) with density matrix
ρB = e−βHB�Z, where Z = TrB[e−βHB] is the partition function.
For time-independent Hamiltonian, this leads to time-translational
invariant time-correlation function

Dαβ(t, t′) = Dαβ(t − t′). (37)

For a two-level system, only one decoherence function has to be con-
sidered corresponding to α = 0, β = 1. Since σ z = |0��0| − |1��1|,
one can identify B0 = −B1 = ∑k gk(ak + a†

k) ≡ B and D00 = D11
= −D01 ≡ D.

Using ãk(t) = e−iωktak and ã†
k(t) = eiωkta†

k , the time-correlation
function D(t) can be calculated as

D(t) =�
k
�gk�2��ãk(t)a†

k� + �ã†
k(t)ak��

=�
k
�gk�2[(1 − n̄k)e−iωkt + n̄ke

iωkt], (38)

where n̄k = �a†
kak� is the distribution function. At thermal equi-

librium, n̄k = 1�(eβωk − 1) corresponding to the Bose-Einstein
distribution and Eq. (38) yields

D(t) = � ∞
0

dω
π
J(ω)[coth(βω�2) cos(ωt) − i sin(ωt)]

= � ∞
−∞

dω
2π

J(ω)[coth(βω�2) cos(ωt) − i sin(ωt)], (39)

where the spectral density is defined as J(ω) ≡ π∑k|gk|2δ(ω − ωk)
for ω > 0 and extended to negative frequencies by J(−ω) = −J(ω).
This extension makes the integrand in Eq. (39) symmetric under
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ω→ −ω, hence the second equality. Since the environment is Gaus-
sian, the QDF is determined by the first two cumulants.35,37 The first
cumulant vanishes, and the second cumulant can be calculated by
inserting Eq. (39) into Eq. (32),

κq,(2)αβ (t) = 8� ∞
−∞

dω
2π

J(ω) coth(βω�2)1 − cos(ωt)
ω2 . (40)

Interestingly, the cumulant is real even though the time-correlation
function is complex. This is due to the property of the quantum
time-correlation function

D(−τ) = D∗(τ). (41)

Because the cumulant is real, as described below, its effects on the
dynamics can be mimicked by classical noise.

Consider now the noise model intended to mimic the above
decoherence dynamics with Hamiltonian

H(t) = −ω0

2
σ z + η(t)σ z , (42)

where the stochastic process η(t) replaces the system-bath inter-
action in Eq. (36). Denoting the noise correlation function as
C(s, s′) = η(s)η(s′), we show that if the noise satisfies the follow-
ing three conditions: (i) C(s, s′) = C(s − s′), (ii) η(t) = 0, and
(iii) C(t) = S(t), where S(t) ≡ 1

2 �{B(t),B}� = 1
2 �B(t)B + BB(t)�,

then the NIDF coincides with the QDF. The first condition implies
that the noise is stationary corresponding to the equilibrium state
of the environment. The second condition reflects the vanishing of
the first cumulant of the QDF. The third one is required to make the
second cumulants for QDF and NIDF equal. To see this, realizing
that ∆01(t) = 2η(t) and inserting the Fourier transform of the noise
correlation function

C(t) = � ∞
−∞

dω
2π

C(ω)e−iωt (43)

into Eq. (31) yields

κc,(2)(t) = 8� ∞
−∞

dω
2π

1 − cos(ωt)
ω2 C(ω). (44)

Comparing Eqs. (40) and (44), it is clear that the condition
κq,(2)(t) = κc,(2)(t) is equivalent to

C(ω) = J(ω) coth(βω�2). (45)

According to Eq. (39), the right-hand side of Eq. (45) is the Fourier
transform of the real part of the quantum time-correlation function
[Eq. (39)]. Using Eq. (41), it follows that S(t) = Re D(t) and thus to
the third condition S(t) = (1/2)(D(t) + D(−t)) = (1/2)�{B(t), B}�.

Equation (45) suggests that for each spectral density there is
a corresponding classical noise leading to the same pure-dephasing
dynamics provided that an adequate algorithm to generate the
stochastic process is identified. Here, we exemplify the analysis with
the widely used Ohmic environments with a Lorentz-Drude cutoff.
The spectral density for such environments is

J(ω) = 2λ ωcω
ω2 + ω2

c
, (46)

where ωc is the cutoff frequency of the environment and λ charac-
terizes the system-bath interaction strength. In the high-temperature
limit βωc � 1, coth(βω/2) ≈ 2(βω)−1 and

J(ω) coth(βω�2) ≈ 4λkBT ωc

ω2 + ω2
c
. (47)

Now, let η(t) be a colored Gaussian noise with correlation func-
tion C(τ) = 2λkBTe−ωcτ . This choice ensures that Eq. (45) is sat-
isfied in the high temperature limit which can be seen by taking
the Fourier transform of the noise correlation function and com-
paring with Eq. (47). Therefore, the quantum pure-dephasing effects
of a high-temperature Ohmic bath can be fully captured by colored
exponentially correlated Gaussian noise.

This conclusion is demonstrated in Fig. 2, which contrasts
the exact quantum results with stochastic simulations. The exact
results are obtained by first inserting Eq. (47) into Eq. (40) to obtain
the second-order cumulant and thus the decoherence function
Φ01(t) = e− 1

2 κ
q,(2)(t). This decoherence function is exact (compare

with Ref. 38) as the contributions of higher order cumulants vanish

FIG. 2. (a) Correlation function of the generated noise (red) in comparison with
the target (black). (b) Quantum and noise-induced decoherence dynamics in a
spin-boson model starting from a superposition with equal coefficients of ground
and excited states. Model parameters are λ/ω0 = 0.5, βω0 = 1, ωc /ω0 = 1. The

exact results are obtained through Φ01(t) = e− 1
2
κq,(2)(t) with the second cumu-

lant computed using Eq. (40). The stochastic simulations are obtained with 2000
realizations of the colored noise and with a time step ω0dt = 0.002. No revivals of
the coherence are observed in this model.
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in this case. The stochastic simulation is averaged over 2000 realiza-
tions of the exponentially correlated colored Gaussian noise gener-
ated using the algorithm in Ref. 39. The correlation function of gen-
erated noise is shown in Fig. 2(a). For each realization, the stochastic
time dependent Schrödinger equation i ddt �ψ(t)� = H(t)�ψ(t)� with
the initial condition �ψ(0)� = 1√

2
(�0� + �1�) is integrated. As shown,

the decoherence dynamics obtained with stochastic noise is in quan-
titative agreement with the exact quantum decoherence dynamics,
consistent with our conclusion above.

For a low-temperature regime and other types of spectral
densities, if S(t) can be well-described by a set of exponential
functions,

S(t − t′) =�
n
�cn�2e−�t−t′ ��τn , (48)

one can choose a sum of exponentially colored Gaussian noises,

η(t) =�
n
cnηn(t), (49)

where {ηn(t)} are Gaussian stochastic processes with statistical prop-
erties,

ηn(t)η∗m(t′) = δnme−�t−t′ ��τn . (50)

In this case, the noise correlation function

C(t − t′) =�
n,m

cnc∗mηn(t)η∗m(t′) =�
n
�cn�2e−�t−t′ ��τn = S(t − t′). (51)

Thus, the quantum decoherence dynamics can still be captured by
classical noise.

III. QUANTUM DISSIPATION
Another major source of decoherence is quantum dissipa-

tion due to transitions between system eigenstates induced by the
environment. The role of the dissipative environment is to drive
the system from an initially out-of-equilibrium state to thermal
equilibrium.

The question we seek to address here is when can we under-
stand quantum decoherence induced by dissipation in terms of clas-
sical noise. This problem has been studied previously by Tanimura
and Kubo16 with the hierarchical equation of motion. The con-
clusion of such a formal study is that the classical noise can only
be made to be equivalent to a full quantum treatment at infinite
temperature, i.e., as β → 0. Below, we provide a simpler analysis
of this problem for Markovian environments and show that the
physical reason behind this conclusion is that the classical noise
cannot describe the decoherence effects due to spontaneous emis-
sion induced by a dissipative environment. Here, spontaneous emis-
sion is not restricted to electromagnetic environments but refers to
a damping effect induced by the spontaneous fluctuations of any
dissipative environment.

The simplest model that allows isolating this basic physics is
a two-level system |g�, |e� interacting with a thermal environment.
A standard full quantum treatment of this model within the dipole
approximation leads to the equation of motion for the reduced
density matrix,40

d
dt
ρS(t) = −i[HS, ρS] + Γe�σ−ρS(t)σ+ − 1

2
{σ+σ−, ρS(t)}�

+ Γa�σ+ρS(t)σ− − 1
2
{σ−σ+, ρS(t)}�, (52)

where HS = −ω0σ z/2 is the system Hamiltonian, σ± is the rais-
ing/lowering operator, and [A, B] = AB − BA and {A, B} = AB + BA
denote the commutator and anticommutator, respectively. The first
term in the right-hand side of Eq. (52) accounts for the unitary
dynamics of HS, which does not contribute to decoherence. The
meaning of the remaining dissipative terms is best revealed by
decomposing Eq. (52) in terms of the matrix elements,

d
dt
ρSgg(t) = ΓeρSee(t) − ΓaρSgg(t), (53)

d
dt
ρSeg(t) = −iω0ρSeg(t) − ΓdρSeg(t), (54)

where Γd = (Γe + Γa)/2. Clearly, the second term in Eq. (52) accounts
for the emission of energy to the environment and the third one
to absorption. Here, the emission rate Γe is a sum of the stim-
ulated emission rate (which is equivalent to the absorption rate
Γa) and spontaneous emission rate Γ0, i.e., Γe = Γa + Γ0. The off-
diagonal matrix elements (or coherence) represented in the eigen-
states of HS admits an exponential decay with the decoherence
rate Γd.

Note that as a consequence of the Markovian approximation
involved in the derivation of Eq. (52), the model does not capture
the universal initial Gaussian purity decay for uncorrelated initial
states which gives rise to quantum Zeno effects.41,42

Now, consider the classical noise picture where the system is
subject to a random term that induces transitions between system
eigenstates, i.e.,

H = HS + η(t)σ− + η∗(t)σ+. (55)

Here, the stochastic variable η is allowed to be complex but still
keeping the dynamics for each noise realization unitary. For Marko-
vian environments without memory effects, it is appropriate to
choose �η(t)η∗(t′)� = γδ(t − t′). In the interaction picture of HS, the
Liouville-von Neumann equation reads

i
d
dt
ρ̃S(t) = [η(t)σ̃−(t) + η∗(t)σ̃+(t), ρ̃S(t)]. (56)

A quantum master equation can be obtained as follows. Inte-
grating Eq. (56) yields

ρ̃S(t) = ρS(0) − i� t

0
dt′[η(t′)σ̃−(t′) + η∗(t′)σ̃+(t′), ρ̃S(t′)]. (57)

Inserting Eq. (57) back into the right-hand side of Eq. (56) and
taking statistical average of the stochastic processes yields

d
dt
ρ̃S(t) = γ[σ̃−(t), [σ̃+(t), ρ̃S(t)]] + γ[σ̃+(t), [σ̃−(t), ρ̃S(t)]].

(58)
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Transforming into the Schrödinger picture gives the quantum mas-
ter equation

ρ̇S(t) = −i[HS, ρS(t)] + γ�σ−ρS(t)σ+ − 1
2
{σ+σ−, ρS(t)}�

+ γ�σ+ρS(t)σ− − 1
2
{σ−σ+, ρS(t)}�. (59)

Comparing Eqs. (59) and (52), it becomes clear that the noise can
mimic many of the effects of the quantum relaxation provided that
one identifies γwith Γa.What becomesmissing in this picture are the
contributions due to spontaneous emission. In this case, one obtains
a decoherence rate γd = Γa from Eq. (59). Thus, the decoherence rate
in the classical noise picture does not contain the contribution from
spontaneous emission.

For photonic environments at thermal equilibrium, a criterion
for the importance of spontaneous emission to decoherence can be
identified. In this case, the ratio between the spontaneous and the
stimulated emission rate is given by38

η ≡ Γ0
Γa
= 1
N(ωeg) = eβωeg − 1, (60)

whereN(ωeg) = 1�(eβωeg − 1) is the Bose-Einstein distribution func-
tion. In the high-temperature limit βωeg � 1, η → 0 such that the
spontaneous emission plays a negligible role in decoherence. On the
other hand, in the low-temperature regime βωeg � 1, η� 1 and the
spontaneous emission dominates.

The missing of spontaneous emission has a direct consequence
in relaxation. Since the absorption and emission rates are equal, the
stationary state at long times is the nonphysical infinite-temperature
state. The above analysis demonstrates that any Hamiltonian in the
form of Eq. (55) will necessarily lead to the master equation Eq. (59).
To fix this problem and introduce spontaneous emission, one has
to go beyond the classical noise model with Hamiltonian dynamics,
for example, by promoting the classical noise to quantum noise,43
by relaxing the constraint of unitary dynamics for each noise real-
ization44 as in the stochastic Liouville equation,45 or by including
phenomenological corrections to the equations of motion that force
thermalization as in Refs. 46–48. These results agree with the anal-
ysis of Burgarth et al.44 which shows that dissipation can only be
ascribed to a classical noise process if probability is not conserved in
individual realizations.

IV. CONCLUSIONS
To summarize, we have contrasted quantum decoherence that

arises as a single quantum system becomes entangled with envi-
ronmental degrees of freedom with the apparent decoherence that
results by averaging over an ensemble of unitary evolutions gen-
erated by a Hamiltonian subject to classical noise. For dissipative
environments, we showed that the classical noise cannot describe
the decoherence induced by spontaneous emission and, thus, that
the classical noise picture can only become quantitative in the infi-
nite temperature limit. For pure-dephasing dynamics, we identified
general conditions that determine whether the decoherence dynam-
ics due to a quantum environment can be quantitatively mimicked

through classical noise. Specifically, we showed that for the two
dynamics to agree, the cumulants of the quantum and noise-induced
decoherence functions must coincide. These requirements impose
restrictions on the statistical properties of the noise that are deter-
mined by the quantum many-point time correlation functions of
the environmental operators that enter into the system-bath inter-
action. These conditions are valid for any pure dephasing prob-
lem including anharmonic environments and nonlinear system-bath
couplings.

In particular, through the spin-boson model, we demonstrated
numerically and analytically that the decoherence effects due to
a harmonic Ohmic environment (in the high-temperature pure-
dephasing limit) can be mimicked by exponentially correlated col-
ored Gaussian noise. This observation is consistent with a recent
study49 of the quantum transport properties of a molecular junction
subject to vibrational dephasing that finds agreement between a fully
quantum model (harmonic, Ohmic, pure-dephasing environment
in the high temperature limit) and a model in which the thermal
environment manifests itself in (exponentially correlated Gaussian)
fluctuating site energies. A challenge in employing classical noise
models for environments with more complicated spectral densities
is to generate noise with the correct statistical properties. A possi-
ble strategy to this end is to perform classical molecular dynamics to
model with chemical detail the influence of the environment on the
system.50,51

Our results offer well-defined criteria to develop and to under-
stand the validity of classical noise models of decoherence that are
employed in chemistry, physics, and quantum information.52 These
models are useful in the design of dynamic decoupling schemes to
preserve coherence.18 In particular, in the context of optimal con-
trol computations, an effective stochastic model that captures the
effects of a quantum environment is highly desirable53 as those
computations are challenging for a full quantum model.

In addition, the developed criterion in Eq. (23) can also be used
to test the validity of mixed quantum-classical methods in deco-
herence research. Equation (23) also applies to hybrid quantum-
classical schemes where the bath is treated classically and the effect
of the bath on the system appears as a time-dependent term in
the Hamiltonian, such as Ehrenfest dynamics6,47,54 and approaches
based on (thermal and nonthermal) classical molecular dynamics for
the bath.50,51 As is the case for noise-based strategies, this class of
methods do not capture spontaneous emission and thus cannot lead
to thermal equilibrium unless phenomenological corrections46–48 to
the equations of motion are incorporated.
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