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Optical absorption properties of laser-driven matter
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Characterizing and controlling matter driven far from equilibrium represents a major challenge for science
and technology. Here, we develop a theory for the optical absorption of electronic materials driven far from
equilibrium by resonant and nonresonant lasers. In it, the interaction between matter and the driving light is
treated exactly through a Floquet analysis, while the effects of the probing light are captured to first order
in perturbation theory. The resulting equations are reminiscent to those for equilibrium absorption but with
the Floquet modes playing the role of the pristine eigenstates. The formalism is employed to characterize
the optical properties of a model nanoscale semiconductor dressed by nonresonant light of intermediate
intensity (nonperturbative, but nonionizing). As shown, nonresonant light can reversibly turn this transparent
semiconductor into a broadband absorber and open strong absorption and stimulated emission bands at very low
frequencies (∼meV). Further, the absorption spectra of the driven material exhibit periodic features energetically
spaced by the photon energy of the driving light that reflect the periodic structure of the Floquet bands. These
developments offer a platform to understand and predict the emergent optical properties of materials dressed by
the electric field of light, and catalyze the design of laser-driven materials with desired optical properties.
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I. INTRODUCTION

In the past century we have made remarkable progress in
our ability to design, synthesize, and model novel materials
with specific functionalities. Many of the insights and tools
that we have developed operate at or near equilibrium where
the materials are at the minimum of an appropriate ther-
modynamic potential. Much less is known, however, about
the properties and governing principles of matter driven far
from equilibrium [1]. In this regime, the effective properties
of matter depend on the applied external stimulus and the
material response to it. This nonlinear dependency can lead
to emergent properties and phenomena that are qualitatively
different from those observed near equilibrium (see, e.g.,
Refs. [2–11]).

Here, we are concerned with the emergent electronic
properties of matter driven far from equilibrium by light,
in particular, with the ability of these laser-driven materials
to absorb light. We envision a physical situation in which
a laser drives matter far from equilibrium, while a second
perturbative laser source probes its effective ability to absorb
light across the electromagnetic spectrum. To capture and
interpret the optical properties of laser-driven materials, here
we introduce a generalization of the usual theory of linear
optical absorption to this nonequilibrium situation where mat-
ter is constantly driven by light. New theoretical tools are
needed because, in this regime, there is no stationary reference
state and energy is no longer a conserved quantity. Thus,
the increase of energy of a system from a given reference
state can no longer be used as a criterion for the absorption
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of photons. In addition, the fluctuation-dissipation theorem
[12] and Green-Kubo relations [13,14], that form the basis of
the usual theory of linear optical absorption [15,16] because
they summarize the response of a system near equilibrium
to an external weak perturbation, are no longer valid since
the Hamiltonian of driven matter is not time-translational
invariant. In turn, fully perturbative approaches [16] of the
response of matter to both driving and probing pulse, while
possible, cannot capture the dynamics induced by the driving
pulse exactly in all regimes of the laser-matter interaction.

The theory proposed below overcomes these issues by
redefining the absorption properties of driven matter as the
rate of transitions induced by the probe photons among the
laser-driven states of the system. From this definition, the
optical absorption can be expressed by a nonequilibrium
dipole-dipole time-correlation function within first-order per-
turbation theory in the probing light. In turn, the effects of
the driving pulse are captured exactly by introducing a Flo-
quet picture into the analysis and focusing on noninteracting
electronic materials for which the equations of motion of the
fermionic creation and annihilation operators can be closed
exactly. The formalism takes into account the quantum statis-
tics of the pristine material, and the nonequilibrium nature of
the laser-driven matter, and generalizes previous attempts to
define the optical properties of laser-driven matter in various
limits [8–10,17–19]. Further, it provides a useful starting point
for future efforts to capture additional features introduced
by electron-electron, electron-nuclear, or other many-body
interactions that can contribute to heating and broadening of
the spectral features.

The resulting theory has a structure that is akin to the
usual linear absorption theory. However, the photoinduced
transitions and transition dipoles that are encountered are

2469-9926/2018/98(6)/063412(15) 063412-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.063412&domain=pdf&date_stamp=2018-12-12
https://doi.org/10.1103/PhysRevA.98.063412


BING GU AND IGNACIO FRANCO PHYSICAL REVIEW A 98, 063412 (2018)

between single-particle Floquet eigenstates and not between
the pristine eigenstates of the system. To demonstrate its
utility, we first apply it to a three-level system under resonant
driving. As shown, the formalism naturally recovers the well-
known Autler-Townes effect [10,20] in which a spectral line
in the absorption spectrum splits due to near-resonance laser
driving.

Importantly, the theory also provides the technical means
to develop physical insights into the absorption properties of
driven matter and establish structure-function relations that
apply far from equilibrium. In fact, below we use it to explore
and interpret the optical properties of a model nanoscale
semiconductor dressed by nonresonant lasers. Through Stark
effects, nonresonant lasers of intermediate intensity (nonper-
turbative, but nonionizing) can strongly modify, in a reversible
fashion, the electronic structure of extended and nanoscale
materials [21–24]. As shown below, in addition to exhibit-
ing a red-shift in the absorption features reminiscent of the
Franz-Keldysh effect [25] and the quantum confined Stark
effect [26], these laser-driven materials have transient optical
properties that are very different from those observed near
equilibrium. In fact, we find that nonresonant light can re-
versibly turn a transparent semiconductor into a broadband
absorber and open strong absorption and stimulated emission
bands at very low frequencies (∼meV).

The structure of this paper is as follows. In Sec. II, we intro-
duce the optical absorption theory for laser-driven matter. The
theory relates the absorption properties to the nonequilibrium
two-time dipole-dipole correlation function in the interaction
picture of the laser-driven Hamiltonian. Such correlation func-
tion is made computationally tractable by adopting a Floquet
strategy. In Sec. III, the theory is applied to simulate the
nonequilibrium absorption spectrum of a three-level system
under resonant driving and a model nanoscale semiconductor
under nonresonant driving. The simulated nonequilibrium
absorption spectra are interpreted in terms of inter- and intra-
Floquet Brillouin zone transitions between Floquet modes.
In Sec. IV we summarize our main findings and introduce
a qualitative picture for the interpretation of nonequilibrium
absorption.

II. THEORY

A. Hamiltonian

We consider the optical properties of a material with
Hamiltonian HM that is constantly being driven by light. The
effective Hamiltonian of this laser-driven system is

HLD(t ) = HM + Hd (t ), (1)

where Hd (t ) = −μ · Ed (t ) is the laser-matter interaction in
dipole approximation, Ed (t ) the electric field of the driving
light, and μ the dipole vector operator. Here and throughout,
boldface denotes vector quantities. The driving laser can be
of arbitrary strength and shape, and taken to have periodicity
T (angular frequency � = 2π/T ) such that Hd (t + T ) =
Hd (t ). For pulsed excitation sources, this treatment is appro-
priate when the envelope of the driving light changes slowly
compared to T . The optical properties of this laser-driven
material are probed by allowing the material to interact with a
weak perturbative probe laser Ep(t ). The total Hamiltonian of

the system interacting with both the drive and probe laser is

H (t ) = HLD(t ) + Hp(t ), (2)

where Hp = −μ · Ep(t ). Because the material is driven out
of equilibrium by the driving laser, the equilibrium theory
[27] connecting the absorption property and the dipole-dipole
correlation function cannot be used here. In the following, we
generalize the definition of absorption spectrum to materials
driven far from equilibrium.

We adopt the following notation: α, β, γ, δ will label
single-particle eigenstates of the material Hamiltonian; λ, η

Floquet states; n Fourier components; and |i〉 , |f 〉 many-
electron states.

B. Optical response of nonequilibrium matter

For definitiveness, we focus on a system that is pre-
pared at time t0 in a particular many-electron state |i〉 (with
density matrix ρ = |i〉 〈i|). However, the results presented
below are general and apply to initial thermal states, and
other nonpure states. To define the optical absorption for
nonequilibrium matter, we quantify its response to interaction
with a monochromatic probe light at a given frequency ω.
Contrary to the equilibrium case, changes in the energy of the
system are not a good measure of absorption of light since
the energy of the laser-driven system is not conserved [28].
The absorption and stimulated emission can be determined by
capturing all physical processes that lead to a change of state
of the laser-driven material via interaction with a photon from
the probe laser. The rate at which this happens is given by
[17,18]

I (ω) = lim
t→∞

P (t, ω)

t − t0
, (3)

where P (t, ω) is the probability of a probe photon of fre-
quency ω to lead to change in the laser-driven material after
an interaction time interval t − t0.

In this analysis, it is useful to decompose the total evo-
lution operator U (t, t0) of the system into a part Ud (t, t0) =
T e

− i
h̄

∫ t

t0
HLD(τ ) dτ that is due to the driving pulse only, and

contributions to the dynamics S(t, t0) by the probe light in
the presence of the driving pulse, i.e.,

U (t, t0) = T e
−(i/h̄)

∫ t

t0
H (τ ) dτ = Ud (t, t0)S(t, t0), (4)

where T denotes time ordering. To understand the physical
processes that contribute to P (t, ω) we introduce a transition
amplitude Aif between two many-body states |i〉 and |f 〉 of
the pristine material of the form

Af i ≡ 〈f |U †
d (t, t0)U (t, t0)|i〉 = 〈f |S(t, t0)|i〉 . (5)

The quantity Af i can be interpreted in two complementary
but equivalent ways. It can seen as the overlap between the
state of the system at time t , U (t, t0) |i〉, under the influence
of both probe and drive pulses, onto the laser-driven states
Ud (t, t0) |f 〉. Alternatively, it can be seen as the projection
onto |f 〉 of an initial state that is propagated in a closed
time loop. Such a loop consists of forward propagation from
t0 → t with both lasers turned on and then backwards from
t → t0 with only the driving pulse. This process is akin to the
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Kelydysh contour used in the Schwinger-Keldysh formalism
[29] and the Loschmidt echo in the study of quantum chaos
[30].

The photon scattering operator [or, equivalently, the
evolution operator in the interaction picture of HLD(t )]
S(t, t0) satisfies a Schrödinger equation ih̄ d

dt
S(t, t0) =

Hp,I (t )S(t, t0) [S(t0, t0) = 1] and admits a Dyson perturba-
tive expansion. Here, Hp,I (t ) ≡ U

†
d (t, t0)Hp(t )Ud (t, t0) is the

probe light-matter interaction in the interaction picture of
HLD(t ). We consider the effect of Hp(t ) to first order in
perturbation theory where

S(t, t0) = 1 − (i/h̄)
∫ t

t0

Hp,I (t1)dt1, (6)

so that

Af i = 〈f |S(t, t0)|i〉 = 〈f | 1 − i

h̄

∫ t

t0

Hp,I (t1)dt1 | i〉. (7)

There are two different types of processes that contribute to
P (t, ω) = P (1)(t, ω) + P (2)(t, ω). Those in which, upon in-
teraction, the probe photon leads to amplitude in laser-driven
states Ud (t, t0) |f 〉 different from the laser-driven initial state
Ud (t, t0) |i〉, i.e.,

P (1)(t, ω) =
∑
f

|Af i |2 = 1

h̄2

∑
f

∣∣∣∣
∫ t

t0

dt1 〈f |Hp,I (t1)|i〉
∣∣∣∣
2

,

(8)

where the set {|f 〉} consists of every many-body state of the
complete basis that is orthogonal to |i〉, i.e.,

1 − |i〉 〈i| =
∑
f

|f 〉 〈f | . (9)

A second process that leads to absorption and emission of a
probe photon is one in which the probe light interacts with
any transient dipole in the laser-driven state Ud (t, t0) |i〉. In
this case, the state of the laser-driven material is not changed
but absorption and emission of a probe photon occurs, i.e.,

P (2)(t, ω) = |Aii |2

=
∣∣∣∣1 − i

h̄

∫ t

t0

dt1 〈i|Hp,I (t1)|i〉
∣∣∣∣
2

= 1 + 1

h̄2

∫ t

t0

dt1| 〈i|Hp,I (t1)|i〉 |2. (10)

This contribution is akin to the interaction of an electric field
with a permanent dipole in matter. In the nonequilibrium case,
the dipole can be permanent or be induced by the driving
pulse.

Combining the two processes, and taking into account
Eq. (9),

P (t, ω) = P (1)(t, ω) + P (2)(t, ω)

= 1

h̄2

∫∫ t

t0

dt1dt2 〈i|Hp,I (t1)Hp,I (t2)|i〉 + 1. (11)

The contribution of the laser-independent term to P (t, ω) van-
ishes when calculating the rate in Eq. (3) and will be dropped
from this point on. The transition probability P (t, ω) includes

processes to all orders in the driving electric field Ed (t ) and
to first order in perturbation theory in the probe electric field
Ep(t ). This is reflected by a quadratic dependence of P (t, ω)
on Ep(t ) in Eq. (11). While additional contributions can arise
from second-order perturbation theory in S(t, t0) that also
contribute as |Ep(t )|2, these contributions vanish in P (t, ω).
Thus, Eq. (11) is consistent up to second order in Ep(t ).

To specify the response, it suffices to consider a monochro-
matic probe pulse Ep(t ) = εp cos(ωt ) of frequency ω, ampli-
tude εp = |εp|, and polarization εp/εp. In this case, Hp(t ) =
−μεp cos(ωt ), where μ = μ · εp/εp is the dipole vector op-
erator projected onto the direction of laser polarization. It
then follows that the transition probability can be written in
a compact way:

P (t, ω) = ε2
p

2h̄2

∫∫ t

t0

dt1dt2Cμμ(t2, t1)

× Re[e−iω(t1−t2 ) + e−iω(t1+t2 )]. (12)

Here,

CAB (t2, t1) ≡ Tr[ρAI (t2)BI (t1)] (13)

is a two-time correlation function where AI (t ), BI (t ) are
system operators in interaction picture of HLD(t ), i.e., AI (t ) =
U

†
d (t, t0)AUd (t, t0). The final expression for the rate of ab-

sorbing and emitting a photon is given by

I (ω) = lim
t→∞

|εp|2
2h̄2

1

t − t0

∫∫ t

t0

dt1dt2Cμμ(t2, t1)

× Re[e−iω(t1−t2 ) + e−iω(t1+t2 )]. (14)

When Ed (t ) = 0, Eq. (14) reduces to the well-known expres-
sion Ieq(ω) ∝ ∫

C(τ )e−iωτ dτ , where C(τ ) = 〈μI · μI (τ )〉
for equilibrium systems due to the time-translational invari-
ance in this case [15].

Equation (14) defines the optical response of matter driven
by nonperturbative light. It applies to any material, to pure
or mixed initial states with density matrix ρ, and to resonant
and nonresonant driving pulses of arbitrary intensity. Never-
theless, numerically these equations are challenging to use
directly because they require propagating the many-body state
to long times and back for each frequency and for each pair of
interaction times t1 and t2 with the probe field.

Below we specialize our considerations to fermionic sys-
tems, and show how further progress can be made by invoking
Floquet theorem and focusing on effective noninteracting
systems.

C. Optical absorption for laser-driven electronic materials

We consider electronic materials that can be described as
an effective noninteracting Hamiltonian, as that expected from
time-dependent density functional theory [31,32]. In this case,

HLD(t ) =
∑
αβ

hαβ (t )c†αcβ, (15)

where the operator c†α (or cα) creates (or annihilates) a fermion
in a given single-particle state |α〉, and where the time de-
pendence arises from the interaction with the driving laser.
To calculate P (t, ω) [Eq. (12)], note that the integrand in
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this quantity is determined by the dipole operator μI (t ) =∑
αβ μαβc

†
α,I (t )cβ,I (t ) in the interaction picture. To incorpo-

rate the effect of the driving pulse exactly, it is thus necessary
to obtain a closed expression for cα,I (t ). The equation of
motion for the annihilation operator is

ih̄
dcα,I (t )

dt
= [cα,I (t ),HLD,I (t )]. (16)

For noninteracting Hamiltonians [Eq. (15)],

ih̄
dcα,I (t )

dt
=

∑
β

hαβ (t )cβ,I (t ). (17)

These equations can be solved in closed form to give

cα,I (t ) =
∑

β

[U (t, t0)]αβ cβ, (18)

where U (t, t0) ≡ T e
−(i/h̄)

∫ t

t0
H(t ′ ) dt ′ . Here, H is the effective

Hamiltonian of a single particle in the laser-driven system in
first quantization with single-particle matrix elements hαβ =
〈α|H|β〉. This simplification allows us to introduce Floquet
theory at the single-particle level (see Sec. II C 1). The solu-
tion in Eq. (18) can be verified by inserting it into Eq. (17) and
taking into account that

ih̄
d

dt
U (t, t0) = H(t )U (t, t0), U (t0, t0) = 1. (19)

The problem of determining cα,I (t ), and thus P (t, ω), has now
been reduced to the problem of determining the single-particle
evolution operator U (t, t0). Equations (19) and (18) are solved
below using Floquet theory.

1. Floquet theory for the single-particle evolution operator

As the dressed material’s Hamiltonian is periodic
HLD(t ) = HLD(t + T ) (T = 2π/�), so is H(t ) = H(t + T ).
According to the Floquet theorem [4,33,34], for periodically
driven Hamiltonians, there exist solutions, so-called Floquet
states, to the Schrödinger equation

ih̄
d

dt
|ψλ(t )〉 = H(t ) |ψλ(t )〉 (20)

of the form

|ψλ(t )〉 = e−iEλt/h̄ |φλ(t )〉 , |φλ(t )〉 = |φλ(t + T )〉 , (21)

where the |φλ(t )〉 are the so-called Floquet modes and where
the quasienergies Eλ are uniquely defined in the first Floquet
Brillouin zone (FBZ) {−h̄�/2 � Eλ < h̄�/2}. Note that the
Floquet states {|ψλ(t )〉} are single-particle states rather than
many-body states. While there exist also many-body Floquet
states, in this context, it is much simpler to work at the single-
particle level.

To understand Floquet theorem, consider the eigenstates of
the evolution operator from t0 to t0 + T ,

U (T ) |ϕλ〉 = e−iEλT /h̄ |ϕλ〉 , (22)

with eigenvalues e−iEλT /h̄, where the energies Eλ are defined
by the eigenvalue equation. In this section, for simplicity, we
take t0 = 0 and abbreviate U (t ) ≡ U (t, t0). The Floquet states
of the form in Eq. (21) can be defined as

|ψλ(t )〉 ≡ U (t ) |ϕλ〉 = e−iEλt/h̄ |φλ(t )〉 , (23)

where we have defined the Floquet mode

|φλ(t )〉 = eiEλt/h̄U (t ) |ϕλ〉 . (24)

To prove Floquet theorem, it suffices to show the Floquet
mode satisfies |φλ(t + T )〉 = |φλ(t )〉. This follows because

|φλ(t + T )〉 = eiEλt/h̄eiEλT /h̄U (t + T , T )U (T ) |ϕλ〉
= eiEλt/h̄U (t + T , T ) |ϕλ〉
= eiEλt/h̄U (t ) |ϕλ〉 = |φλ(t )〉 , (25)

where we have used the eigenvalue relation (22). All
quasienergies Eλ + nh̄� where n is an integer satisfy the same
eigenvalue equation (22) and define the same state. Inserting
Eq. (21) into the time-dependent Schrödinger equation yields(

H(t ) − ih̄
d

dt

)
|φλ(t )〉 = Eλ |φλ(t )〉 , (26)

where H(t ) − ih̄ d
dt

is the Floquet Hamiltonian defined in the
extended space (Hilbert space ⊗ time). For single-particle
Hamiltonians, Eq. (26) defines the single-particle Floquet
modes and their quasienergies.

Since the Floquet modes are periodic function in time, in
addition to their usual expansion in a complete single-particle
basis in Hilbert space, they can also be expanded into Fourier
components {ein�t , n ∈ Z}, i.e.,

|φλ(t )〉 =
∑
n,β

F
(λ)
nβ ein�t |β〉 . (27)

Substituting this expansion into Eq. (26), left multiplying by
〈α| e−im�t and averaging over a time period 1

T

∫ T

0 dt (i.e.,
taking the inner product in the extended space) gives the
eigenvalue equation∑

m,β

�nα;mβF
(λ)
mβ = Eλ

∑
m,β

F
(λ)
mβ . (28)

Here, the matrix elements of the Floquet Hamiltonian are
given by

�nα;mβ = h
(n−m)
αβ + nh̄�δnmδαβ, (29)

where H(n) (h(n)
αβ ≡ 〈α|H(n)|β〉) is the nth Fourier component

of the single-particle Hamiltonian of the laser-driven system:

H(n) ≡ 1

T

∫ T

0
dt e−in�tH(t ). (30)

Equation (28) is a generalized eigenvalue problem defined in
a composite basis {|αn〉 ≡ |α〉 ⊗ ein�t‖α ∈ [1, N ], n ∈ Z},
where |α〉 is any complete basis of the Hilbert space. It can
be solved to determine the Floquet states and energies.

Once the Floquet modes {|φλ(t )〉} are determined
[Eq. (27)] so will be the propagator U (t, t0):

U (t, t0) =
∑

λ

e−iEλ(t−t0 )/h̄ |φλ(t )〉 〈φλ(t0)| , (31)

where we have made the initial time dependence explicit.
Equation (31) satisfies the Schrödinger equation in Eq. (19),
as required. Substituting the above into Eq. (18) leads to the
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solution for cα,I (t ):

cα,I (t ) =
∑

λ

e−iEλ(t−t0 )/h̄
∑
nβ

F (λ)
nα ein�t 〈φλ(t0)|β〉 cβ. (32)

Equations (31) and (32) can now be used to compute correla-
tion functions and the spectrum as described below.

2. Correlation function in Floquet theory

To calculate the two-time dipole-dipole correlation func-
tion [Eq. (13)], the dipole operator in the interaction pic-
ture of HLD(t ) is required. Inserting Eq. (18) into μI (t ) =∑

αβ μαβc
†
α,I (t )cβ,I (t ), where μαβ = 〈α|μ̃|β〉 and μ̃ is the

single-particle dipole operator, yields

μI (t ) =
∑

α,β,γ,δ

μαβ[U†(t, t0)]γαc†γ [U (t, t0)]βδ cδ

=
∑
γ,δ

〈γ |U†(t, t0)μ̃U (t, t0) | δ〉c†γ cδ

=
∑
λ′λ

∑
γ δ

μλ′λ(t )eiEλ′λ(t−t0 )/h̄
〈
γ
∣∣φ0

λ′
〉 〈

φ0
λ

∣∣δ〉 c†γ cδ,

(33)

where we have used Eq. (31) and the fact that
∑

α |α〉 〈α| = 1.
Here, μλ′λ(t ) = 〈φλ′ (t )|μ̃|φλ(t )〉 is the time-dependent transi-
tion dipole between Floquet modes |φ0

λ〉 ≡ |φλ(t0)〉 and Eλ′λ =
Eλ′ − Eλ.

Because the Floquet modes are periodic, so is the dipole
matrix μλ′λ(t ) = μλ′λ(t + T ) such that it admits a Fourier
expansion

μλ′λ(t ) =
∞∑

n=−∞
μ

(n)
λ′λe

in�t (34)

with the expansion coefficients

μ
(n)
λ′λ(t ) = 1

T

∫ T

0
μλ′λ(t )e−in�t dt. (35)

Inserting this expansion into Eq. (33) yields

μI (t ) =
∑

λ′,λ,γ,δ

∑
n

Dn
λ′λγ δe

iEλ′λ(t−t0 )/h̄+in�t c†γ cδ, (36)

where

Dn
λ′λγ δ = μ

(n)
λ′λ

〈
γ

∣∣φ0
λ′
〉〈
φ0

λ

∣∣ δ〉. (37)

The correlation function can then be obtained by inserting
Eq. (36) into Eq. (13):

Cμμ(t̄ , τ ) =
∑
n,n′

∑
λ,λ′,η,η′

∑
γ δγ ′δ′

Dn
λ′λγ δ

× Dn′
η′ηγ ′δ′e

i(Eη′η+Eλ′λ )(t̄−t0 )/h̄+i(n′+n)�t̄

× ei[(Eη′η−Eλ′λ )/h̄+(n′−n)�]τ/2 〈c†γ cδc
†
γ ′cδ′ 〉 ,

(38)

where, for future convenience, we have transformed the two
time arguments into a center of mass t̄ = t1+t2

2 and a relative
time variable τ = t2 − t1. For a system initially prepared in
a statistical mixture of single Slater determinants, the term
〈c†γ cδc

†
γ ′cδ′ 〉 entering into the correlation function [Eq. (38)]

can be computed as follows. This term does not vanish in two
different cases, γ = δ, γ ′ = δ′ and γ = δ′, δ = γ ′, which give

�γ δγ ′δ′ ≡ 〈c†γ cδc
†
γ ′cδ′ 〉

= δγ δδγ ′δ′ n̄γ n̄γ ′ + δγ ′δδγ δ′ n̄γ (1 − n̄γ ′ ), (39)

where nγ ≡ c†γ cγ is the number operator and n̄γ = Tr{ρnγ }
the initial distribution function of the single-particle energy
eigenstates. For thermal initial states, n̄γ corresponds to the
Fermi-Dirac distribution.

3. Time integration and final expressions

In the center of mass and relative time variables the rate of
absorption and emission [Eq. (14)] is given by

I (ω) = lim
t→∞

ε2
p

2h̄2

1

t − t0

∫∫ t

t0

dt1dt2Cμμ(t̄ , τ )

× Re[e−iωτ + e−i2ωt̄ ]. (40)

We take the preparation time of the system to be in the remote
past, such that t0 → −∞. In this limit, the two-time integral
in Eq. (14) reduces to Fourier transforms, i.e.,

I (ω) = lim
t→∞

ε2
p

2h̄2

1

t − t0

∫∫ t

−∞
dt̄ dτ Cμμ(t̄ , τ )

× Re[e−iωτ + e−i2ωt̄ ]. (41)

The second complex exponential term that depends on t̄

in Eq. (41) does not contribute to I (ω) (see Appendix for
details). It suffices then to focus on the e−iωτ term, i.e.,

I (ω)= ε2
p

4h̄2 lim
t→+∞

1

t − t0

∫∫ t

−∞
Cμμ(t̄ , τ )(e−iωτ + c.c.) dt̄ dτ.

(42)

Inserting Eq. (38) into the above equation, one notices that
the integration with respect to t̄ gives oscillatory contributions
whose contribution to I (ω) vanishes at t → +∞ except when
the oscillatory factor is zero. In that case, the integration leads
to a (t − t0) term that cancels the 1/(t − t0) in the expression
for I (ω). This happens when Eη′η + Eλ′λ = 0 and n + n′ =
0. The former condition implies that either η′ = λ, η = λ′
or η′ = η, λ′ = λ. Taking this into account, the absorption
spectrum can be written as

I (ω) = ε2
p

4h

∑
γ δγ ′δ′

∑
λ,λ′

∑
n

[
Dn

λλγ δD
−n
λ′λ′γ ′δ′δ(nh̄� − h̄ω)

+ D−n
λλ′γ δD

n
λ′λγ ′δ′δ(Eλ′λ + nh̄� − h̄ω)

]
�γ δγ ′δ′

+ (ω ↔ −ω), (43)

where the last term corresponds to the same expression but
replacing ω with −ω, and where we have taken into account
of the integral representation of the delta function δ(ω) =

1
2π

∫ +∞
−∞ eiωt dt and δ(h̄ω) = δ(ω)/h̄.

The quantity I (ω) measures the rate of change induced by
the probe photons on the laser-driven material. However, it
does not tell us whether the change is due to absorption or
stimulated emission processes. We identify the first two terms
in Eq. (43) as optical absorption because ω > 0 and the delta
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functions in Eq. (43) will only be nonzero when the energy
difference between the Floquet states involved Eλ′λ + nh̄�

is positive, leading to absorption of photons from the probe
field. By contrast, the −ω term corresponds to stimulated
emission. The net absorption of probe photons by the laser-
driven material would correspond to the difference between
these two contributions:

A(ω) = |εp|2
4h

∑
λ,λ′

∑
γ γ ′

∑
n

(
D−n

λλ′γ γ ′D
n
λ′λγ ′γ

)

× [δ(Eλ′λ + nh̄� − h̄ω) − δ(Eλ′λ + nh̄� + h̄ω)]

× n̄γ (1 − n̄γ ′ ), (44)

where we have taken into account that the δ(nh̄� − h̄ω)
and n̄γ n̄γ ′ contribution exactly cancel. Inserting Eq. (37) into
Eq. (44) and introducing

Pλλ′ ≡
∑
γ γ ′

∣∣〈φ0
λ

∣∣ γ 〉∣∣2∣∣〈φ0
λ′

∣∣ γ ′〉∣∣2
n̄γ (1 − n̄γ ′ ), (45)

which acts as an effective population factor between the
Floquet modes, yields the final expression of the absorption
spectrum for laser-driven matter

A(ω) = |εp|2
4h

∑
λ,λ′

∑
n

∣∣μ(n)
λ′λ

∣∣2
Pλλ′[δ(Eλ′λ + nh̄� − h̄ω)

− δ(Eλ′λ + nh̄� + h̄ω)], (46)

where we have taken into account that μ
(−n)
λλ′ = μ

(n)∗
λ′λ .

Equation (46) offers a clear structure for the interpretation
of nonequilibrium absorption, that is analogous to the one
encountered in equilibrium absorption theory. The Floquet
modes play the role of system eigenstates and the effective
population factor Pλλ′ characterize the probability that |φλ〉 is
occupied while the state |φλ′ 〉 is unoccupied. The first term
captures absorption when the frequency of the probing light is
at resonance with a transition frequency between two Floquet
modes Eλ′λ + nh̄�. In turn, the second term is stimulated
emission. The states must be connected by a nonzero tran-
sition dipole μ

(n)
λλ′ for a transition to occur.

An additional feature that arises from the time dependence
of Floquet states is that the effective dipole operator μ

(n)
λλ′

has an extra index n, originating from the periodicity of the
Floquet states. This extra index can be understood as the
indicator for intra- or inter-FBZ transitions. When n = 0, it
indicates that the transitions are inside the same FBZ. In
turn, when n �= 0 the transitions happen between different
FBZs and n indicates the number of FBZs that separates
the two Floquet states. This transition is analogous to the
umklapp process in solids where the crystal momentum is
changed into another Brillouin zone as a result of a scattering
process. The probability for different number of FBZs to be
involved depends on the details of the system, the strength and
frequency of the driving laser. Note that while for equilibrium
absorption μαβ = μ�

βα , for nonequilibrium absorption, μ(n)
λλ′ �=

μ
(n)�
λ′λ except for n = 0.

Equation (46) shows that one can naturally interpret
nonequilibrium absorption as optical transitions among Flo-
quet states. Aside from atoms, molecules, and nanoscale

systems, Eq. (46) can also be applied to solids if the single-
particle states are taken as Bloch states. In that case, it is
interesting to contrast Eq. (46) to previous efforts to develop
theories of laser-driven semiconductors [17,18,35]. Equation
(46) generalizes the results in [17,18] by providing a phys-
ically transparent derivation of the nonequilibrium optical
absorption and clarifying its basic structure, incorporating the
effects of quantum statistics and, importantly, by recognizing
the role of stimulated emission processes in P (t, ω).

By adopting a Floquet strategy, we have been able to
reduce the dynamic problem of optical absorption and stim-
ulated emission of laser-driven matter to a static problem that
requires sums over Floquet states and single-particle energy
eigenstates. These states can be obtained via simple diago-
nalization techniques. To calculate A(ω), it is necessary to do
the following: (i) Diagonalize the material Hamiltonian HM to
obtain the single-particle energy eigenstates {|α〉} and express
the dipole operator in this basis. (ii) Construct the Floquet
Hamiltonian matrix (29) and solve Eq. (28) by diagonalization
to obtain the quasienergies {Eλ} and the expansion coefficients
of Floquet modes {Fnβ} in the |βn〉 basis. In practice, to solve
these equations the Floquet Hamiltonian matrix needs to be
truncated. Results need to be checked for convergence on the
number of Fourier components. (iii) Calculate the effective
dipole using Eq. (35) and population factor following the
definition in Eq. (45) and use them to compute the absorption
spectrum based on Eq. (46). From a numerical perspective,
the second step is most challenging because it involves a
diagonalization of the Floquet matrix whose size scales as
O(NbNF ) where NF is the number of Fourier components and
Nb is the number of single-particle orbitals of the system. This
matrix grows quickly for realistic systems under nonresonant
or strong driving.

III. APPLICATIONS OF THE THEORY AND
INTERPRETATION OF THE NONEQUILIBRIUM SPECTRA

Using Eq. (46), we are now in a position to quantify and
interpret the optical properties of laser-driven matter. The
validity of the theory is demonstrated by using it to recover
the well-known Autler-Townes effect of laser-driven few-level
systems. The utility of the approach, by using it to explore
the optical properties of nanoscale semiconductors driven
by nonresonant light. As shown, nonperturbative reversible
driving with nonresonant light can significantly distort the
absorption spectrum leading to a laser-driven material with
spectral features that have no equilibrium counterpart. A qual-
itative scheme to interpret nonequilibrium absorption in the
laser-driven picture is developed and used to assign spectral
features in both cases.

A. Resonantly driven three-level system

Autler and Townes [10] showed that an optical transition
between two levels in a few-level system can be split into
a doublet when one of the two levels involved in the tran-
sition is coupled to a third one by a strong resonant light,
a phenomenon that is also referred as the dynamic Stark
splitting. The Autler-Townes (AT) effect has been observed
in the absorption spectra of atoms [10], small molecules [37],
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(a)

(c)

(b)

FIG. 1. Simulation of the Autler-Townes splitting using Eq. (46). (a) Energy diagram for a three-level system. The driving pulse resonantly
drives the |2〉 → |3〉 transition, while the probe light measures the optical absorption. Here, μ0 = 〈1| μ |2〉 = 〈2| μ |3〉 are the nonzero transition
dipoles. (b) The absorption spectrum computed using Eq. (46) (broadened with a Lorentzian function of width 0.01�) under different driving
amplitudes εd naturally exhibits the Autler-Townes splitting. (c) The AT splitting yielded by Eq. (46) is h̄�R where �R ≡ μ0εd/h̄ is the Rabi
frequency in quantitative agreement with theoretical predictions using a different method [20] and experiments [36].

superconducting Josephson junction [38], and quantum dots
[36] dressed by resonant lasers.

To demonstrate that Eq. (46) recovers the AT effect, we
computed the nonequilibrium absorption spectra in the three-
level system (with states |1〉, |2〉, and |3〉) shown in Fig. 1(a).
In the computations, the system is driven by a laser that is res-
onant with the |2〉 → |3〉 transition. The resulting absorption
spectra is shown in Fig. 1(b). As can be seen, the absorption
spectrum clearly exhibits the Autler-Townes splitting, and the
slope of the observed linear increase in the splitting with
εd is in quantitative agreement with previous theoretical and
experimental observations [Fig. 1(c)] [36].

The interpretation of the AT effect is a well-developed
subject [9,20]. In the laser-dressed picture it can be understood
through resonances induced by resonant driving between Flo-
quet states, and their subsequent Rabi splitting. It is instructive
to interpret this phenomenon through Eq. (46). For definitive-
ness, consider the μ0εd/� = 0.04 case. Figure 2(b) shows the
quasienergies in the first FBZ and overlap between Floquet
modes at times t0 + nT and the pristine states. As can be seen,
the Floquet modes |φ1〉 , |φ2〉 are a linear combination of the
two pristine states |2〉 and |3〉, that are under resonant driving
while the Floquet mode |φ3〉 is just the pristine state |1〉. The
two transitions, labeled by X, Y in Fig. 2(a), are transitions
between Floquet modes |φ3〉 → |φ1〉 , |φ2〉 separated by two
FBZs, respectively. The corresponding effective transition
dipole and population factor for these two transitions are
marked in Figs. 2(c) and 2(d). Clearly, these two transitions
are allowed by population and transition dipoles. Other intra-
band and interband transitions with nonzero transition dipoles
are not allowed by the population factor.

B. Nonresonantly driven tight-binding nanostructure

We now focus on the optical properties of a generic two-
band semiconducting nanostructure driven by nonresonant
light of intermediate intensity. Through Stark effects, nonres-
onant light can dramatically distort the electronic structure of
nanostructures and extended systems creating a laser-dressed
material with effective electronic properties that can be very
different from those observed near equilibrium. Below we
clarify the optical properties of such laser-driven materials
in the context of a minimal one-dimensional tight-binding
model. We focus on the reversible regime of the laser-matter
interaction where the net absorption of photons by matter from
the nonresonant driving pulse is suppressed.

The tight-binding Hamiltonian of a one-dimensional two-
band semiconducting nanoparticle with K unit cells is

HM =
K∑

k=1

(ε1c
†
2k−1c2k−1 + ε2c

†
2kc2k )

−
K∑

k=1

tα (c†2k−1c2k + H.c.) −
K−1∑
k=1

tβ (c†2kc2k+1 + H.c.),

(47)

where c
†
k creates a fermion on site k (|k〉 = c

†
k |0〉, where |0〉 is

the vacuum state), and where H.c. stands for Hermitian conju-
gate. Each unit cell consists of two sites with onsite energies ε1

and ε2 (ε1 = −ε2 = 1.6 eV) in nearest-neighbor coupling with
intracell hopping parameter tα = 0.7 eV and intercell tβ =
1.0 eV. The lattice constant is taken to be a = 3.2 Å and the
two sites in each cell to be separated by a distance b = 0.0 Å

063412-7



BING GU AND IGNACIO FRANCO PHYSICAL REVIEW A 98, 063412 (2018)

(a)

(c) (d)

(b)

FIG. 2. Interpretation of the nonequilibrium absorption spectra using Eq. (46) of the three-level system in Fig. 1 initially prepared in |1〉
dressed by light resonant with the |2〉 → |3〉 transition with μ0εd/� = 0.04. (a) The absorption spectrum has two main transitions labeled
X and Y. (b) Overlap between the Floquet modes at times t0 + nT and the pristine states |〈α|φλ(t0)〉|2 in the first FBZ. The Floquet modes
are ordered by the quasienergy in the first FBZ. The optical transitions X and Y are indicated by green arrows with the number of FBZs
that separates them +n. (c) Effective dipole between Floquet modes two FBZs away. Other nonzero transition dipoles are not allowed by the
population factor. (d) Effective population factor Pλ′λ (λ′ → λ) between Floquet modes. The elements in (c) and (d) corresponding to the X,
Y transitions are marked.

(i.e., two sites at the same location). These parameters are
chosen to resemble the electronic structure of ZnO.

The nanostructure is dressed in dipole approximation by
a nonresonant monochromatic laser field with electric field
amplitude Ed (t ) = εd cos(�t ), and probed with a laser of am-
plitude Ep(t ) = εp cos(ωt ). Both probe and drive are taken to
have their polarization along the length of the nanostructure.
At initial time t0 the system is chosen to be in the ground zero-
temperature state. While large system sizes can in principle
be considered, below we focus on the K = 6 case such that
a detailed analysis of all transitions visible in the absorption
spectrum is tractable.

We focus on the regime where the frequency of the driving
field is much smaller than the band gap h̄� = 0.38 eV �
Eg = 3.31 eV such that Stark effects and not near-resonance
multiphoton absorption effects dominate the dynamics. In
this regime, the laser-matter interaction is reversible in the
sense that, for pulsed driving, after the driving pulse is

turned off the system will return to its initial unexcited state.
We verify that we are in this regime by explicitly solving
the time-dependent Schrödinger equation for the nanostruc-
ture under the influence of 200-fs Gaussian pulses with the
maximum field amplitude and frequency of Ed , and ensur-
ing that after the pulse there is no net excitation of the
chain.

Figure 3 shows the nonequilibrium absorption spectrum
of the nanoparticle dressed by lasers of varying amplitude
εd ∈ [0, 0.4 V/Å]. Blue lines refer to stimulated emission, red
lines to net absorption, and the gray lines signal the absorption
peaks. Convergence of the absorption spectra requires con-
sidering NF = 61 Fourier components symmetrically around
n = 0. At equilibrium (εd = 0.00), the nanoparticle is trans-
parent in the 0–3.2 eV range. Optical transitions start to
appear when the frequency of the probing pulse is larger
than the band gap. The absorption spectra completely change
as the system is driven far from equilibrium even when the
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FIG. 3. Linear optical absorption spectrum for a semiconducting nanoparticle with Hamiltonian in Eq. (47) dressed with a continuous wave
laser of varying amplitude εd (in V/Å). Red solid lines indicate net absorption, blue dashed ones indicate stimulated emission. The gray peaks
signal the frequency and amplitude of each absorption transition between Floquet modes. Peaks are broadened by a Lorentzian function of
width σ = 0.04 eV.

driving pulse is not generating any net charge carriers in the
conduction band.

There are three essential features that emerge in the ab-
sorption as the electronic system is driven out of equilibrium:
(i) Below band-gap absorption. As the driving amplitude
increases in the 0–0.20 V/Å range we observe the emergence
of additional spectral features just below the 3.2 eV band gap.
This phenomenon has been experimentally observed before

[39,40] and is reminiscent of the dynamic Franz-Keldysh
effect [25] in solids and the quantum confined Stark effect in
nanostructures [26]. (ii) Broadband absorption. A feature that
is predicted by the theory is that by driving the nanoparticle
nonresonantly it is possible to reversibly turn this IR-Visible
transparent material into a broadband absorber. For instance,
the nonequilibrium spectra for εd = 0.24–0.36 V/Å exhibits
several absorption peaks across the IR-Visible region that
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2
)

10−3

10−2

10−1

100

1 2 3 4 5 6 7 8 9 10 11 12
Floquet modes λ

1

2

3

4

5

6

7

8

9

10

11

12

F
lo

qu
et

m
o
de

s
λ

Effective transition dipole |μ(9)
λ λ|2 (e2Å
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FIG. 4. Inter-FBZ transition dipoles μ
(n)
λ′,λ between Floquet modes with indexes λ and λ′ separated by n Brillouin zones. The figure contrasts

results for weak εd = 0.01 V/Å (a), (b) and stronger εd = 0.06 V/Å (c), (d) driving field amplitudes. Note that all the nonvanishing elements
of the transition dipoles for n = 8 have replicas in n = 9. They correspond to the transitions between the same Floquet modes but separated
by different number of Floquet Brillouin zones.

are spaced by the photon energy of the driving light. (iii)
Low-frequency absorption and stimulated emission. Another
feature that emerges far from equilibrium are strong absorp-
tion and stimulated emission features in the THz region of
the electromagnetic spectrum, as those exhibited for εd =
0.20 V/Å (emission) and εd = 0.26 V/Å (absorption). By
driving the system out of equilibrium by nonresonant light,
it is possible to completely change the absorption spectra of
the driven materials in a reversible fashion and tune its optical
properties. We now interpret these three basic features in the
nonequilibrium absorption from a Floquet perspective.

1. Below band-gap absorption

As the driving field amplitude is increased up to 0.06 V/Å,
the first thing that is observed is the emergence of an addi-

tional series of absorption peaks around 3.0–3.2 eV and a
reduction of the intensity of the peaks around 3.3–3.4 eV.
These peaks appear less than h̄� away from the main absorp-
tion features at equilibrium and lead to a net red-shift in the
absorption spectrum. This phenomenon can be understood in
the context of Eq. (46) by examining the transition dipoles
of the driven system. As shown in Fig. 4, as the driving
field is increased from 0.01 V/Å [Figs. 4(a) and 4(b)] to
0.06 V/Å [Figs. 4(c) and 4(d)] there is an increase in the
magnitude of the transition dipoles between Floquet modes
that are n = 8 FBZs away that are responsible for these
new spectral features. From Fig. 4 it is also clear that for
εd = 0.06 V/Å, the nonvanishing elements of the transition
dipole between Floquet modes separated by eight FBZs μ

(8)
λ′,λ

[Fig. 4(c)] have replicas in μ
(9)
λ′λ [Fig. 4(d)]. This indicates that
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FIG. 5. Interpretation of the absorption spectrum for εd = 0.26 V/Å. The absorption spectrum (a) of the laser-driven material exhibits
a strong absorption feature at low frequency (labeled X), and several absorption features in the IR-Visible-UV region that are periodically
separated by h̄� which make the material a broadband absorber. Two of them are labeled Y and Z. (b) Quasienergies of the Floquet modes
in the first FBZ and population | 〈k|φ0

λ〉 |2 (gray scale) of the Floquet modes in the site basis at times t0 + nT . The arrows signal optical
transitions responsible for the X, Y, Z spectral features in (a), and the +n the number of FBZs separating the two Floquet modes involved in
the transition, e.g., X +0 means this is an intra-FBZ transition. (c) Effective dipole between Floquet modes within the first FBZ |μ(0)

λλ′ |2. (d)
Effective population factor Pλλ′ (λ′ → λ) between Floquet modes. The numeric labels to the Floquet modes in (c) and (d) are those assigned
in (b).

these spectral features can be understood as Floquet replicas
of the transitions for the nonequilibrium material. By contrast
when the system is close to equilibrium (i.e., for εd = 0.01
V/Å), μ

(8)
λ′,λ and μ

(9)
λ′,λ are completely different and just reflect

the transition dipoles of the pristine material.

2. Broadband absorption and spectral replicas

As we increase the amplitude of the driving laser to εd =
0.26 V/Å (Fig. 3), the semiconducting material becomes a
broadband absorber with the emergence of new absorption
features in the IR-Visible region where the material was trans-
parent and with a change in the spectral features in the UV
region of the pristine material. Interestingly, the absorption
spectra exhibit a clear periodic structure with spectral features
separated by multiples of the driving photon energy h̄�.

To understand these features consider Fig. 5, which de-
tails the properties of the Floquet modes, population factors,
and the intra-FBZ transition dipoles. The quasienergies and
distribution of the Floquet modes along the chain are shown
in Fig. 5(b). Floquet states 1–6 have quasienergies 0 > Eλ >

−h̄�/2 and are composed mostly of Wannier states that form
the valence band of the pristine material (of odd site states). In
turn, Floquet states 7–12 have quasienergies 0 < Eλ < h̄�/2
and are composed mostly of Wannier states that form the
conduction band. In this case, the population factors allow va-
lence to conduction band transitions that originate in λ′ = 1–6
and end in λ = 7–12. We observe that the Floquet modes are
delocalized across the nanoparticle [Fig. 5(b)]. Interestingly,
the degree of delocalization of the Floquet modes is smaller
than the states of the pristine system, but larger than the
Wannier-Stark states [41,42] that would have been obtained
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(a) (b) (c)

FIG. 6. (a) Quasienergy, (b) intra-FBZ transition dipole, and (c) population factors around the avoided crossing occurring at εd,crossing =
0.2522 V/Å in the first FBZ between Floquet modes 6 and 7. The hybridization of the two Floquet modes around the crossing leads to large
intra-FBZ effective transition dipole |μ(0)

67 |2, population mixing between the two states, and absorption and stimulated emission features at meV
frequencies.

by diagonalizing the Hamiltonian in the presence of a fixed
electric field with amplitude 0.26 V/Å.

We label the largest absorption feature in the two main
cluster of peaks around 3.2 and 3.6 eV in the absorption
spectra [Fig. 5(a)] by Z and Y, respectively. As can be seen
in Fig. 5(b), Y originates from transitions between Floquet
modes |φ1〉 → |φ12〉 separated by n = 9 FBZs, while Z origi-
nates from |φ4〉 → |φ9〉 transition separated by n = 8 FBZs.
Thus, the cluster of peaks separated by the driving photon
energy originates from transitions that are separated by a
different number of Floquet replicas. The absorption spectra
have visible transitions between FBZs that are separated by
n = 3–14 FBZs. Generally, the magnitude of the absorption
decreases as the n FBZs that separate a given transition
deviate from the n = 8–9 needed for a transition across the
band gap in the near-equilibrium system. The contributions
coming from lower n broaden the frequency regime for the
absorption of the material, and turn it into a broadband
absorber.

The periodic structure in the absortion spectra is a clear
manifestation of the periodicity of the Floquet space. This
remarkable feature is particularly evident for some special
values of the driving electric field (see, e.g., 0.28 V/Å in
Fig. 3). For such values, 10 of the 12 Floquet states cluster
around 2 particular quasienergy values in the first FBZ, lead-
ing to a spectra with sharp periodic features. The remaining
two Floquet states remain close to 0 and their relevance
is discussed in Sec. III B 3. This spectral signature of the
Floquet modes is complementary to those in photoemission
spectroscopy [43].

3. Low-frequency spectral features

Surprisingly, for particular values of the driving electric
field we observe a strong low-frequency (∼meV) absorp-
tion or stimulated emission band (see, for example, εd =
0.20, 0.26, 0.36 V/Å). These features can be probed using
THz radiation or be used to generate THz pulses. The presence
of net stimulated emission is a signature of the nonequilibrium
nature of the Floquet states. In fact, the effective population

factor Pλλ′ [Eq. (45)] depends on the strength, frequency, and
polarization of the driving light. To understand the underlying
physics from a Floquet perspective, consider the transition
that leads to this phenomenon for εd = 0.26 V/Å labeled as
X in Fig. 5(a). As shown in Fig. 5(b), we identify the strongest
low-frequency transition at h̄ω = 4 meV as the intra-FBZ
transition from Floquet modes 6 to 7. These two states are
both dipole and population allowed [see Figs. 5(c) and 5(d)].

As shown in Fig. 6(a), the Floquet modes 6 and 7 form
an avoided crossing in the Floquet picture as the driving
amplitude is changed around εd,crossing = 0.2522 V/Å. Away
from the avoided crossing, these two states do not have a
significant intra-FBZ transition dipole. However, as shown in
Fig. 6(b), the hybridization of the two Floquet modes around
the avoided crossing creates a strong transition dipole between
the two levels that peaks at the crossing point εd,crossing. Such
hybridization leads to very large absorption and stimulated
emission features in the absorption spectra at low frequencies.
In fact, as shown in Fig. 7, these low-frequency transitions
are an order of magnitude stronger than even the largest
absorption peak observed at equilibrium. The hybridization
also opens a small energy gap that imposes a lower limit to
the frequency of the transition that can be observed, in this
case ∼0.2 meV.

Around the crossing, both absorption and stimulated emis-
sion are present. The dominant phenomenon depends on the
population factor as the absolute value of the effective dipole
is the same for both transitions (i.e., |μ(0)

λ′λ| = |μ(0)
λλ′ |). As

shown in Fig. 7, stimulated emission dominates for driving
electric fields εd < εd,crossing because in this case P76 > P67

[Fig. 6(c)], while absorption dominates for εd > εd,crossing

because P67 > P76. For a driving electric field with amplitude
right around the avoided crossing [Fig. 7(b)], a rich spectrum
with both absorption and stimulated absorption features re-
sults. The additional peaks around h̄ω = 0.38 eV originate
from transitions from Floquet modes 6 and 7 to equivalent
states one FBZ away.

The avoided crossings in the Floquet picture are responsi-
ble for a number of phenomena such as bond softening and
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FIG. 7. Net absorption (red solid lines) and stimulated emission
(blue dashed lines) spectra at low frequencies for a driving pulse
(a) just below the avoided crossing shown in Fig. 6(a), (b) right at
the crossing εd = εd,crossing, and (c) just above it. The low-frequency
absorption spectra transition from stimulated emission to absorption
as the driving electric field amplitude is increased across the avoided
crossing.

hardening of diatomic molecules under intense laser driving
[44,45] and coherent destruction of tunneling [46] under high-
frequency driving. In this context, it leads to strong low-
frequency absorption and emission due to hybridization of
Floquet states.

IV. DISCUSSION

A. Summary of observations

In summary, we have developed a theory to study the
optical absorption properties of laser-driven materials. The
optical absorption in this nonequilibrium case is defined as
the rate of transitions between laser-driven states due to in-
teraction with the probe laser [Eq. (3)]. By treating the probe
laser in first-order perturbation theory, it is possible to relate
the nonequilibrium absorption spectra to the two-time dipole-
dipole correlation function in the interaction picture of the
laser-driven Hamiltonian [Eq. (14)]. To make further progress,
we focused on effective noninteracting electronic systems for
which the dynamics of the creation and annihilation operators
in the driving pulse can be solved in closed form by invoking
Floquet theorem [Eq. (32)]. In this way, we were able to treat
the interaction between the driving electric field and matter
exactly and reduce the complex time-dependent nonequilib-
rium calculations to a time-independent diagonalization in an
extended Hilbert space.

These developments lead to a final expression [Eq. (46)]
for nonequilibrium optical absorption which has a similar
structure to the equilibrium one. In it, the Floquet modes play
the role of system eigenstates and there are contributions due
to absorption and stimulated emission. Transitions are allowed
when a probe photon is at resonance with the transition
frequency between two Floquet modes that have a nonzero
transition dipole and that are allowed by populations. While
the investigation of laser-matter interactions using Floquet
approaches usually focuses on resonances between Floquet
states [9,44,46], in this theory the focus is on the optical transi-
tions induced by the probe light between Floquet modes. One
unique feature of the nonequilibrium absorption theory is that
the transition dipoles carry an additional index indicating the
number of Brillouin zones separating the two Floquet modes.

To test the validity of the theory, we employed it to recover
and interpret the well-known Autler-Townes effect. We further
used the theory to characterize the nonequilibrium absorption
of a model semiconducting nanoparticle reversibly driven far
from equilibrium by nonresonant light. The computational
analysis recovered the previously observed below band-gap
absorption [39,40] and revealed two phenomena: (i) Non-
resonant light turns this IR-Visible transparent material into
a broadband absorber with multiple absorption features in
the energy gap of the pristine material. These features are
periodically spaced by the driving photon energy and are a
characteristic signature of the periodic structure of Floquet
space. They can be used as an optical signature of the pres-
ence of Floquet states. (ii) Nonresonant light opens strong
low-frequency (∼ meV) absorption and stimulated emission
features at particular driving amplitudes. These features arise
because of transitions between nearly degenerate Floquet
modes that hybridize, thus enhancing their transition dipole.
Such pair of states observe an avoided crossing with in-
creasing driving electric field amplitude. Both low-frequency
absorption or stimulated emission can be observed and tuned
by changing the driving electric field amplitude around the
avoided crossing. These three significant changes in the ab-
sorption properties of the model nanoparticle are present in
a reversible regime of the laser-matter interaction where the
driving pulse per se does not generate real carriers.

B. Qualitative picture of nonequilibrium absorption

At this point, it is useful to summarize these observations
into a qualitative picture of the nonequilibrium optical ab-
sorption spectra. Figure 8 shows a schematic energy diagram
of a semiconducting system in the presence of nonresonant
driving light. In a Floquet sense, the dressing by the driv-
ing pulse leads to replicas of the valence and conduction
band of the material that are separated by multiples of the
driving pulse photon energy nh̄�. When the driving laser
is weak, only optical transitions across the band gap Eg of
the material are allowed. The levels involved are separated at
least m = �Eg/h̄�� FBZs away, where �·� denotes the floor
function. For simplicity in presentation, let us suppose that Eg

is precisely m FBZs away. Thus, the transition dipoles μ
(n)
λ,λ′

for n < m will be zero. As the amplitude of the driving laser
field εd is increased, the replicas are distorted and previously
forbidden inter-FBZ transition dipoles are created. The below
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FIG. 8. Schematic of the energy diagram of a semiconductor
dressed by nonresonant light of frequency �. The driving creates
Floquet replicas of the valence (VB) and conduction (CB) band levels
of the pristine material separated by integer nh̄�, leading to features
in the absorption spectrum including below band-gap absorption,
low-frequency transitions, and broadband absorption.

band-gap absorption occurs when those at n = m − 1 are
allowed and these features are separated from Eg at most
by h̄�. As εd is increased, additional absorption features are
created for n = m − 2,m − 3,m − 4, . . . leading to periodic
absorption features that are separated by multiples of h̄�

and that make this initially transparent semiconductor into a
broadband absorber. Low-frequency (∼ meV) optical features
emerge when there are optically accessible intra-FBZ transi-
tions or transitions between Floquet modes at adjacent FBZ
edges, as schematically shown in the figure. For nonresonant
driving, most of these transitions will be optically forbidden
either through transition dipoles or population factors. Strong
low-frequency transitions are opened when a pair of Flo-
quet modes that are allowed by population factors enter into
resonance and through hybridization create strong intra-FBZ
transition dipoles.

C. Floquet prospects

Equation (46) indicates that the natural states to inter-
pret the nonequilibrium absorption spectra are the Floquet
modes and not the pristine states of the system. In terms of
interpretation, this transition from pristine states to Floquet
modes leads to a series of important changes in our intuition:
(i) The transition dipoles between Floquet modes are time
dependent, periodic in time, and admit a Fourier expansion
[Eq. (34)] with component μ

(n)
λλ′ oscillating at frequency n�.

The μ
(n)
λλ′ component connects Floquet states that are n FBZs

away, and determine which transitions open as the driving
laser changes. This contrasts with the equilibrium case in
which the transition dipoles between pristine eigenstates are
time-independent quantities. (ii) Because the Floquet modes
are time dependent, to develop intuition into which modes
are dipole connected it is important to examine their spatial
distribution at all times t0 < t � t0 + T and not just at a
particular time t0. (iii) The population factors that determine
which transitions are allowed depend on the initial state and

the driving light. This contrasts with the equilibrium theory of
absorption where this is just determined by the initial distri-
bution of population among states. (iv) A natural subdivision
of energy is the driving photon energy h̄� that separates the
different FBZs. As schematically shown in Fig. 8, one can
interpret the optical properties by focusing on a given FBZ
and examining inter-FBZ and intra-FBZ transitions. Except
for high-frequency driving, the relevant Floquet transitions
that signal interband absorption will not be for states in the
same FBZ but for those separated �Eg/h̄�� FBZs away.

The developed theory and interpretation is based on identi-
fying optical transitions that are enabled in laser-driven matter.
It applies for effective noninteracting electronic materials
driven resonantly or nonresonantly by multichromatic light
with commensurate frequencies of arbitrary strength. Such
scheme can be used to design laser-driven materials with
desirable nonequilibrium optical properties.

Future prospects include computations in realistic mate-
rials using ab initio based models, characterizing the role
of electron-electron and electron-phonon interactions in the
nonequilibrium absorption, and connecting the theory with
other theories of absorption that have been developed for
laser-driven matter [16,28,47–49].
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APPENDIX: NULLITY OF THE NEGLECTED
TERM IN EQ. (43)

The neglected term in Eq. (43) is

I (ω)= |εp|2
4h̄2 lim

t→+∞
1

t − t0

∫∫ t

−∞
Cμμ(t̄ , τ )(e−i2ωt̄+c.c.) dt̄ dτ,

(A1)
where

Cμμ(t̄ , τ ) =
∑
n,n′

∑
λ,λ′,η,η′

∑
γ δγ ′δ′

Dn
λ′λγ δD

n′
η′ηγ ′δ′

× ei(Eη′η+Eλ′λ )(t̄−t0 )/h̄+i(n′+n)�t̄

× ei[(Eη′η−Eλ′λ )/h̄+(n′−n)�]τ/2 〈c†γ cδc
†
γ ′cδ′ 〉 .

To make an appreciable contribution, the argument in the
exponent needs to vanish in order to cancel the factor 1/(t −
t0). Consider the e−i2ωt̄ term in Eq. (A1) (the other term
can be obtained simply by ω ↔ −ω). For the argument to
vanish,

Eη′η + Eλ′λ = 0, (n′ + n)� − 2ω = 0. (A2)

In turn, the integration with respect to τ yields the following
delta function:

δ((Eη′η − Eλ′λ + (n′ − n)h̄�)/2). (A3)

Inserting the first equality in Eq. (A2) into this delta function
yields δ(Eη′η − (n − n′)h̄�/2). Thus, this term is nonzero
when � = 2Eη′η/h̄(n − n′). This condition, in general, is not
satisfied except accidentally. Thus, the neglected term does
not contribute to the final absorption spectrum.
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