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Stark control of electrons along nanojunctions
Liping Chen1, Yu Zhang 2,4, GuanHua Chen2 & Ignacio Franco 1,3

Ultrafast control of currents on the nanoscale is essential for future innovations in nanoe-

lectronics. Recently it was experimentally demonstrated that strong non-resonant few-cycle

4 fs laser pulses can be used to induce phase-controllable currents along gold–silica–gold

nanojunctions in the absence of a bias voltage. However, since the effect depends on a highly

non-equilibrium state of matter, its microscopic origin is unclear and the subject of recent

controversy. Here we present atomistically detailed (time-dependent non-equilibrium

Green’s function) electronic transport simulations that recover the main experimental

observations and offer a simple intuitive picture of the effect. The photoinduced currents are

seen to arise due to a difference in effective silica-metal coupling for negative and positive

field amplitudes induced by lasers with low temporal symmetry. These insights can be

employed to interpret related experiments, and advance our ability to control electrons in

matter using lasers.
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A general goal in our quest to control matter and energy is
the design of strategies to control electronic properties
and electron dynamics using coherent laser sources1–3. In

addition to its interest at a fundamental level, lasers permit
manipulation on an ultrafast timescale opening the way to control
the ability of matter to chemically react, conduct charge, absorb
light, or other properties, in a femto to attosecond timescale.

In a recent experiment, Schiffrin et al.4 demonstrated how a
strong (I ~ 1013–1014W cm−2) non-resonant few-cycle 4 fs laser
pulse can be used to induce currents along gold–silica–gold
nanojunctions in the absence of a bias voltage. Phenomen-
ologically, these currents arise due to the nonlinear interaction of
the junction with a laser pulse that has a low temporal
symmetry5. By varying the carrier envelope phase it is possible to
vary the degree of time asymmetry of the incident radiation, and
thus the direction and magnitude of the photoinduced current.

The experiment marks a new frontier in laser control of elec-
tronic dynamics and is the fastest existing method for the gen-
eration of currents. However, the microscopic origin of this rather
spectacular effect is unclear and the subject of recent controversy.
This is because the applied electric field is just below the dielectric
breakdown of the silica, and the laser-frequencies are far detuned
from the electronic transitions in the system such that Stark
effects, the shifts in energy levels due to application of an electric
field, can play an important role.

In a broader context, this experiment falls into a general class
of symmetry breaking laser-control scenarios known to induce
phase-controllable currents in the absence of a bias voltage1,6–9.
In the traditional version of this laser control, laser pulses E(t)=
ϵω cos(ωt+ ϕω)+ ϵ2ω cos(2ωt+ ϕ2ω) with frequency compo-
nents ω and 2ω are used to photoexcite a spatially symmetric
system from a bound state to a given energy in the continuum by
means of a near resonance one-photon and two-photon excita-
tion. Since odd-photon processes connect states with opposite
parity while even-photon process connect states with the same
parity, simultaneous photoexcitation via a one- and two-photon
process creates a state in the continuum of no definitive parity.
This breaks the spatial symmetry of the system and generates a
net phase-controllable current I � EðtÞ3 ~ ϵ2ωϵ2ω cos 2ϕω � ϕ2ω

� �
,

where the overbar denotes time averaging. More generally, the
scenario applies under resonant and non-resonant condition by
using lasers, such as those employed in the experiment, that are
neither symmetric nor antisymmetric with respect to sometime
t′ [i.e., E(t− t′) ≠ E(−(t− t′)) and E(t− t′) ≠−E(−(t− t′))]5.
The nonlinear response of matter mixes the frequencies and
harmonics of the laser field and leads to the generation of a
zero-frequency DC component in the current I. Such symmetry
breaking component arises due to excitation via an even n and
odd m photon process, appears in the I � Ej jnþm order in the
response1,10, and is often referred to as n vs. m multiphoton
interference effect.

The experiments are performed by shining a strong 4 fs few-
cycle laser pulse of varying amplitude (0.4–1.7 V Å−1) and fixed
carrier envelope phase φ to a 50 nm metal-fused silica-metal
junction. The laser polarization is chosen to be along the junction
direction, there is no bias voltage across the junction, and the
laser central frequency (ħω= 1.7 eV) is far detuned from the
electronic transitions across the 9 eV gap of the silica. The laser
irradiates both the metal and the silica, and any response that is
not dependent of the carrier envelope phase is experimentally
eliminated.

Currently, there are four theories that seek to explain the
microscopic origin of the effect. The mechanism proposed in
refs. 4,11 is based on Zener band-to-band tunneling12,13 induced
by an electric field and a theory for metallization of dielectrics
through Stark shifts14. This mechanism is also used to interpret

the simulations in ref. 15. In turn, ref. 16 adopts a more traditional
perspective and argues that the spectral bandwidth of the pulse
can sustain a resonant 5 vs. 6 photon absorption process that
creates real carriers and induces symmetry breaking. A third
interpretation17 is based on the idea of creating virtual carriers in
the conduction and valence bands through non-resonant 1 vs. 2
and 2 vs. 3 multiphoton quantum interference. The possibility of
generating virtual carriers through Stark effects was also sug-
gested in ref. 11.

A fourth possibility arises from an early proposal18 to
induce currents in nanojunctions through Stark shifts. The
basic idea is to use a field with a low temporal symmetry with
frequencies far detuned from electronic transitions in the
photoactive material such that Stark effects, and not near-
resonance photon absorption, dominate the dynamics.
Through changes in the metal-semiconductor band alignment
via Stark shifts, the time asymmetry of the pulse leads to a
difference in effective metal-semiconductor coupling for
positive and negative laser field amplitude, ultimately leading
to phase-controllable currents.

While the experiments are performed in a nanojunction, the
proposals in refs. 4,11,15–17. consider the silica as a periodic solid
and do not take into account any effects that the gold–silica
interface may play in the production of currents. Thus, even if
virtual or real carriers are created through Stark or multiphoton
interference, it is unclear if these carriers can be collected by the
metallic contacts to form a measurable current. In turn, ref. 18,
while it does take into account the interface, does not consider
that the electric field of light also induces an AC bias voltage
across the junction (a basic feature recognized by Tien and
Gordon19 that leads to photon-assisted tunneling). Further,
simulations in ref. 18 were performed using a 1.3 eV photoactive
material using much weaker ~109W cm−2 lasers and, as a
consequence, it is not clear if the identified mechanism is at play
in the experiments.

What is then the microscopic origin of the experimental
observations?

In this paper, we present state-of-the-art atomistic simulations
of the laser-induced time-dependent electronic transport along
gold–silica–gold nanojunctions that recover the experimental
observations and offer a simple intuitive picture for the origin of
the effect. The simulations explicitly take into account the
nanoscale nature of the experimental setup and the crucial role of
the silica–gold interface in the current rectification. This contrasts
with previous efforts4,15–17,20 that model the silica as bulk matter.
Using them we assess the feasibility of mechanisms that have
been proposed4,11,15–18,20 to explain the observed currents.

Results
Computational approach. The simulations are based on solving
the single-particle Liouville von Neumann equation for the
nanojunction in the presence of radiation using a non-
equilibrium Green’s function method21 (TD-NEGF) for time-
dependent electronic transport in the wide band limit. While the
experiments are performed on fused silica, the simulations
employ a quantitative atomistic model of α-quartz that is devel-
oped from density functional theory (DFT). Since the symmetry
breaking effect occurs along the direction of laser polarization, we
focus on quasi one-dimensional model junctions of varying
length as they capture the essential physics of the effect. Specifi-
cally, we consider one-dimensional slabs of N unit cells of
α-quartz along a given crystallographic direction bd (a, b, or c)
connected by its ends to macroscopic metallic contacts. We focus
on the a (E || a) and c (E || c) directions since the b direction is
equivalent to a.
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A schematic representation of the metal-silica-metal nano-
junction is shown in Fig. 1a. The Wannier functions in the
terminal unit cell are assumed to couple identically to the
metallic contact at their terminal end. The quantity ħ/Γ
determines the rate of charge exchange between the silica and
contacts and is fixed at a model but realistic value of Γ= 0.1 eV.
The Fermi energy μF of the gold contacts is taken to be in the
band gap and its exact value is a modeling parameter. The laser-
matter interactions is considered in dipole approximation and
the metallic contacts are assumed to behave like perfect metals
that completely reflect the incident radiation. The vector
potential A(t) associated with the electric field EðtÞ ¼ � _AðtÞ
employed in the simulations is of the form A(t)= (E0/ω) exp
[−(t− tc)2/(2σ2)] sin(ω(t− tc)+ φ). This form guarantees that
the few-cycle E(t) of amplitude E0 is an AC source, asR1
�1EðtÞdt = A(−∞)− A(∞)= 0. To mimic the experiments,

we choose a laser pulse centered at tc= 0 fs of width σ= 2 fs
and central frequency ħω= 1.7 eV. The carrier envelope phase
φ is the main source of control of the electronic currents in the
experiment. In the model, the effect of E(t) on the metallic
contacts is to setup a total potential drop across the junction V
(t)= eDE(t), where D is the total length of the junction and e
the electronic charge, by rigidly shifting the energy levels of left
and right contacts19. In the wide band limit, this shift is
computationally captured by a time-dependence of the
chemical potentials of the left μL(t)= μF− 1

2 eDEðtÞ and right
μR(t)= μF+ 1

2 eDEðtÞ contacts.
The net current passing through the nanojunction is calculated

as the average current flowing into the two leads I(t)= (IL(t)−
IR(t))/2, where Iα(t) is the current entering lead α. The
total charge transferred between two leads at time t is given by

Q(t)=
R t
�1 Iðt′Þdt′, while the accumulated charge in the silica

region is Qacc(t)=
R t
�1ðILðt′Þ þ IRðt′ÞÞdt′.

Accurate generalized tight-binding model for the silica. To be
able to describe the dynamics of a junction with hundreds of
atoms driven by strong laser fields, we developed an accurate and
computationally efficient generalized tight-binding model (GTB)
of the silica from first principle computations. For this, we
computed the Bloch states and band structure of α-quartz using
DFT (modified Becke-Johnson meta-GGA functional22), and
used the results to generate an orthonormal basis of maximally
localized Wannier functions (MLWFs) via unitary transforma-
tion23. The matrix elements between these Wannier functions are
then employed to build a Hamiltonian for the silica and its
interaction with the laser. The resulting basis consist of 27
MLWFs per unit cell, that capture 18 Valence Bands (VB) and 9
Conduction Bands (CB). Figure 1b shows the resulting ground-
state band structure of α-SiO2

24 (a= b= 4.9137 Å, c= 5.4047 Å,
α= β= 90°, and γ= 120°) computed with DFT (solid lines) and
the GTB model (open circles). Figure 1c shows the isosurface
contours of four representative MLWFs in α-SiO2 (red for posi-
tive value and blue for negative). The MLWFs that compose the
VB correspond to the px, py, and pz orbitals of 6 O atoms, while
the CB MLWFs involve contributions from both Si and O atoms.

As shown in Fig. 1b, the GTB accurately reproduces the first-
principle-based band structure in a wide energy range and the
bulk 9 eV band gap. The one-dimensional model slabs employed
in the transport simulations have a 16–18% larger band gap [10.4
eV (E || a) and 10.6 eV (E || c)] because they neglect tight-binding
couplings in directions perpendicular to the junction. The GTB
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Fig. 1 Electronic structure of the gold–silica–gold nanojunctions. a Energy diagram of the nanojunction in the presence of a laser E(t). The junctions are
composed of N unit cells of α-SiO2 grown along the a (E || a) or c (E || c) crystallographic directions and connected by its ends to metallic contacts. The
lead’s Fermi energy μF is taken to be between the valence band (VB) and conduction band (CB). Here, Γ/ħ is the charge transfer rate between each
Wannier functions at the terminal unit cells to the corresponding lead and μα(t) the chemical potential of left (α= L) and right (α= R) contact. b Band
structure of α-SiO2 computed using density functional theory (solid lines) and the generalized tight-binding model (open circles) based on maximally
localized Wannier functions (MLWFs). The model consists of 27 MLWFs per unit cell that result in 18 VBs and 9 CBs. It accurately reproduces the band
structure in a wide energy range and the 9 eV experimental band gap. The relevant electronic structure along the a and c-direction are highlighted. c
Isosurface contours of four representative MLWFs (red for positive value and blue for negative)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04393-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2070 | DOI: 10.1038/s41467-018-04393-4 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


has no adjustable parameters and retains the atomistic detail of
first principle approaches. In addition, it allows one to select the
number and type of bands that participate in the dynamics. In
this way, it offers a powerful theoretical tool to interpret the
experiments. Additional details of the simulation approach are
included in the Methods section.

Phase and size dependence of the photocurrents. Figure 2 shows
the currents induced by the 4 fs laser pulse on a N= 6 junction (E
|| a). The laser (Fig. 2a, b) transiently generates large currents
(Fig. 2c, d). Figure 2e, f shows the net charge transferred across
the junction (solid line) and the accumulated charge in the silica
(dashed line). As shown, the laser photoejects electrons and leaves
the silica charged (Fig. 2e). Only a fraction of the photoejected
electrons form part of the net current. After the laser, the metallic
contacts inject charge back into the system and restore charge
neutrality in 20–30 fs (Fig. 2f).

Figure 3a shows the dependence of the net charge extracted
Q=Qm+Qc after the system has equilibrated on the carrier
envelope phase φ. The effect of φ on the laser pulse is shown in
Fig. 3b. There are two components to the response: a component
Qm that is independent of φ that arises because of the inherent
spatial asymmetry of α-SiO2, and a phase-controllable component
Qc. The experiments are designed to only capture Qc. The
simulations capture the experimentally observed sinusoidal
dependence of the magnitude and sign of Qc on φ. The slight
discrepancy in the control map between theory and experiment
arises because the experiment exhibits dispersion effects as φ is
varied that are not included in the simulations. Importantly, the
simulations show that the effect is largely independent on
junction size N, as the net extracted charge observes essentially
no dependence with the number of unit cells for N= 6, 10, 20, 24.
This observation is consistent with experiments performed
with 50 and 500 nm junctions in wedged and flat geometries,
respectively, that suggest a mild dependence of the effect on
junction size (Fig. S8 in ref. 4). Below, we focus on N= 6 as it
describes well the behavior of the longer N= 24 junction and is
expected to be representative of the N ~ 100 experimental setup.

Dependence of the photocurrents on laser intensity. Figure 4
shows a comparison between experimental and computational
maximum extracted charge Qmax

c and φmax as a function of laser
amplitude E0. For a given laser amplitude, Qmax

c is extracted by
scanning the dependence of the extracted charge Qc on φ and
recording the maximum charge Qmax

c in the control map. To
compare with experiments, the simulation results are scaled by a
factor η which represents the illumination cross-section area
which is an experimentally unknown parameter. Simulations
correctly capture the intensity dependence of the effect up to a
laser amplitude of 2 V Å−1. To capture observations beyond this
laser amplitude, the generalized tight-binding model would
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require a larger number of bands. Note that the intensity and
phase dependence of the control is approximately independent of
the crystallographic direction in the model junction. This insen-
sitivity makes the model of α-quartz useful in the description of
the experiment.

An unknown variable in the simulations is the position of the
Gold’s Fermi energy μF with respect to the silica. To test the
dependence of the results on μF, this parameter was varied
between the top of the VB (1.8 eV) and the bottom of the CB
(10.7 eV). As shown in Fig. 5, the results are approximately
independent of μF under a wide range of values. Disagreement
with experiment starts to emerge when the μF is chosen to be
close to the band edges.

To examine possible effects of the 16–18% overestimation of
the energy gap Eg by the model nanowires, we performed

simulations with a larger central frequency ω such that the
experimental Eg/ħω= 5.3 ratio is maintained. As shown in
Supplementary Fig. 1, increasing ω changes the illumination
cross-section η but leaves the qualitative features of the control
map unchanged.

As yet another point of contact with experiment20, we
examined the dependence of the carrier envelope phase required
to achieve the maximum charge φmax on the laser amplitude.
Figure 4 shows such a dependence when the junction is
constructed along the a (Fig. 4d) and c (Fig. 4e) crystallographic
directions. For weak fields (region I) the simulations recover the
experimentally observed φmax ≈ 0 phase required for maximum
current. For intermediate intensities (region II), we observe that
φmax is sensitive to the particular crystallographic direction. Since
the experiments are performed in fused silica, while the

1.5

Exp.

E || a, �F = 6.0 eV

E || a E || c

I

I

II

II

Exp.
�F = 6.0 eV

�F = 6.5 eV

�F = 7.5 eV

�F = 8.5 eV

�F = 6.0 eV (fixed) Exp.
�F = 6.0 eV

�F = 6.5 eV

�F = 7.5 eV

�F = 8.5 eV

III

III

E || a, �F = 6.0 eV

E || a, �F = 6.0 eV

Slope=7.7, error=11.7%

Slope=5.2, error=2.0%
Slope=5.2, error=3.1%

Slope=7.2, error=12.3%

E || c, �F = 7.5 eV

E || c, �F = 7.5 eV

E || a, �F = 6.0 eV (fixed)

100

100

10–2

10–4

10–6

10–1

10–2

10–3

1 2 3

E || c, �F = 7.5 eV

1.0

0.5
b

c

a

Q
cm

ax
 (

A
.  f

s)

Q
m

 (
A

.  f
s)

Q
cm

ax
 (

A
.  f

s)

0.0

1.5

0.1 1 2 3

1.0

0.5

�
m

ax
 (

π)

�
m

ax
 (

π)

0.0

–0.5

–1.0

2.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0 2.5

E0 (V Å–1)

E0 (V Å–1)

0.0 0.5 1.0 1.5 2.0

E0 (V Å–1)

E0 (V Å–1)

E0 (V Å–1)

a b

c

d e

Fig. 4 Dependence of the maximum transferred charge Qmax
c and the carrier envelope phase φmax required to induce it on the laser amplitude E0. a

Controllable Qmax
c component of the response as a function of maximum laser amplitude for N= 6 junctions constructed along the a (red) and c (blue)

direction. The crystal structure of α-SiO2 depicting the crystallographic directions is shown in the inset. To compare with experimental magnitudes4 (black),
simulation results are scaled by a cross-section η that accounts for the effective area of illumination by the laser pulse and differences in the optical response
between fused silica and particular directions in alpha quartz [η= 3.571 × 105 unit cells (9.484 × 10−2 μm2) in the bc plane for E || a, and η= 2.632 × 105 unit
cells (5.503 × 10−2 μm2) in ab for E || c.]. b Log–log plots quantifying the power dependence of the simulated effect on the laser amplitude Qmax

c / E0j jr as
determined by the slopes. For comparison purposes, simulations using fixed, as opposed to time-dependent, chemical potentials are shown in green. c Power
dependence of the uncontrollable component of the response Qm. Simulations recover the experimental intensity dependence of the effect (Qmax

c / E0j j7)
and show that Qm / E0j j5. d, e Dependence of the carrier envelope phase required for maximum charge transfer φmax (cf. Fig. 3a) on the laser amplitude for
d E || a and e E || c. The experimental results20 (black) are also included for comparison. Simulations agree with experiment in region III where appreciable
currents are observed. Simulation results using a fixed chemical potential (in green) do not agree with experiments. Throughout, error bars show the
experimental standard deviation

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04393-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2070 | DOI: 10.1038/s41467-018-04393-4 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


simulations are done in α-quartz, the disagreement between
theory and experiment arises because the microscopic model in
the simulations does not coincide exactly with the material
employed in the experiment. Importantly, in the most relevant
region where appreciable currents are observed ( E0j j>1:4 V Å−1,
region III), the simulations recover the experimentally observed
φmax ≈ π and the independence of φmax on the laser intensity20.

Microscopic origin of the effect. As shown above, the simula-
tions recover the main experimental observations including the
phase dependence, intensity dependence and size independence
of the effect. We are now thus in a position to examine the
microscopic origin of the effect, and the relevance of previously
proposed mechanisms.

Importance of the 5 vs. 6 photon absorption coherent control
scenario. To test this possible mechanism16, we examined the
experimental power r dependence of the effect on the electric field
amplitude Qmax

c � E0j jr . The 5 vs. 6 scenario should exhibit an
E0j j11 dependence. Figure 6 shows fits of the experimental data to
Qmax

c � E0j jr that take into account different sets of consecutive
experimental points. The regime of the response that can be
captured by a single power law (points 2–7, R2= 0.99, error 5.3%)
offer an r= 7 which is inconsistent with a 5 vs. 6 scenario. Only
the fit with points 1–5 offer an r= 10.4 consistent with a 5 vs.
6 scenario and that fit is, statistically, a poorer representation of
the data (R2= 0.84, error 21.2%). In the simulations r ≈ 7
(Fig. 4b) in agreement with experiments.

Further note that a resonant 5 vs. 6 scenario is expected to
exhibit a strong dependence on the length of the material N
because the magnitude of the transition dipoles between energy
eigenstates (and the number of available transitions) increase with
N. Such length dependence is not observed in experiments nor
simulations (cf. Fig. 3a and Fig. S8 in ref. 4).

These experimental and numerical observations suggest that 5
vs. 6 control is not the dominant mechanism underlying the
effect.

Importance of Stark effects. An additional aspect that requires
clarification is whether the laser-induced dynamics is due to near-
resonance multiphoton absorption or due to Stark shifts. While
the central frequency of the pulse is far detuned from the band-
gap, the laser is intense enough that competition between these
two effects is possible. This distinction is important because
multiphoton excitation will generate real charge carriers, while
Stark shifts will reversibly deform the electronic structure of the
material generating vastly different mechanisms for the response.

To address this, in Fig. 4c we examine the power dependence of
the uncontrollable part of the response, Qm � E0j jr . To

photoexcite electrons across the energy gap, 4–6 photons from
the pulse need to be absorbed which implies that 8 ≤ r ≤ 12 if
multiphoton absorption plays a role. As shown in Fig. 4c for laser
amplitudes E0j j < 1 V Å−1, Qm scales with r ≈ 5 and then
saturates, which is a power dependence that is considerably
below the threshold for multiphoton absorption. We thus
conclude that Stark effects due to non-resonant laser-matter
interactions dominate the dynamics.

Importance of Wannier-Stark metallization. In refs. 4,11,15 the
effect is interpreted through Wannier-Stark metallization
effects that require Zener tunneling to emerge. To test this
interpretation, we performed numerical experiments (Fig. 7)
in which Zener tunneling pathways are eliminated completely
or partially from the dynamics. Specifically, we examined the
control map (E0 = 1.7 V Å−1) under circumstances in which
the CB and VB are completely decoupled from one another
(Fig. 7a, red line in c and d) eliminating Zener tunneling
effects from the dynamics. This is achieved by setting the
Hamiltonian matrix elements between the Wannier basis
states that form the VB and those that form the CB to zero.
We also examined a case (Fig. 7b, blue line in c and d) where
Zener tunneling is maintained but transport is assumed to go
through the VB (hole transport) or the CB (electron transport)
independently, with no transport pathways that involve both
bands as required for mechanisms based on Zener tunneling.
This is done by performing two separate simulations in which
either the VB or the CB is disconnected from the leads and
adding their two separate contributions to the current. If
Zener tunneling is an essential component of the dynamics,
case (i) should exhibit no net currents while case (ii) should
exhibit suppressed currents.

As shown in Fig. 7, eliminating completely Zener tunneling
shifts slightly (by ~ 0.25π) the control map but has no appreciable
incidence on the magnitude of the effect. Similarly, considering
that transport does not involve pathways that involve both bands
has a minor impact on the control map. We are thus forced to
conclude that Zener tunneling is not essential for the description
of the experimental observations and, thus, that Wannier-Stark
metallization14 does not underlie the effect.

The relevance of the mechanism proposed in ref. 18 is discussed
below.

Instantaneous level alignment as an interpretative tool. To
understand the microscopic origin of the effect it is useful to
interpret the quantum dynamics in terms of the instantaneous
laser-dressed single-particle eigenstates of the silica and to
examine how the energy of the laser-dressed levels match the
chemical potentials of the contacts. The laser-dressed eigenstates
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are obtained by diagonalizing the Hamiltonian of the silica in the
presence of the laser-matter interactions for a fixed electric field.
Figure 8a–f shows the eigenenergies and probability density dis-
tribution of the eigenstates along the junction with the densities
coarse-grained over unit cells. To enhance the interpretative value
of the plots, the probability density of the eigenstates in each unit
cell is divided into a contribution due to the Wannier states that
form the VB (blue) and those that form the CB (red). The
position of the chemical potential in the left and right contact, μL
and μR, are indicated by dashed lines and vary with the laser
amplitude. The effect of the static electric field is to localize the
silica eigenstates into so-called Wannier-Stark states. For the laser

amplitudes in the experiment this localization is extreme, con-
fining the eigenstates to 1–2 unit cells.

Since Stark effect dominate the dynamics and Zener tunneling
does not play a significant role, in the absence of metallic
contacts, the VB levels are occupied while those in the CB are
empty during and after the laser pulse. Thus, for charge to flow
between silica and contacts the Wannier-Stark states at the
terminal ends of the junction need to be in proper energetic
alignment with the contact’s Fermi sea. Specifically, for charge to
flow from the VB into the contacts, the terminal VB Wannier-
Stark states need to be above the contact’s chemical potential.
Otherwise, hole transport is blocked. Similarly, for charge to flow
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from the contact into the CB the terminal CB Wannier-Stark
states need to be below the chemical potential. Otherwise,
electron transport is blocked. This basic energetic alignment
picture is used below to develop an intuitive interpretation of the
experiment.

Origin of the threshold at E0j j � 1:4 V Å−1 to generate sizable
currents. In both theory and experiments sizable currents require
electric field amplitudes E0j j>1:4 V Å−1 (cf. Fig. 4a). To under-
stand this threshold consider the laser-dressed eigenstates of the
material and the level alignment shown in Fig. 8. For E0j j < 1.4 V
Å−1 the CB levels at the terminal ends are above the chemical
potential of the contacts and thus no charge can be transferred
from the contacts into the CB. Similarly, the VB levels at the
terminal ends are below the chemical potential of the contacts
and charge transfer from the material into the leads is blocked by
the Fermi sea. Thus, no significant currents are observed for E0j j
< 1.4 V Å−1 because electron and hole transport are energetically
blocked. At E0j j � 1:4 V Å−1 this blocking of the charge transfer
is removed and current starts to flow across the junction. For
stronger fields E0j j � 1:7 V Å−1 more levels satisfy the energy
level alignment conditions leading to a larger currents.

Mechanism for the generation of currents. To understand the
origin of the currents, it is useful to focus on the separate electron
and hole contributions to the total current. This can be done
because the sum of these two individual contributions coincides
with the full dynamics (Fig. 7). Figure 8g shows the current
flowing through the CB under the influence of the laser pulse
shown in gray ( E0j j ¼ 1:7 V Å−1, φ= π). The current entering
the right (left) contact is shown in red (black). An analogous
diagram for the VB is shown in the top-right inset. The two

additional insets show the laser-dressed single-particle eigenstates
for the maximum positive E= 1.7 V Å−1 and negative E=−1.4
V Å−1

field amplitudes.
The net currents across the junction arise because of a

difference in effective lead–silica couplings for positive and
negative field amplitudes. To see this, consider transport through
the CB first. For negative amplitudes, the field is not strong
enough to push the terminal CB Wannier-Stark levels below the
chemical potential of the contacts and little current is injected
from the leads into the CB. By contrast, for a positive amplitude
of E ~ 1.7 V Å−1 the electric field is strong enough to bring the
right-end CB Wannier-Stark levels below μR leading to a large
burst of charge being injected from the right contact into the
leads. This imbalance between the effective coupling of the CB to
the leads for positive and negative field amplitudes leads to a net
electron current.

A similar situation occurs for hole transport (inset Fig. 8g). In
this case, the field amplitude is strong enough to push the
terminal Wannier-Stark levels above the chemical potential of the
contact for the three central peaks, one positive and two
negatives, of the pulse. For the other peaks the field is not strong
enough to open significant channels for charge transport from the
silica into the leads. This generates two bursts of charge injected
into the right contact and one into the left one. The difference in
effective lead-silica coupling for positive and negative field
amplitude yields a net hole current along the device. The hole
and electron current do not exactly cancel one another and give
rise to a net current.

In this context, it becomes intuitively clear the origin
of the phase control. When appreciable currents are observed
( E0j j>1:4 V Å−1), the control maximum is achieved for φ ≈ 0, π.
This is because this field maximizes the difference in laser
intensity for negative and positive electric field amplitudes
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(Fig. 3b) and, thus, the difference in effective coupling between
silica and right and left contacts. Since the identified mechanism
is at play for a wide range of laser amplitudes, this is the origin of
the insensitivity of φmax on laser intensity identified in ref. 20. By
contrast, when φ ≈ π/2 the field is antisymmetric with respect to
time inversion around some time t′, i.e., E(t− t′)=−E(−(t− t′))
and the controllable current is small. This is because this field will
have equal intensity for positive and negative field amplitude.

Further, we can now readily understand why the effect is
independent of junction size. Due to Wannier-Stark localization
only the 1–2 unit cells at the junction boundaries determine the

charge dynamics. Thus by increasing the size of the junction one
is not affecting the effectiveness of the scenario.

It is qualitatively useful to consider this control scenario in a
minimal single-band model with N sites. In the presence of a
static electric field of amplitude E(t), the energy of the Wannier-
Stark states25 located at the terminal ends of the single-band
material are ϵR � ϵ0 +

1
2 eNdEðtÞ and ϵL � ϵ0 −

1
2 eNdEðtÞ, where

ϵ0 corresponds to the onsite energies of the pristine material. In
turn the chemical potentials of the right and left contacts are μR
= μF+ Nd

2 þ u
� �

eEðtÞ and μL= μF− Nd
2 þ u

� �
eEðtÞ where Nd+

2u is the total length of the junction and u is the distance of the
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lead-silica interface. In this model, the threshold for charge
transport between the band and the metallic contacts occurs
when ϵR = μR or ϵL = μL. This yields a threshold electric field of
E�
L =

ðμF�ϵ0Þ
eu for the left contact and E�

R ¼ �E�
L for the right one.

The key to achieve a current is then to use a field for which, for
instance, the threshold E?

L is contained in the pulse but E?
R is not

such that a net difference in effective lead-silica couplings for
positive and negative field amplitudes emerges. To guarantee that
the intensity I � Ej j2 is different for positive and negative
amplitudes, E(t) cannot be antisymmetric with respect to time
inversion around any given time. This can be achieved by using
few-cycle pulses like the one employed in the experiment with
φ ≠ (2n+ 1)π/2 where n= 0, 1, 2, … or, alternatively, using two
color nω+mω pulses where n is an even integer while m is odd.

This identified mechanism is reminiscent to the one proposed
in ref. 18. While the qualitative ideas are identical an important
technical difference, however, is that in the early study18 it was
supposed that the chemical potentials of the contacts did not
change with the laser field. This supposition leads to an effect that
arises at much weaker fields. As shown in Fig. 4b–d (green line),
when such a time dependence is not taken into account the
simulations cannot recover the experimental observations.

Discussion
We have presented atomistically detailed time-dependent quan-
tum transport simulations of experiments4,20 that induce currents
along metal-silica-metal nanoscale junctions using strong non-
resonant few-cycle 4 fs laser pulses. The simulations are based on
propagating the single-particle von Neumann equation for the
junction using a state-of-the-art time-dependent non-equilibrium
Green’s function method that, contrary to previous simulation
and interpretational efforts, explicitly take into account the
nanoscale nature of the experiment and the crucial role of the
metallic contacts on the emergence of the effect. The simulations
do not take into account possible effects of plasmons, screening or
other processes that require feedback between the electro-
magnetic field and the material response.

Under these conditions, the simulations recover the
experimental observations and offer an intuitive picture of the
effect in which the temporal asymmetry of the incident
radiation generates a difference in effective coupling of the
silica to the left and right metallic contact and leads to a net
phase-controllable current. Specifically, because the few cycle
laser pulse in the experiment has different laser intensity for
negative and positive field amplitude, through Stark shifts,
such laser generates different metal-semiconductor band
alignment for the left and right contacts leading to a net
current across the nanojunction. Varying the carrier envelope
phase controls the difference in intensity of the pulse for
positive and negative field amplitudes and thus the sign and
magnitude of the photoinduced currents. This identified
mechanism is reminiscent to the early proposal in ref. 18.
An analysis of both simulation and experimental results sug-

gest that previously proposed resonant 5 vs. 6 coherent control do
not underlie the experimental observations. In addition,
Wannier-Stark metallization and other possible mechanisms
based on Zener tunneling do not underlie the simulated
dynamics, and are thus not necessary for the emergence of the
effect. Further, to explain the experimental observations it is not
necessary to invoke mechanisms that involve the generation of
virtual carriers. Additional progress in understanding the pho-
toinduced dynamics in junctions requires experiments that
address the relative importance of bulk and interfacial contribu-
tions26 and the length dependence of the effect at all relevant
regimes of the laser-matter interaction.

Importantly, the simulations reveal that the experiment by
Schiffrin et al.4,20 is based on Stark effects and not on near
resonance multiphoton absorption. Thus, the experiment exem-
plifies the power of Stark-based strategies to control electronic
properties and dynamics. These insights can be employed to
interpret recent related experiments27–30 and to advance our
ability to control electrons in matter using lasers.

Methods
Hamiltonian. The Hamiltonian for the composite metal-silica-metal junction is
given by:

HðtÞ ¼ HSðtÞ þ HGðtÞ þ HSG; ð1Þ

where HS(t) describes the Hamiltonian of the silica, HG(t) the leads and HSG(t) the
silica-lead couplings. The composite system is assumed to be well described by an
effective single-particle Hamiltonian H(t)=

P
νμ hνμðtÞcyνcμ where the operator cyν

(or cν) creates (or annihilates) a fermion in a single-particle state ν and satisfies the
usual fermionic anticommutation relations. As such, the electronic properties of
the composite system are completely determined by the single-particle reduced
density matrix ρνμ(t)= cyνcμ

D E
.

Tight-binding model for laser-irradiated silica nanostructures. To obtain a first
principle description of the silica and its interaction with a laser field, we computed
the Bloch states and the band structure of bulk α-quartz and used that to construct
an accurate generalized tight-binding model for the material and the transition
dipoles required to capture the laser-matter interactions. Specifically, the ground-
state band structure of α-SiO2

24 was computed using DFT in the Vienna ab initio
simulation package (VASP)31 with the modified Becke-Johnson (MBJ) meta-GGA
functional22, and a plane-wave basis set with an energy cutoff of 650 eV. The
calculated band gap of α-SiO2 is about 9 eV, in good agreement with experiment32.
From the resulting Bloch eigenstates, an orthonormal basis of maximally localized
Wannier functions (MLWFs) ϕnðr;RlÞ

�� �� �
was constructed via unitary transfor-

mation using Wannier9023,33. Here r is the electron coordinate and ϕnðr;RlÞ
�� �� �

is the n-th Wannier function localized on the lth unit cell associated with the real-
space lattice vector Rl. The MLWFs were chosen to reproduce the band structure in
the ([−8 eV, 14.5 eV]) energy window which includes 18 valence bands (VB) and 9
conduction bands (CB). The procedure resulted in Nb= 27 MLWFs per unit cell
that quantitatively reproduce the band structure of α-SiO2 in a wide range of
energies.

In dipole approximation, the Hamiltonian for the one-dimensional slab of α-
SiO2 in the presence of a laser field polarized along the junction direction is given
by

HSðtÞ ¼ H0 � μEðtÞ; ð2Þ

where H0 is the Hamiltonian of the pristine silica, μ is the dipole operator and E(t)
is the electric field of light. In the maximally localized Wannier basis, the
Hamiltonian of N unit cells of α-SiO2 along a given crystallographic direction is
given by

H0 ¼
XN

l;l′¼1

XNb

n;n′¼1

hnl;n′l′c
y
nlcn′l′; ð3Þ

where cyn;l 0j i ¼ ϕnðr;RlÞ
�� �

creates a fermion in MLWF ϕnðr;RlÞ
�� �

and 0j i is the
vacuum state. Here hnl;n′l′ = ϕnðr;RlÞ

� ��H0 ϕn′ðr;Rl′Þ
�� �

are the matrix element of the
Hamiltonian among the Wannier states. In this microscopic model of the junction,
the Rl ¼ ldbd are chosen to be collinear and defined along a particular
crystallographic direction bd with lattice constant d. Since the ϕnðr;RlÞ

�� �� �
basis is

maximally localized in real space (as shown in Fig. 1c) it suffices to only consider
same cell l= l′ and nearest neighbor ( l � l′j j ¼ 1) contributions to the
Hamiltonian. Hamiltonian matrix elements with unit cells that are located in
directions perpendicular to bd are neglected.

The total dipole operator μ= (μN+ μe) along the junction direction that
determines the laser-matter interactions is also obtained from first-principle
computations. Specifically, the electronic component of μ is given by

μe ¼ �e
XN

l;l′¼1

XNb

n;n′¼1

bd � rnl;n′l′cyn;l cn′;l′; ð4Þ

where e is the magnitude of the electronic charge, and rnl;n′l′ =
ϕnðr;RlÞ
� ��r ϕn′ðr;Rl′Þ

�� �
are the matrix elements of the position operator in the

Wannier basis, which are computed with Wannier90. In turn, the nuclear dipole is

constant throughout the simulation and given by μN= e
PN

l¼1

P
A2l eZA

bd � RA;l ,
where the second sum runs over all atoms A in cell l with position RA,l and atomic
number ZA. The total junction length is taken to be D=Nd+ d where Nd is the
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length of the silica and the extra d accounts for the approximate distance between
the silica and the first layer of metallic atoms on each side of the junction.

Metallic contacts and lead–silica interactions. The leads are described by
HG(t)=

P
α¼L;R

P
q εαqc

y
αqcαq where c

y
αq and cαq are the fermionic operators for the

lead states of energy εαq and α= L or R denotes the left or right contact, respec-
tively. The leads are assumed to be in a state of thermal equilibrium with a density
matrix described by the Fermi-Dirac distribution at temperature T= 300 K and
with chemical potential μα.

The leads and their interaction with the silica are described in the wide band
limit (WBL). In this limit, the density of states in the metal is assumed to be
constant and the Wannier functions that couple to the leads are supposed to couple
identically to all lead levels. From a dynamical perspective, in WBL the metallic
contacts behave as a Markovian reservoir that exchanges particles and energy with
the material. As a model of the lead–silica interactions, we suppose that only the
Wannier states ϕnðr;RlÞ

�� �
in the terminal unit cells (l= 1 or N) couple to its

adjacent contact. Further, the couplings to each lead is taken to be independent of
the nature of the Wannier state. Thus, the silica-lead interaction is given by

HSG ¼
X
q

XNb

n¼1

VL
q c

y
Lqcn1 þ VR

q c
y
RqcnN þH:c:

	 

; ð5Þ

where Vα
q is the coupling between level q in lead α and the Wannier states

ϕnðr;RlÞ
�� �

in the unit cell adjacent to it, and H.c. denotes Hermitian conjugate.
The effective coupling between Wannier state ϕnðr;RlÞ

�� �
and lead α is specified by

the spectral density ΓαðεÞ= 2π
P

q Vα
q

���
���
2
δ ε� εαq

	 

, a quantity that contains

information about the characteristic frequencies of the leads and their coupling to
the molecule. In the WBL the Vα

q and the leads’ density of states ζα=
P

q δ ε� εαq

	 

are assumed to be energy independent. In this case, the spectral

density is also energy independent and given by

Γα ¼ 2πζα Vαj j2: ð6Þ

In this work, we use ΓL= ΓR= Γ= 0.1 eV. The quantity Γ dictates the
characteristic timescale, ħ/Γ, for charge exchange between silica and contacts and
generates an effective Lorentzian broadening of the silica energy levels by 2Γ.

Time-dependent transport. The time-dependent transport characteristics of the
metal-silica-metal junction are characterized via the non-equilibrium Green’s
function method (NEGF) as developed and implemented by Chen and colleagues
21,34–37. In TD-NEGF the current is obtained by solving the Liouville von Neu-
mann equation for the single-particle electronic reduced density matrix in the
presence of leads. In it, the current entering lead α is defined by Iα(t)=−

e d
dt

P
q cyαqcαq
D E	 


and the net current passing through the nanojunction is cal-

culated as the average current flowing into the two leads I(t)= (IL(t)− IR(t))/2.
The employed method combines time-dependent density functional theory and

NEGF21,34–37. Specifically, ref. 35 presents a computational efficient closed set of
equations (Eqs. (3), (12) and (14) in ref. 35) to capture time-dependent transport by
invoking the wide band limit and a Padé expansion of the Fermi distribution
function. The former allows closing the resulting hierarchy of equations at first tier
in the Hierarchical Equation of Motion sense. In turn, the Padé expansion allows
for analytically solving the energy integrals that appear in the definition of the self-
energies. Here, results were checked for convergence on the number of Padé
functions (50) required to represent the leads, and on the integration time step
(0.002 fs) of the Runge Kutta method of order four employed in the numerical
integration of the equations of motion.

Data availability. The data are available from the corresponding author upon
reasonable request.
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