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Electronic decoherence processes in molecules and materials are usually thought and modeled via
schemes for the system-bath evolution in which the bath is treated either implicitly or approxi-
mately. Here we present computations of the electronic decoherence dynamics of a model many-body
molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron
interactions using an exact method in which both electronic and nuclear degrees of freedom are taken
into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian
in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transforma-
tion for the fermionic creation/annihilation operators and the discrete variable representation for the
nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test
approximations. They also provide a useful platform to answer fundamental questions about elec-
tronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically,
through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that
electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that
(i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-
electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics
is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner
distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable
initial superpositions often used to understand decoherence after photoexcitation are only relevant
in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be
employed to interpret and properly model coherence phenomena in molecules. Published by AIP
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. INTRODUCTION

Electronic decoherence is a basic feature of correlated
electron-nuclear states' and accompanies photoexcitation,’
passage through conical intersections,® electron transfer,* or
any other dynamical process that creates superpositions of
electronic diabatic states in molecules. Understanding elec-
tronic decoherence is central to the description of basic pro-
cesses such as photosynthesis, vision, and electron trans-
port,>™ to the development of approximation schemes to the
vibronic evolution of molecules,®’ and to the isolation of
superposition states with robust coherence properties that can
subsequently be used in quantum technologies.®

Developing deep insights into electronic decoherence
requires detailed understanding of the dynamics that entan-
gles the electrons with their nuclear environment. To see this,
consider the coherence properties of electrons in a general
entangled vibronic state

Q1)) = " 1E) xa(0), (M
n

where the |E,) refers to electronic eigenstates (which are
obtained by diagonalizing the Born-Oppenheimer electronic
Hamiltonian at a particular nuclear geometry) and the |y,)
refer to the nuclear wavepackets associated with each |E,,).
The electronic reduced density matrix associated with such a
state is given by
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where the trace is over the nuclear coordinates. Impor-
tantly, note that the coherence between electronic states n
and m is governed by the nuclear wavepacket overlap S,
= (xm(@®) | xn(1)). The electron-nuclear entanglement that is
generated as the S, decay (for |y ), |xn) # 0) is reflected
at the purely electronic level as a decay in the coherences
between states n and m. Standard basis-independent mea-
sures of decoherence capture this precisely. For instance, the
purity

P(t) = T[] = ) 1Sunl? 3)

decays with the overlaps between the environmental states
Sum- Detailed understanding of electronic decoherence can
thus be developed by investigating the dynamics of the
Snm~1

Because of the difficulty in following the vibronic evolu-
tion of molecules exactly, most of our insights into electronic
decoherence have emerged from models where the nuclear
bath is taken into account implicitly or approximately. In
implicit approaches, decoherence effects are modeled via mas-
ter equations'® where the bath is represented using a spec-
tral density with adjustable parameters chosen to reproduce
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experimental findings. In turn, explicit approaches offer a
detailed description of the nuclear dynamics albeit at an
approximate level. Approximations that have been employed

to model decoherence include surrogate Hamiltonians,'! path-
integral techniques,'”? frozen Gaussian approaches,'? semi-
2,15-20

classical methods,'* and quantum-classical methods.

Here we present accurate numerical simulations of elec-
tronic decoherence in a model molecular system using an
exact method that takes into account both electrons and
nuclei explicitly and fully quantum mechanically. As a model,
we adopt the Su-Schrieffer-Heeger (SSH) Hamiltonian?! for
trans-polyacetylene (PA) because it captures the essential
vibronic phenomena of molecules. To quantify the effects
of electron-electron interactions on the electronic decoher-
ence,”> we augment this model with a Hubbard electron-
electron interaction term.”®> This Hamiltonian is represented
in matrix form by the Jordan-Wigner transformation®*2% of
the electrons and by the discrete variable representation®’
(DVR) of the nuclei. The decoherence dynamics of such a
system is propagated using the Crank-Nicolson method?® for
a neutral SSH chain in Fock space with 4 electrons cou-
pled to 2 vibrational modes. The advantage of this method
is that it does not invoke any physical approximations, facil-
itating the interpretation of the results. Furthermore, because
it solves the many-body problem exactly, it can access
regimes that are challenging for other methods such as those
encountered when the nuclear mass is small [where the
Born-Oppenheimer approximation and even the very con-
cept of a potential energy surface (PES) fail] or when the
electron correlation is large. These simulations complement
recent efforts to capture electronic decoherence dynamics
in molecules using semiclassical approximations,!3:16-18.29
the multiconfiguration time-dependent Hartree (MCTDH)
method,’*? and a recently proposed generalized theory for
the time scale of the electronic decoherence in the condensed
phase.®

In addition to providing a standard for electronic decoher-
ence dynamics in closed molecular systems, the exact model-
ing serves as a platform from which several basic questions
about decoherence in molecules can be addressed. We focus
this discussion around seven questions that explore the main
requirements for the emergence of decoherence, its basic phe-
nomenology, and the applicability of approximate schemes
to capture decoherence. While the simulations pertain to a
particular model system, the generic nature of the employed
Hamiltonian permits interpreting the insights that result from
this model in a broader sense.

Specifically, we investigate the basic mechanisms for
the electronic coherence loss (Sec. III A) and the bath size
requirements for its emergence (Sec. III B). We also investi-
gate how timescales of electronic and nuclear decoherences
compare (Sec. III C) and establish conditions for the accu-
racy of classical bath models (Sec. III D). In Secs. III E and
IIT F, we study the effect of changing the nuclear mass and
the initial-time preparation method on the electronic decoher-
ence dynamics. Finally, in Sec. Il G, we study the largely unex-
plored problem of how electronic interactions modulate the
electronic decoherence.”> We summarize our main findings in
Sec. IV.
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Il. MODEL AND METHODS
A. Model Hamiltonian

As an exemplifying model of a molecular system, we
adopt the SSH tight-binding model for PA augmented with a
Hubbard electron-electron interaction term, with Hamiltonian

Hssy = He + Hy + Hint. 4
Here,
N-1
H, = _OZ (€11 ACnA + 8, ACn+1,0)
n=1 A==+
N
+U D e eunl] _en
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are the electronic, nuclear, and electron-nuclear interaction
components of the Hamiltonian, respectively. In this model,
each site n represents a CH unit along a PA chain with N
repeating units. In the electronic component, the fermion cre-
ation (annihilation) operators 6; A(Cn,a) create (or annihilate)
an electron on site n with spin A and are subject to the usual
fermionic anti-commutation rules. The electronic Hamiltonian
describes the hopping process of the  electrons with the same
spin between different sites with hopping strength 79 and a
Hubbard electron-electron repulsion (U > 0) when two elec-
trons occupy the same site. In the nuclear component, the i,
refers to the displacement of the nth CH unit from position na,
where a is the lattice constant, p,, is the momentum conjugate to
iy, M is the mass of the CH group, and KX is the effective spring
constant. The electron-nuclear interaction modulates the hop-
ping integral as neighboring nuclei come closer together.
In this paper, we use the standard SSH parameters for PA:
a =4.1eV/IA, K =21 eV/A%, 1) = 2.5 eV, M = 1349.14
eV fs2/A2, and a = 1.22 A. The quantity U is taken to be
U = 0 except in Sec. III G, where the effect of the electronic
correlations on the decoherence is investigated.

Below, we investigate the exact vibronic dynamics for
a neutral SSH chain with 4 electrons. The end atoms of the
molecule are taken to be clamped, resulting in two vibrational
modes: a high frequency C—C stretching optical mode where
the two middle nuclei move in the opposite direction with iden-
tical amplitude; and a lower frequency acoustic mode where
the two middle nuclei move in the same direction with identi-
cal amplitude. Because the vibronic coupling is proportional
to (@, — d,-1), the optical mode couples strongly to the elec-
tronic degrees of freedom, while the acoustic mode is weakly
coupled.

B. Matrix representation of the Hamiltonian

The matrix representation of the SSH Hamiltonian is con-
structed by the tensor product of its electronic and nuclear
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components. To represent the fermionic creation and annihi-
lation operators in matrix form, we adopt the Jordan-Wigner
transformation.?*-20 In this transformation, the fermionic anni-
hilation operators at site n with spin A can be represented by a
string matrix ¢'#4 times the corresponding spin—% Pauli low-
ering matrix o, a at the same site and with the same spin, i.e.,
CpA = ei"’"»AO',,,A. Similarly, the fermionic creation operator

is represented as ¢' , = o-l Ae""’”A, where O'Z » is the spin-

+
nA
% Pauli raising matrix at site n with spin A. Here, the phase

Cy = o1t X I X
Ci- =1-— Z(J'Lcrl+ ® ol— ®

Gy =1- 20'110'“ X 1- 20'1“_0'1_ X

A
|
Il
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matrix ¢, A contains the sum over all the occupation matrices

to the left of (n, A), i.e., dua = T X (k.a)<(n.A) o-li ATk Inour
notation, we assume that the spin up (+) is at the left of spin
down (-) for each site.

The spin number operator o

n,A
ATnA with different (n, A) -commute. Thus, by
Taylor expanding each component of ¢4 = [Tk.Ar)<ma)

iﬂo‘lj’A, Tpn

oA 18 idempotent. Fur-

thermore, o-jl

e , the fermionic annihilation operators can be
expressed as

12+ ® te ® 1N+ ® IN—
L, ® to ® In+ ® IN—
024+ ® ® Ing ® In- , 5)

ey =1- 20'1:0'1+ ® 1- 20‘?_0’1_ ® 1- 20'210'2+ ® ® 1- 20';:,+0'N+ ® oN—

where [; is the 2 X 2 identity matrix in the ith subspace.
The fermionic creation operators at site n with spin A can
be. represented simply by replacing (.T”’ A by 0—}"1, A in Eq. (5.). I.n
this way, the resulting operators satisfy the desired fermionic
anti-commutation rules ({én,A,él,’ A,} = OuwOAn > {Cn.As Crr A7}

= (! } = 0) because spin—% Pauli matrices satisfy the

Cn,A’éjz’,A’
following relations: {O'n,A,O'Z’A} =1,{1- ZUi’AO'n,A,O'Z,A}
=0,and {1 - 20, ,0pa, Tl = 0.

The Fock space in which the creation and annihilation
operators are defined includes all possible electronic num-
ber states. To reduce the computational effort, we project
the electronic Fock space to a Hilbert space with a fixed
n, number of electrons. This is possible since the SSH
Hamiltonian commutes with the electron number operator N,
=3 Yacs &y ACn.As

[Hssu, N.] = 0, (6)

and thus the dynamics preserves n,. The size of the net elec-
tronic basis is 2% and can represent any many-body state in
the electronic system with a fixed number of electrons 7,.

To represent the nuclear operators in terms of matrices,
we employ the Discrete Variable Representative (DVR) as
proposed in Ref. 27. For simplicity, we illustrate this method
with one nuclear degree of freedom. For this degree of free-
dom, a basis consisting of grid points, {li)}, is employed. The
matrix elements of the kinetic energy operator in this basis
are

(ITi"y =

A (=1)y~" {n2/3 , Q= z} N

2M(Ax)? i #1i

_2
%

where Ax is the grid spacing. Correspondingly, the matrix
elements of the position dependent function V(i) are

AV @@Ii'y = V(u@)sir- ®

This idea can be extended to many degrees of freedom
and is used to represent the nuclear component of the SSH
Hamiltonian in matrix form.

DVR methods have been proved to be highly accurate to
solve a variety of problems in molecular quantum dynamics
and vibration-rotation spectroscopy.>* In this study with two
nuclear degrees of freedom, the method provides convergence
with respect to the grid spacing at Ax = 0.02 A for both degrees
of freedom. These results cannot be achieved by the general
grid basis method in which the second derivative in kinetic
term is represented by a tridiagonal matrix because this method
requires much smaller grid spacing leading to large memory
needs. All results presented here have been tested for conver-
gence in the grid spacing and the range of space considered in
the simulation.

C. Dynamical propagation

To propagate the dynamics, we employ the Crank-
Nicolson scheme.?® In it, the evolution operator U(t + Af,
t) from time ¢ to ¢t + At is computed by a first order Padé

approximation® as

R 1- i H(+4)
U(t+At,t) = ﬁ
1+17H(I+ ?)

C))

In this way, the propagation from [¥(¢)) to I¥(r + Ar)) is
transformed into the solution of the linear equation

LI¥(t + Ar)) = |b), (10)
where
. AV At
L=1+l7H(I+?), (11)
At~ A
b = (1= =LA+ S)I¥ ). (12)
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This linear equation is solved using a biconjugate gradient
stabilized iterative method,*® which is stable and faster than
direct methods such as Gaussian elimination. Unless specified
otherwise, results are reported with time step Ar = 0.01 fs. For
the model with standard SSH parameters prepared in separable
superpositions states, this time step offers converged results
(within 2% error) up to ~500 fs, as verified by performing
the dynamics with Ar = 0.001 fs. For larger times, it offers
qualitatively correct dynamics.

lll. RESULTS AND DISCUSSION

The decoherence dynamics is investigated by following
purity P(¢) [Eq. (3)] which is a well-defined basis-independent
measure of decoherence. The quantity P = 1 for a pure state,
P < 1 for a mixed state, and P = 1/M for a maximally entan-
gled state of M levels with equal populations. Note that a
decay in purity directly signals coherence loss. This contrasts
with electric polarization-based measures of coherence used
in laser spectroscopy in which in addition to an overall decay
that signals decoherence these measurements exhibit oscilla-
tions determined by Bohr transition frequencies in the system
that are not linked to decoherence. Since the vibronic dynam-
ics is solved exactly, the simulations take into account all
possible potential energy surfaces (PESs) for the molecule
and can access regimes where the Born-Oppenheimer
picture or mixed quantum-classical (MQC) schemes are
inadequate.

The following analysis is framed around seven questions
on the electronic decoherence that are addressed in the light
of the exact method.

A. What are the main mechanisms for the electronic
coherence loss?

There has been significant discussion in the literature
about the main mechanisms for electronic decoherence in
molecules.!-10-14-16.22.29-31.37 Erom Eq. (3), it is clear that
the decoherence arises due to the nuclear wavepacket evo-
lution in alternative diabatic PESs that lead to a decay in
the nuclear wavepacket overlaps and thus to electron-nuclear
entanglement. A recently proposed theory of the electronic
decoherence shows that, in the short time, this can be divided
into pure-dephasing dynamics, transitions between diabatic
states, and their interference.>* The pure-dephasing dynamics
refers to the electron-nuclear evolution that does not involve
transitions into other electronic diabatic states.

To connect with these previous efforts and illustrate the
main mechanisms for coherence loss in this model, we first
consider the case in which the SSH chain is prepared in a
separable tensor product of the form

1
1 = 0)) = @(IEo(uo» +|E1(uo))) ® | x(1 = 0)), (13)

where the electrons are initially in a superposition state of
the ground and the first excited electronic state determined
at the equilibrium nuclear coordinates 1 of the ground PES,
while the initial nuclear state |y(z = 0)) is taken to be the
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ground vibrational state of the ground PES. As shown in
Fig. 1 (left panel), these two PESs are well separated in
energy and there are no avoided crossings, making the pure-
dephasing model of the decoherence applicable. In this model,
the vibronic evolution leads to an entangled vibronic state of
the form

1
1Q(1)) = $(|E0(M0)> ® | xo()) + |E1(u)) ® | x1(1))), (14)

with initial condition | yo(z = 0)) = | x1(t = 0)) = | x (¢ = 0)).
For this particular case, since | yo(t)) is stationary, P =
@I = 3+ FK @) :
IO = 5 + FIA@P, where A1)
(x1(0)| x1(2)) is the autocorrelation function of the excited
state nuclear wavepacket. Thus, P(¢) is determined by A(¢)
provided that the dynamics is pure-dephasing. The autocor-
relation function can be computed without propagating the
quantum state as

1l
==

+ +

30 U=q eV

T T T T
| |

—3 L
T T T

-04 -02 00 02 04 B -04 -02 00 02 04
u; = —us(A)

FIG. 1. Slice of the potential energy surfaces of the SSH Hamiltonian

along up = —u3 with electron-electron interactions U = 0 eV (left) and

U = 0.8 eV (right). Here, uq is the ground-state equilibrium geometry. The

numbers 0-9 (in red) are used to label the first 10 electronic states. For defini-

tiveness, the figure only shows those states with a zero net spin along the z
direction.
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- anft , 5 FIG. 2. Decoherence dynamics for a neutral SSH chain
—z+3l40) l with 4 electrons. The plots show the purity dynamics for
- a chain initially prepared in the superposition state with
= 0.5 ) | equal coefficients between the ground and first excited
5 0 2000 4OIOO 6000 8000 10000 12000 14000 16000 state in Eq. (13) using a time step At = 0.001 fs. The
o 10r 4 decay and recurrences in the purity reflect the vibrational
dynamics in the excited state anharmonic PES. Snapshots
of the nuclear probability density in the excited diabatic
0.5 state are shown in the upper panels.. The puri.ty dynamics
0 500 10 0 0 15 0 o 2000 assuming a pure-dephasing model is shown in red.
1.0 8
\ 2 3
' l \
0.5}
0 2 4 6 8 10
time (fs)
b : : 29-31,37 :
ADPR = [0t = 0)ly1 ()P = Z a2l PP erent/h to be dominant in the condensed phase. ' Furthermore, it
) captures recurrences that can be observed in small molecular
= systems and their decay in this case due to anharmonicities
(15) in the PES. At even longer times, beyond these two regions,

where {€,} is the vibrational energy spectrum of the first
excited PES and {a, = (¢u|x1(0))} are the components of
the initial state |y(t = 0)) projected along the vibrational
eigenstates {l¢,)} of the excited PES.

As shown in Fig. 2, the purity decay computed by the
autocorrelation function is in quantitative agreement with the
decoherence dynamics obtained via dynamical propagation
with time step At = 0.001 fs of the chain starting from the
superposition state in Eq. (13). For this time step, the dynam-
ics is essentially exact. Thus, a pure-dephasing picture is valid
to illustrate the main mechanisms of the electronic coherence
loss when starting from the state in Eq. (13).

We identify three distinct regions for the electronic deco-
herence. In the first 4 fs, the purity exhibits a Gaussian decay
that arises due to the initial wavepacket motion on the excited
state diabatic PES. Such initial dynamics leads to a decay in
the nuclear overlap [{ xo(0)| Xl(l)>|2 as the snapshots of the
nuclear wavepacket at t+ = 6 fs and 10 fs show. This ini-
tial decay of wavepacket overlap is the mechanism for the
short-time decoherence that is captured by theories for deco-
herence timescales?*3%37 and that is expected to be dominant
in condensed phase environments. Nevertheless, in this model,
since the excited PES is bounded and of low dimensional-
ity, the nuclear wavepacket eventually returns to its starting
point leading to a recurrence in the purity corresponding to
the snapshot at r = 32 fs. However, due to the anharmonic-
ity of the first excited PES, the recurrences in the purity are
never complete and this leads to an overall decay in the purity
of the system. For longer times, the nuclear wavepacket is
spread along the optical mode of the PES as the snapshot
at t+ = 15000 fs illustrates, which leads to a stable decay in
purity with small high frequency oscillations. Thus, this model
recovers the initial Gaussian decay of purity that is expected

fractional revivals of purity are observed (see Fig. 3), which
is consistent with quantum revival theory.’® This long time
behavior is beyond the applicability of the method, but can
be estimated using Eq. (15). This fractional revival struc-
ture has also been encountered in experiments investigating
the vibrational wavepacket evolution of Br, molecules in the
presence of a solid Ar environment via ultrafast pump-probe
spectroscopy>’ and in those studying the evolution of Ryd-
berg electronic wavepackets in K atoms by photoionization
measurements.*

In this paper, we focus on the first two regions since they
are expected to be the most relevant for molecules.!330-31:41
Determining on general grounds how many recurrences are

1.0

350

150 200 250 300

time (ps)

50 100 400

FIG. 3. Fractional revivals in the decoherence dynamics of a SSH chain
for the initial state in Fig. 2. The decoherence was computed through the
autocorrelation function as P = % + % A 2.
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expected for a given molecule is a challenging problem. For the
SSH model, mixed quantum-classical simulations in Ref. 15
indicate that as the number N of carbon atoms increases the
number of visible recurrences decreases. In these simulations,
for N = 50, only the initial Gaussian decay is observed. Fur-
thermore, other examples in the literature suggest that for
large molecules the initial Gaussian decay is often the dom-
inant feature. This has been seen in Refs. 30 and 31 for
water and paraxylene and in Ref. 33 for a displaced har-
monic oscillator model in the high-temperature limit. How-
ever, there may be particular instances where several recur-
rences are observed even in large molecules, as claimed in
Ref. 41.

B. How large should a bath be in order
for decoherence to emerge?

Another basic question in electronic decoherence is to
determine the size of the bath required for decoherence to
emerge. Investigations for a spin coupled to a bath of spins*
indicate that a bath as small as 20 spins is sufficient to generate
a Gaussian decay in the overlap of the environmental states.
The question is as follows: In a typical molecule, is decoher-
ence only salient in the condensed phase where the electrons
couple to a macroscopic number of bath degrees of freedom
or are a few vibrational coordinates enough, and if so, how
many?

As shown in Fig. 2, two vibrational degrees of freedom
are enough to generate decoherence. However, as discussed
below, in fact, just one vibrational coordinate is enough for
decoherence to emerge since only the optical mode plays an
important role during the dynamics.

To see this, consider Fig. 4 which shows the purity decay
computed through the autocorrelation function along the opti-
cal mode on the first excited PES (1D model) and that on the
full first excited PES (2D model). In this figure, the purity of the
two models essentially coincides. Thus, we conclude that the
coupling of the electrons to one vibrational degree of freedom

T

FIG. 4. The purity decay along the u; = —u3 direction (optical mode) on the
first excited PES (1D model, black) and along the full first excited PES (2D
model, red). The red line cannot be seen as it coincides exactly with the 1D
model black line. This implies that the nuclear evolution along the optical
mode dominates the decoherence dynamics.
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(in this case, the optical high frequency mode) is sufficient to
induce the electronic decoherence. While a macroscopic con-
densed phase is not required for the emergence of electronic
coherence loss, a larger number of bath degrees of freedom
can prevent the emergence of partial recurrences in the purity,
as observed in Refs. 15, 30, and 31.

C. How do the timescales for electronic
and vibrational decoherence compare?

Conventional wisdom indicates that electronic decoher-
ence is fast (~10 fs), while vibrational decoherence is slow
(~102-103 fs).*3> However, in this model, the electronic deco-
herence rate is identical to the nuclear one, i.e., P.(t) = Pn(2).
This is a consequence of the Schmidt theorem®** (or the
Carlson-Keller theorem®), which indicates that for closed
system-bath systems the purity of the system and the bath coin-
cides (see Ref. 1 for a simple derivation of this fact). What is
the origin of this apparent discrepancy?

To resolve this, consider a molecule in the presence of
a solvent. For short times, the total purity decay of molecu-
lar vibrational degrees of freedom is just the product of the
purity decay due to entanglement with electrons and with the
solvent®’

2 2
Pn(t) = Pn_o(t)Py_s(t) = eXp(— (7)2) CXP(— W) (16)
T4 T4

where Py_.(t) is the purity decay due to intra-molecular
electron-nuclear coupling (N — e) and Py—_(t) is that due to
coupling to the solvent (N — s). Here, TL(;) and T;‘Y) are the
corresponding decoherence times. The purity decay due to
N — e interactions is usually faster than that due to N — s
interactions (i.e., Tg(le) < Tg(f)) as a consequence of the
difference in timescales of electronic and solvent motion.

The origin of the apparent discrepancy is clarified by con-
sidering which bath generates the vibrational decoherence.
Reference 43 considers decoherence of a vibrational state asso-
ciated with a single electronic crude Born-Oppenheimer state
caused by a solvent. In this case, there is no appreciable entan-
glement between the electrons and vibrations, i.e., Py—, ~ 1,
and the purity decay due to solvent dominates, i.e., Py = Py—_s.
Thus, in this scenario, the vibrational decoherence would be
slower than the electronic decoherence.

By contrast, consider now the case in which the vibrations
entangle both with electrons and the solvent, as would be the
case for a molecule prepared in state Eq. (13) and immersed
in a solvent. In this case, the purity decay due to the N — ¢
interaction dominates as T;e) < ‘rg) and Py =~ Py_, for
short times. Thus, in this case, the vibrational decoherence is
expected to have an initial timescale for coherence loss iden-
tical to one of the electronic decoherences as the Schmidt
theorem indicates, followed by a slower decay due to the
solvent.

D. Are classical decoherence models accurate?

From a practical perspective, explicit decoherence mod-
eling requires approximate description of the system-
bath dynamics. One common approximation of practical
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importance in molecules is to model the nuclear degrees of
freedom classically.z’15‘20’46’47 In this case, decoherence is
captured by propagating an ensemble of quantum-classical tra-
jectories, each one evolving unitarily, with initial conditions
sampled from an appropriate classical distribution meant to
mimic the initial nuclear quantum state.'>'® The correspond-
ing ensemble average of unitary quantum-classical evolutions
mimics the nonunitary evolution of the density matrix of
the system. This should be contrasted with true decoherence
where a single-quantum system becomes entangled with envi-
ronmental degrees of freedom and the unitary deterministic
evolution of the system plus environment leads to a nonunitary
evolution of the reduced density matrix of the system.

=

o) =

%e—;‘, Jo E1@O @) =EouD ()t

where Eo(u'? (7)) and E | (u'?) (1)) are the ground and first excited
electronic energy at nuclear geometry u(")(¢). To represent the
electronic density operator in matrix form, as in Eq. (17), it is
supposed that in the region where the nuclear wavepacket is
distributed the electronic states are well approximated by dia-
batic states (with no dependence on the nuclear coordinates)
obtained by diagonalizing the Born-Oppenheimer electronic
Hamiltonian at the ground-state minimum energy geometry.
The quantities Ey and E; are determined by diagonalizing
the full SSH Hamiltonian [Eq. (4)] at fixed nuclear positions
u(z) encountered during the dynamics. The u(¢) for each
trajectory is determined by solving Newton’s equations of
motion in a given potential V(u(#)). The electronic density
matrix of the ensemble is taken to be the average over N yy;
trajectories,

pelt) = Z ). (18)

N traj

Using the average electronic density matrix, the purity is
computed, as in Eq. (3). Figure 5 compares the electronic
decoherence dynamics generated by moving the nuclei classi-
cally along the ground PES (V = Ey(u(?))), first excited PES
(V = E(u(t))), the mean field PES between the two
(V = (Eo(u(t)) + E1(u(2)))/2), and a flat PES (V = 0) with
the exact results. For short times (top panel), electronic deco-
herence dynamics generated by MQC along any potential
essentially coincides with the exact method.

These simulations numerically validate a recent theoret-
ical analysis®’ which indicates that MQC methods correctly
capture the initial purity decay when the initial state is sam-
pled from the Wigner distribution, irrespective of the potential
that is employed in the dynamics. Beyond short times, the
simulations show that MQC schemes can capture some of
the quantum recurrences, albeit the dynamics beyond short
times depends sensitively on the potential V and severely
overestimates the decoherence for this model.
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To what extent are classical bath models able to capture
quantum decoherence processes in molecules?

To test this, we contrasted the exact decoherence dynam-
ics of the SSH chain obtained in Sec. III A as prepared in
state Eq. (13) with results obtained in a mixed quantum-
classical (MQC) approximation where the nuclei move along
a given fixed PES and the electrons instantaneously respond
to the nuclear coordinates. In the MQC approximation, we
choose the initial conditions for the nuclei by sampling from
the Wigner distribution of the ground vibrational state of the
ground PES. At time ¢, the electronic density matrix for the ith
trajectory represented in the diabatic basis 1Ey(ug)), 1E1(up))
is

L= b I3 Bolu®(W)—E @ (¢ ))dr

; a7

LSS}

N—=

Thus, MQC schemes with initial Wigner sampling for
decoherence are expected to be accurate in the condensed
phase, where the decoherence time is believed to be governed
by the initial decay of purity.

E. How does electronic decoherence vary
with the mass of the nuclear bath?

It is challenging to intuitively predict what would be
the effect of changing the mass of the nuclear bath on elec-
tronic decoherence timescales. Heavier nuclei move slower,

— Exact

Lo — Ground PES I
— First excited PES
—— Mean field
— Flat potential

0.5F
o
2 o0 1 2 3 2 5
3
o

0.5

0 50 100 150 200
time (fs)

FIG. 5. Mixed quantum-classical description of electronic decoherence for
the initial state Eq. (13). The plots show the purity of an ensemble of MQC
trajectories initially sampled from the ground Wigner distribution of the nuclei.
The nuclei evolve in the ground (red) and first excited (blue) PES, their mean
(yellow) PES, and a flat potential (magenta). Note that the initial purity decay
is independent of the potential on which the classical bath propagates and
that it is a good approximation to the exact decoherence for short times. For
longer times, the MQC scheme overestimates the overall decoherence time
when recurrences are present.
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and hence the decoherence is expected to be slower too. How-
ever, increasing the mass (decreasing the frequency) of the
bath also makes the energy spectrum of the bath denser and
this is expected to lead to faster decoherence. Which of these
two processes is dominant? Furthermore, what happens as the
nuclear mass becomes comparable to the mass of the electron
and the system is beyond the regime of applicability of the
Born-Oppenheimer approximation?

Insights into these problems were obtained by com-
puting the purity dynamics for SSH chains initially pre-
pared as in Eq. (13) with varying masses (0.01M, 0.05M,
0.25M, 0.5M, IM, 2M, 3M; M = 1349.14 eV fs*/A?); see
Fig. 6. In different time windows, for 0.25M-3M, as mass
decreases, we observe a faster decay of the initial purity decay,
an earlier appearance of first recurrence peak, and a faster
decay to the asymptotic purity behavior. All of these
observations support our first hypothesis but contradict the
second hypothesis. To differentiate the effects of these two
possible contributions to the purity dynamics, we eliminate

—3M

—0.5M

— 1M —2M

3000

500 1000 1500 _ 2000 2500
1.0 ‘ : : T B
. \ LN
/, \\V' .
1
//,/ ,\\\ v
> 50 60 70
=
S
o
0 2 4 6 8 10
time (fs)
1.0 :
05 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300
T
B | —o.01m —0.05M —1M

purity

FIG. 6. Dependence of the decoherence dynamics on the nuclear mass in
units of M = 1349.14 eV fs?/A2. Bottom panels plot the envelope of the purity
decay [defined by the positions of the peaks in P(t)] versus dimensionless

t

; -t [3K
time 7 = 5/ 37 for all masses.
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the effect of the speed of nuclear bath motion on the deco-
herence by studying how the decoherence changes versus the
number of nuclear oscillation periods by defining a dimension-
less time 7 = £%. Here, the frequency of the optical mode is

used and w = % The envelope of the purity decay versus

7 for various masses is shown in the bottom panels of Fig. 6.
It is clear that for 0.25M-3M the different decoherence versus
7 plots overlap with one another. Thus, for these masses, we
conclude that the effect of the energy spectrum of the bath
on the decoherence is not important, even though the vibra-
tional energy spectrum for heavier masses is, in fact, denser
(see Fig. 7).

As shown in Fig. 6(b), for even smaller masses (0.01M and
0.05M), the purity decay is more complex and deviates from
that observed for the other masses as the Born-Oppenheimer
approximation starts to break down. However even in these
cases, we observe that a lighter bath leads to faster short time
decoherence.

F. What is the effect of preparation
on the decoherence dynamics?

In Sec. III A, III B, III D, and III E, we simulated the
electronic decoherence dynamics by choosing a separa-
ble superposition state of the molecule as an initial state.
This is a common strategy when defining decoherence
time. > 131629314849 However, experiments routinely use
lasers to excite molecules and prepare the initial state. Are
initial separable superpositions representative of the experi-
mental situation? How are the decoherence dynamics affected
by initial state preparation?

To understand this, we investigated the decoherence
dynamics generated by photoexcitation with lasers of differ-
ent durations. Specifically, we consider the SSH molecule in
interaction with alaser in dlpole approximation with radiation-
matter interaction Hry = —,u EvE(r). Here ;1 is the dipole
operator of the molecule, €y is the polarization of light,

0.5 SM_ 0.5 M
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0.0 05 1.5 00 05 10 15
0.5 1M 0.5 0.5M
0.4} 0.4}
a_ o3) 0.3}
S o2t 0.2
I ISLAR 12900 I UL A AR AR T
0 05 10 0.0 15 20
. 0.25M 0 005M
0.4 0.4f
0.3} 0.3}
0.2 0.2} N [
of [ Tap  Jot [ [ [ 1,

L L L [}
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0.0 05 1.0 1.5 2.0 2,5 3.0

vibrational energy (eV)

FIG. 7. Components {a, = (¢n|x1(0))} of the initial nuclear state |x(0))
along the vibrational eigenstates {I¢,)} of the first excited PES. Note that the
vibrational energy spectrum becomes more dense as the mass is increased.
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and E(¢) is its electric field. The laser’s electric field is obtained
from

dA
0 =-L0, (19)

where A(?) is the vector potential defined as

(1-1)?

A(t) = Age  w” sin(wot), (20)

where Ag is the amplitude of the vector potential, #,, is the
width of the Gaussian envelope centered at #y, and wy is the
central frequency of the laser pulse.

To study the effect of preparation on decoherence, a short
ty =2 fs and a long ¢#,, = 100 fs pulse are used to resonantly
photoexcite the exact ground eigenstate of the SSH Hamilto-
nian. The laser frequency wy is chosen to be at resonance with
the energy difference between the ground PES and first excited
PES at the ground state equilibrium geometry. The frequency
content of the short laser pulse (Aw ~ 1 eV) can excite several
vibronic transitions, while the long pulse (Aw ~ 0.02 eV) can
only excite a single (0-0) vibronic transition.

The decoherence dynamics induced by the two pulses is
shown in Fig. 8. Before photoexcitation, the purity is close but
not exactly 1 because the exact ground state of the molecule
is entangled. The short pulse (top panel) creates a vibrational
wavepacket in the excited state. In the limit in which the pulse
is a delta kick and the Frank-Condon approximation is valid,
this wavepacket would be identical to the one in the ground
state. Since this pulse is short enough, the subsequent purity
decay is reminiscent to that in Fig. 2. By contrast, the 100 fs
laser pulse (bottom panel) performs a state-to-state photoex-
citation and no recurrences are observed. The lower purity
after photoexcitation reflects the entanglement properties of
the final state.

As shown, the preparation mode has a strong influence on
the decoherence dynamics. Importantly, model separable ini-
tial superposition states often used to understand decoherence

41.00
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2
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Q 0 15 30 45 60 75 =
= =
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FIG. 8. Effect of preparation on the decoherence dynamics. The plots show
purity during and after laser photoexcitation with a 2 fs laser pulse (top panel)
and a 100 fs laser pulse (bottom panel) resonantly tuned to the HOMO —
LUMO transition. Excitation via a short pulse leads to decoherence dynamics
which is reminiscent to that in Fig. 2. Excitation via along pulse is dramatically
different creating an almost-stationary entangled vibronic state. Insets: Long-
time purity decay.
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after photoexcitation are only relevant in the experimental situ-
ation where a short delta-like laser pulse is employed to initiate
the dynamics.

G. How does the electron-electron interaction
affect the electronic decoherence?

We now numerically address the largely unexplored
connection between electronic interactions and decoherence.
According to the formal analysis in Ref. 22, electron-electron
interactions can influence the decoherence rate only when the
decoherence dynamics is not pure-dephasing in nature, i.e.,
when [I:I o H int] # 0. Below we numerically investigate this
claim and assess the quantitative effect of changing the degree
of electron repulsion on the decoherence. For this, we vary
U from 0 eV to 0.8 eV in Eq. (4) and investigate its effect
on the purity when the system is prepared in (i) the super-
position in Eq. (13) whose dynamics is well approximated
by a pure-dephasing model and (ii) a superposition of the
form

1
Q@ = 0)) = $(|E0(M0)) +1Eo(u0))) ® | x(1 = 0)), (21

which involves electronic states with avoided crossings and
therefore is not expected to be pure-dephasing in nature. Here,
|IE9(up)) is the ninth excited electronic state determined at the
equilibrium nuclear coordinates uy of the ground PES (see
Fig. 1).

Consider first the initial state in Eq. (13). The electronic
decoherence dynamics with various electron-electron interac-
tion strengths U is shown in Fig. 9(a). As shown, the deco-
herence dynamics observes minor changes when the electron-
electron interaction strength U is increased in this case, which
is in agreement with the analysis in Ref. 22. From the per-
spective of the PES, the reason for this behavior is that the
electron-electron interaction does not introduce significant
changes to the shape of the ground and first excited PES
(Fig. 1).

By contrast, when the system is initially prepared in state
Eq. (21), changing U has a strong effect on the purity dynam-
ics. Specifically, as shown in Fig. 9(b) (bottom panel), the
short-time purity dynamics is not affected by changing U.
However, after 5 fs, P(f) changes strongly as U is varied
because changing U changes the shape of the PESs and the
magnitude of the avoided crossings involved. The fact that
changing U strongly influences P(¢) is in agreement with the
formal analysis in Ref. 22. The numerical observation that for
the first 5 fs P(¢) is not affected by changing U indicates that
this segment of the dynamics is approximately pure-dephasing
in nature. In fact, an analysis of the population of the diabatic
states (not shown) indicates that significant population trans-
fer to other diabatic states (4 as labeled in Fig. 1) only occurs
after 5 fs.

Thus, changing U can influence the decoherence dynam-
ics by changing the shape of the PESs and by suppressing
or enhancing avoided crossings. The numerical observations
are consistent with the proposal in Ref. 22 that the electron
correlation and the electronic decoherence only couple for
non-pure-dephasing dynamics.
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FIG. 9. Exact decoherence dynamics for the neutral SSH chain with 4 elec-
trons under different electron-electron interaction strengths U. The chain is
initially prepared in a separable superposition state between (a) the ground
and first excited electronic states [Eq. (13)] and (b) the ground and the ninth
excited state [Eq. (21)]. The PESs for U = 0 and U = 0.8 eV are shown in
Fig. 1. Note that changing U only affects the electronic decoherence in case
(b) where the dynamics is not pure-dephasing.

IV. CONCLUSIONS

In this work, we have presented numerical simulations
of electronic decoherence in a model vibronic SSH molecule
with 4 electrons and 2 vibrations using an exact method that
takes into account electrons and nuclei explicitly and fully
quantum mechanically. The simulations serve as a standard
of electronic decoherence in molecules and address several
fundamental questions about electronic decoherence.

Specifically, we show the following:

1. Coupling to one anharmonic vibrational coordinate is
sufficient for electronic decoherence to emerge. While
in condensed phase environments no recurrences are
expected, in small molecules the decoherence dynam-
ics from initial separable superposition states exhibits
recurrences in the purity and its decay.

2. While vibrational decoherence is usually considered to
be slower than electronic decoherence, their early-time

J. Chem. Phys. 148, 134304 (2018)

decoherence timescales can coincide, even in the con-
densed phase, when electrons and vibrations get entan-
gled during the dynamics.

3. Aclass of mixed quantum-classical (MQC) methods with
initial Wigner sampling capture the early-time decoher-
ence correctly, irrespective of the potential employed in
the propagation. This is in agreement with the theoret-
ical developments in Ref. 37 and suggests that MQC
can be adequate to capture electronic decoherence in the
condensed phase.

4. Decreasing the nuclear mass generally leads to faster
decoherence. During the initial Gaussian purity decay,
this feature was observed even for masses for which
the Born-Oppenheimer approximation is expected to
fail.

5. The initial preparation has a strong influence on the
decoherence dynamics. Model separable initial superpo-
sitions often used to understand decoherence after pho-
toexcitation are only relevant in experiments that employ
delta-like laser pulses to initiate the dynamics.

6. Electron-electron interactions can strongly affect the
electronic decoherence when the electron-nuclear
dynamics is not pure-dephasing. Electronic interactions
influence the decoherence by changing the shape of the
PES and modulating the strength of non-adiabatic effects
in the dynamics. These numerical observations agree
with and give insights into the formal argument in Ref. 22.

While the results pertain to a specific model system, the
generic nature of the employed Hamiltonian permits interpret-
ing them in a broader sense. As such, these insights can be
used to interpret and properly model coherence phenomena in
chemistry.
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