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ABSTRACT: We introduce a general but simple relation between the
timescale for quantum coherence loss and the initial fluctuations of
operators that couple a quantum system with a surrounding bath. The
relation allows the prediction and measurement of early time decoherence
dynamics for any open quantum system, through purity, without
reconstructing the system’s many-body density matrix. It is applied to
predict the decoherence time for basic modelsthe Holstein chain, spin-
boson and Caldeira-Legget modelscommonly employed to capture
electronic, vibrational, and vibronic dynamics in molecules. Such
development also offers a practical platform to test the ability of
approximate quantum dynamics methods to capture decoherence. In
particular, a class of mixed quantum-classical schemes for molecular
dynamics where the bath is treated classically, such as Ehrenfest dynamics,
are shown to correctly capture short-time decoherence when the initial
conditions are sampled from the Wigner distribution. These advances provide a useful platform to develop decoherence times for
molecular processes and to test approximate molecular dynamics methods.

The loss of quantum coherence is a fundamental and
ubiquitous process in nature that occurs in any quantum

system coupled to an environment, e.g., electrons coupled to
vibrations, or vibrations in the presence of solvent. Under-
standing decoherence is central to our description of a variety
of quantum mechanical phenomena that play an important role
in understanding molecular processes, including interference,
adiabatic and nonadiabatic molecular dynamics, measurement,
and the quantum-classical transition.1−6 During decoherence, a
system changes from a pure state σ = |ψ⟩⟨ψ| to a mixed state σ
= ∑iwi |ψi⟩⟨ψi| (ωi > 0). Such a process reduces the ability of a
system to fully exhibit its quantum mechanical features.
In spite of its central role in quantum mechanical processes,

determining decoherence timescales remains an open challenge
because purity and other well-defined basis-independent
measures of decoherence7 are based on the full many-body
density matrix of the system σ(t), which is an experimentally
and theoretically removed quantity.8,9 Experimental and
numerical efforts to monitor decoherence dynamics are thus
forced to do so indirectly via other physical observables that
reflect off-diagonal elements of σ(t) expressed in a given basis,
but that are not necessarily indicative of state purity.2 For
instance, in spectroscopic experiments, the decay of laser-
induced polarization is often used as a measure of decoherence.
The polarization informs about the decay of off-diagonal
elements in the system’s density matrix expressed in the energy
eigenbasis.10−12 However, as a measure of decoherence, such an
approach is limited by the fact that polarization only reflects
coherences between states with nonzero transition dipoles.
Further, the absence of polarization does not necessarily imply
decoherence as, for instance, a pure state prepared in an energy

eigenstate with no net dipole will exhibit zero polarization.
Other commonly used observables such as transport, line-
shapes, and interference can only offer a basis-dependent
perspective on the decoherence dynamics that is not necessarily
informative of state purity.13−16 Ongoing efforts2,17−19 to
understand the role of quantum decoherence in molecules and
materials are currently limited by our ability to directly monitor
state purity.
In this Letter, we introduce a general theory that relates the

short-time purity dynamics to the initial-time fluctuations of
operators that couple a system with a surrounding bath. This
theory is based on a perturbative expansion of purity that is
useful in capturing the initial decoherence dynamics for systems
in interaction with non-Markovian baths. The resulting
expression permits quantifying short-time decoherence time-
scales through experimentally and computationally accessible
quantities. It also opens the way to establish rigorous
decoherence times for basic chemical processes, and to test
the ability of approximate quantum dynamics methods to
correctly capture decoherence. The considerations below apply
to any system-bath Hamiltonian with an initially pure system.
To proceed, consider a general quantum system (:)

coupled to an environment ()), with Hamiltonian H =
+ +H H H: ) :) where H: describes the system, H) the bath,

and
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∑= ⊗
α

α αH S B:)
(1)

the system−bath interactions. Here Sα (or Bα) is an operator
defined in the Hilbert space of : (or )). The dynamics of the
composite system with density matrix ρ is governed by the von

Neumann equation ρ ρ ρ ρℏ = = −i H H H[ , ]d
dt

and gener-

ally leads to entanglement between : and ), and thus to
decoherence.
As a well-defined basis-independent measure of decoherence,

we focus on the purity σ= ≤t t( ) Tr { ( )} 127 : which measures
the nonidempotency of the reduced density matrix of the
system of interest σ ρ=t t( ) Tr { ( )}) , where TrA denotes a
partial trace over the degrees of freedom of =A { , }: ) . The
quantity = 17 for pure states, and < 17 for mixed states. To
define a decoherence time, we assume that the system is
initially in a pure state. This implies that =(0) 17 and that the
initial system-bath state is not entangled, such that
ρ σ ρ= ⊗(0) (0) (0)) where ρ t( )) is the reduced density
matrix for the bath.
To capture the short-time purity dynamics, it is natural to

expand the von Neumann equation around initial time t = 0 in
Schrödinger picture as done in ref 20. That procedure leads to a
formal expression for the decoherence time τd that, while
general, is of limited utility because it depends on the many-
body reduced density matrix σ and requires performing
operations with the full Hamiltonian H. Below we overcome
these limitations and derive a universal and simple formula for
τd that clearly exposes the basic physics behind the early time
decoherence dynamics. To do so, we exploit the general form
for H:) in eq 1 and work in the interaction picture of +H H: )
to considerably reduce the complexity of the calculation and be
able to isolate the full consequences of the short time
expansion. In the interaction picture, the von Neumann
equation is given by

ρ ρℏ ̃ = ̃ ̃i
t

t H td
d

( ) [ , ( )]:) (2)

where Õ = U†OU denotes the operator O in the interaction
picture. In turn, = ⊗U t U t U t( ) ( ) ( ): ) is the evolution
operator of the noninteracting (i.e., =H 0:) ) composite
system, where UA(t) denotes the evolution operator for
subcomponent A.
To determine the purity, it suffices to isolate the reduced

density matrix for the system in the interaction picture, i.e.,
σ ρ̃ = ̃Tr { }) . This is because the purity in the interaction and

Schrödinger picture coincide, i.e., σ σ= = ̃Tr { } Tr { }2 27 : : .
To capture the short-time purity dynamics, we perform a
second‑order expansion in time of eq 2 around t = 0
a n d t h e n t r a c e o v e r t h e b a t h . S p e c i fi c a l l y ,

ρ ρ ρ ρ̃ = + ̃ + ̃
= =

t t t t( ) (0) ( ) ( )
t t

t
t t

d
d 0 2

d
d 0

2 2

2 , where we have

taken into account that at initial time Õ(0) = O(0). The
first-order derivative can be obtained by setting t = 0 in eq 2

ρ ρ̃ =
= ℏt H( ) [ , (0)]

t t i
d
d 0

1
:) . The second-order derivative is

obtained by differentiating eq 2 with respect to time and setting
t = 0,

ρ ρ ρ̃ =
ℏ

+ ℏ
̃

= =

⎡
⎣⎢

⎤
⎦⎥t

t
i

H H
i t

H td
d

( ) 1
( )

[ , [ , (0)]] 1 d
d

( ) , (0)
t t

2

2
0

2
0

:) :) :)

Inserting these two expressions into ρ̃(t) and tracing out the
bath, one obtains

σ σ σ σ̃ = + − ℏ + − ℏt it it( ) (0) ( / ) 1
2

( / )(1) 2 (2)
(3)

w h e r e σ ρ= Tr {[H , (0)]}(1)
) :) a n d

σ ρ ρ= + ℏ ̃
=

⎡
⎣⎢

⎤
⎦⎥{ }tTr [H , [H , (0)]] i H ( ) , (0)

t t

(2) d
d 0

) :) :) :) . Such

σ̃(t) can be used to calculate the purity at short times

σ σ σ= + − ℏ +t it( ) 1 ( / ) Tr { (0) ( ) }2 (2) (1) 27 : (4)

where we have taken into account =(0) 17 and that the first-
order contribution vanishes as σ σ =Tr [ (0) ] 0(1)

: due to the
invariance of the trace under cyclic permutation. Equation 4
recovers the well-known Gaussian decay20 for the initial purity
dynamics τ= −t t( ) exp( / )2

d
27 where

τ σ σ σ= ℏ + −Tr [ (0) ( ) ]d
(2) (1) 2 1/2

: (5)

is the decoherence time, that has been observed in spin,21

electronic22−24 and vibrational decoherence.25

A remarkably simple expression for τd results by taking
advantage of the form for H:) in eq 1. Introducing eq 1 into
σ(1) and σ(2) yields

∑

∑
∑ ∑

σ σ

σ σ σ

σ σ

= ⟨ ⟩

= − ⟨ ⟩

+ ⟨ ⟩ + ⟨ ⟩

α
α α

α β
α β β α α β

α
α α

α
α α

+

S B

S S S S B B

S H B S B H

[ , (0)]

([ , (0)] 2 (0) )

[[ , ], (0)] [ , (0)] [ , ]S

(1)

(2)

,

)

(6)

where [A, B]+ = AB + BA is the anticommutator. Using eq 6 in
eq 5 and simplifying yields the decoherence time

∑τ = ℏ Δ × Δ
αβ

αβ αβ
−(2 )d

1/2) :

(7)

where Δ ≡ ⟨ ⟩ − ⟨ ⟩⟨ ⟩αβ α β α βS S S S: and Δ = ⟨ ⟩αβ α βB B) − ⟨ ⟩⟨ ⟩α βB B
are the crossed fluctuations of the system and bath operator
that enter into H:). Surprisingly, the decoherence time only
depends on H:), with no dependence on the system or bath
Hamiltonian.
Equation 7 is the first result of this Letter. It applies to any

initially pure system provided the system-bath interaction can
be written in the form of eq 1 and does not invoke common
approximations employed in open quantum system dynamics
such as harmonic baths, pure dephasing dynamics and rotating-
wave approximations. As such, it generalizes previous efforts to
develop decoherence times for specific models20,26 and pure
dephasing dynamics.1,27 Equation 7 is symmetric with respect
to ↔: ) reflecting the inherent system-bath symmetry in the
Hamiltonian. However, this does not imply that the
decoherence time for system and bath are identical, as in eq
7 we have supposed that only the system is pure. In the
particular case where both system and bath are initially pure,
then τd for system and bath coincide in agreement with the
Schmidt theorem.28
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At a qualitative level, eq 7 demonstrates that the initial
system and bath state controls the decoherence by influencing
the magnitude of the fluctuations in the operators that enter
into H:). The larger the crossed fluctuations, the faster the
decoherence. This essential feature of eq 7 is best appreciated
in the specific case where there is only one term contributing to

= ⊗H S B:) . In this case, eq 7 simplifies to

τ δ δ= ℏ −B S(2 )d
2 2 1/2

(8)

that directly signals an inverse relation between decoherence
time and the magnitude of initial-time physical fluctuations of
the system and bath operators, δ2B ≡ ⟨B2⟩ − ⟨B2⟩ and δ2S ≡
⟨S2⟩ − ⟨S2⟩, that enter into H:).
Importantly, eq 7 makes the decay of purity at early times an

experimentally and computationally accessible quantity. This is
because it avoids reconstructing the full many-body density
matrix of the system to determine the decoherence dynamics.
Instead, it requires measuring Δαβ

: and Δαβ
) which are few-body

quantities accessible in simulations and experiments. The
crossed fluctuations Δαβ

: and Δαβ
) are determined at initial time

and require no dynamical propagation. Further, Δαβ
: (or Δαβ

) )
depends only on the system (or bath) and, thus, to determine
τd it is sufficient to analyze properties of the isolated system and
bath. Experimentally determining the decoherence time
requires identifying the relevant interaction between system
and bath, and then measuring the associated fluctuations.
A convenient feature of the analysis is that the effects of

independent baths to the decoherence are just additive in τd
−2.

This is because the crossed fluctuations between operators from
different baths vanish. Thus, it is straightforward to consider the
cumulative effect of competing decoherence sources, e.g., the
effect of solvent and vibrations to electronic decoherence in
molecules. For a system interacting with multiple baths

= ···k N1, , ), the total purity function is given as a product

∏ ∑ τ= = −
=

−t t t( ) ( ) exp( ( ) )
k

N
k

k
d

k

1

( ) 2 ( ) 27 7
)

(9)

where t( )k( )7 is the purity decay due to bath k with
decoherence timescale τd

(k).
While the early time Gaussian decay of purity does not

necessarily quantify the complete decoherence dynamics of
molecular systems, experiments in spin21 systems, and
computations for electronic22−24 and vibrational25 decoherence
have identified the Gaussian decay to be a dominant event in
the decoherence dynamics in condensed phase environments.
In an analysis of a pure-dephasing spin-boson problem,1 the
Gaussian decay is seen to dominate for times t < Ω−1, where Ω
is the cutoff frequency of the ohmic harmonic bath. In the long
time limit, the bath induces an exponential decay of coherence.
Thus, the Gaussian decay is expected to be important for non-
Markovian baths as is often the case in chemical dynamics.
Equation 7 makes it straightforward to calculate decoherence

timescales for any system-bath model relevant in chemistry in
the short time regime, and to recover expressions that have
been developed for specific models. For example, consider first
the well-known spin-boson model describing a two-level system
coupled to a harmonic bath.26,29 This model has been widely
used to study electronic decoherence in condensed phase
environments,26 and electronic excitations of biomolecules and
quantum dots in solvents.30 The Hamiltonian for this model is

given by σ σ σ= + Δ + ∑ +μ μ μ
ϵH q c x Hz x z2

1
2 0

0
) where ϵ0 and

Δ are system coefficients, q0 is the system-bath interaction
strength, σi (i = x, y, z) are the spin-1

2
Pauli matrices expressed

in eigenbasis of σz (σz | ± ⟩ = ± | ± ⟩) and∑μcμxμ is a collective
spatial coordinate of the harmonic bath. The bath Hamiltonian

ω= ∑ +μ μ μ μ
μ

μ

⎛
⎝⎜

⎞
⎠⎟H m x

p

m2
1
2

2 2
2

) is composed of a collection of

independent oscillators with frequencies {ωμ}, displacements
{xμ}, momenta {pμ} and associated masses {mμ}. Generally, the
dynamics of this model is not pure dephasing in nature as

≠H H[ , ] 0:) : . Identifying B = ∑μcμxμ and σ=S q z
1
2 0 ,

δ = ∑μν μ ν
β

μ ν
−

β
B c c e x xTr [ ]

Z
H2 1

)
) for a bath initially at thermal

equilibrium of inverse temperature β = 1/kBT and partition
function Zβ =

β−Tr [e ]H
) ) , where we have used ⟨xμ⟩ = 0. The

above expression can be evaluated by taking into account that31

ω
π β ω

ω
β ω β ω

⟨ | | ⟩

= ℏ ℏ − ℏ ℏ ℏ −

μ
β

μ

μ μ

μ

μ μ μ

μ
μ

− μ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

x e x

m m x
2 sinh( )

exp
sinh( )

(cosh( ) 1)

H

1/2 2

to yield δ β ω= ∑ ℏμ ω μ
μ

μ μ
B coth( /2)

c
m

2
2

2

. In the continuous

limit, the variance is given by an integral form δ2B = ∫ J(ω)

coth(βℏω/2) dω, where ω δ ω ω≡ ∑ −μ ω μ
μ

μ μ
J( ) ( )

c
m2

2

is the

spectral density. For a general initial state of the system |ψ⟩ =
c+ |+⟩ + c− |−⟩, δ2S = q0

2|c+|2|c−|2, and

∫τ ω β ω ω= ℏ | || | ℏ+ −
− −q c c J d( ) (2 ( ) coth( /2) )d 0

1 1/2
(10)

which is consistent with the results in ref 26 and the basis for an
often-used expression for the electronic decoherence time.
As a second example, consider now the Caldeira-Legget

model for quantum Brownian motion in which a harmonic
oscillator with coordinate X couples with harmonic bath
through = ∑μ μ μH X c x:) . This model is often employed to
capture vibrational dynamics of molecules in condensed phase
environments.32,33 In this case, we identify S = X and B =
∑μcμxμ is identical to the spin-boson case. Thus,

∫τ δ ω β ω ω= ℏ ℏ −X J(2 ( ) coth( /2)d )d
2 1/2

(11)

in agreement with ref 20.
As a third model, we now focus on the Holstein Hamiltonian

for molecular crystals.34 This is a basic model for vibronic
interactions in molecules and solids.35,36 A decoherence
timescale due to electron-vibrational interactions has not
been developed for this model. The Hamiltonian consists of
an electronic tight-binding chain, where each site μ in the chain
couples to an independent harmonic oscillator of identical mass
M and frequency ω0. The system−bath interaction in this case
is ω= − ∑μ μ μH g M n x2 0:) , where xμ is the μth oscillator
displacement, g is the electron−phonon coupling strength, and
nμ = aμ

†aμ (where aμ
† creates an electron in site μ) is the

Fermionic number operator in the site basis. Due to the
additive properties of the decoherence time for independent
baths, it suffices to consider the interaction with a single
harmonic mode μ and then add over each of these
contributions. For a thermal bath this yields
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∑τ β ω= ℏ ⟨ ⟩ − ⟨ ⟩
μ

μ μ
− g n n2 coth( /2) ( )d

2 2
0

2 2

(12)

which characterizes the temperature dependence of the
decoherence on this many-body molecular system. Equation
12 indicates that for temperatures T < ℏω0/2kB the
decoherence is independent of temperature and determined
by zero-point fluctuations of the bath. For T > ℏω0/2kB
temperature-dependent effects arise because the excited states
of the bath are thermally occupied and lead to additional
sources of decoherence. In fact, the decoherence time decreases
monotonically with increasing T because of the increased
fluctuations of the xμ in the harmonic bath. At T ≫ ℏω0/2kB,
the decoherence time decreases like τd ∼ 1/√T. Further, eq 12
reveals that electronic states for which there is larger fluctuation
in the site occupation numbers will exhibit faster decoherence.
Interestingly, it also determines the dependence of the
decoherence with chain length. If the fluctuations of the site
occupations are comparable among sites, τd ∼ 1/√N, where N
is the number of sites. This decrease in the decoherence time
with system size N is a consequence of the product properties
of the purity.
This analysis can also be used to test the accuracy of

approximate quantum dynamics methods to capture system-
bath entanglement. This is useful because, for realistic system-
bath problems, exact reference full quantum solutions are often
not available to validate approximate methods. An alternative,
in this context, is to perform a short-time analysis of the
approximate equations of motion and then compare with the
exact result in eq 7. This strategy can be used when the
equations of motion of the approximate method directly
follows σ(t).
As a specific case of significant practical importance, consider

quantum molecular dynamic simulations in the condensed
phase. A commonly used approach is mixed quantum-classical
methods37,38 where the dynamics of the bath is treated
classically by propagating an ensemble of trajectories, while
the system is described using quantum mechanics. An
important, and currently open, question is whether this class
of simulations capture decoherence correctly.
As a third contribution of this Letter, below we demonstrate

that a class of quantum-classical schemes, that includes
Ehrenfest dynamics, can offer the correct short-time decoher-
ence dynamics. This is so provided that the initial classical
distribution for the quantum-classical trajectories satisfies the
same crossed fluctuations as the true quantum state that it seeks
to represent, and that the system couples to the bath through
functions of position or momentum only.
To see this, consider a generic quantum-classical method

where the full quantum dynamics is represented by an
ensemble of quantum-classical trajectories. The classical
dynamics of the kth trajectory for the bath is deterministic
and given by Newton’s equations of motion Ṙ(k) =M−1P(k), Ṗ =
−∇V(R(k)), where R(k) is a vector of the positions of all
particles in the bath with conjugate momentum P(k), V(R(k)) is
some effective potential, and M is a diagonal matrix with the
masses in the diagonal. In turn, the quantum system responds
instantaneously to the classical motion and satisfies iℏσ̇(k)(t) =
[H(R(k)(t)), σ(k)(t)], where = +H t H H tR R( ( )) ( ( ))k k( )

SB
( )

: .
The reduced density matrix for the system is obtained by
averaging over trajectories, σ (t) = ∑k σ

(k)(t)/Ntraj, where Ntraj
is the total number of trajectories. Because the system is

supposed to be pure at initial time, the initial density matrix for
all trajectories coincide, i.e., σ(k)(0) = σ(0).
To proceed, we now perform a short time analysis of the

equations of motion in the interaction picture of H:. To
second-order in time,

σ σ σ

σ σ

̃ = − ℏ

−
ℏ

ℏ ̃ +
=

⎛
⎝⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

t it H

t i
t

H H H

( ) (0) [ , (0)]

2
d
d

, (0) [ , [ , (0)]]

k k

k

t

k k

( ) ( )

2

2
( )

0

( ) ( )

:)

:) :) :)

We consider interaction forms in which the bath couples to the
system through its coordinates, i.e., = ∑α α αH f SR( ):) where
Sα is a system operator and fα(R) is a general function of the
bath position coordinates. Taking the ensemble average over
trajectories and using

∑ ∇

̃

= ̇ · + ℏ
α

α α α α

=
t

H

f S i f S HR R R

d
d

( (0) [ (0)] (1/ ) [ (0)][ , ])
t 0

:)

:

we get an equation for the ensemble-averaged reduced
d e n s i t y m a t r i x a n a l o g o u s t o e q 3 ,
σ σ σ σ= + − ℏ + − ℏ∼ it it( / ) ( / )0 cl

(1) 1
2

2
cl
(2). Here

∑

∑
∑

σ σ

σ σ σ

σ σ∇

=

= −

+ ℏ ̇ · +

α
α α

α β
α β α β α β

α
α α α α

+

f S

f f S S S S

i f S f S HR

[ , (0)],

([ , (0)] 2 (0) )

( [ , (0)] [[ , ], (0)])

cl
(1)

cl
(2)

,

:

(13)

where the bar denotes an ensemble average over a classical
distribution of initial conditions ρ R P( , )c

) .
The purity can be calculated in a fashion analogous to eqs

4−7, to give

∑τ = ℏ Δ Δ
αβ

αβ αβ
−(2 )d,MQC

1/2cl: )

(14)

where Δ ≡ −αβ α β α βf f f fR R R R( ) ( ) ( ) ( )cl) . Comparing eq 7

with eq 14, it becomes evident that the mixed quantum-classical
scheme offers the correct short-time purity dynamics provided
that the initial classical distribution has crossed fluctuations
identical to the quantum ones, i.e., when Δ = Δαβ αβcl) ) . For
example, if ρ R P( , )c

) is chosen to be the Wigner distribution
τd, MQC = τd. More generally, any initial classical distribution
whose marginals correctly capture the quantum probability
d i s t r ibut ion in R , i . e . , d i s t r ibut ions such tha t
∫ ρ ρ= ⟨ | | ⟩dP R P R R( , )c

) ) , like the one employed in Bohmian
dynamics,39,40 will suffice. This remarkable result is valid for any
type of bath and system−bath interactions of the form HSB =
∑n f n(R)Sn, including anharmonic baths and nonlinear system-
bath couplings.
System-bath couplings through positions are adequate to

describe electrostatic system−bath interactions, such as those of
a molecule in the condensed phase. By symmetry, the quantum-
classical scheme will also offer the correct purity dynamics for

= ∑α α αH f SP( ):) provided that the distribution of classical
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initial conditions mimics the correct momentum distribution of
the quantum state of the bath. These two cases cover system-
bath couplings encountered in problems of chemical interest.
For even more general system-bath couplings of the form

= ∑α α αH f SR P( , ):) the mixed quantum-classical scheme
will recover the decoherence dynamics if the distribution of
initial conditions correctly captures all the crossed fluctuations
between the {fα(R, P)}. This condition is not usually satisfied
by the Wigner distribution because the classical distribution
function cannot reflect the commutation relation between
position and momentum operators.
Further note that the dynamics of the classical bath could be

on any potential energy surface, and that this choice will not
affect the estimate of the initial decoherence time. In light of
this, it follows that eq 14 also applies to stochastic dynamics for
the bath space because only the initial conditions, and not the
equation of motion for the trajectories, is required to obtain it.
As a particular case of these general observations, we conclude
that the commonly used Ehrenfest approach41 offers a correct
short time decoherence dynamics when the trajectories are
initially sampled through Wigner distribution.42

In conclusion, we have developed a method to theoretically
quantify or experimentally measure early time decoherence
dynamics that does not require knowledge of the full many-
body density matrix of the system, making decoherence
timescales accessible to both theory and experiments. The
method applies to any system−bath problem, and is particularly
useful in cases where the initial Gaussian purity decay
dominates the decoherence dynamics, as expected for
molecular systems in condensed phase environments. Specif-
ically, we isolated a general relation eq 7 between the Gaussian

short-time purity dynamics = τ−t e( ) t /2
d
2

7 and the crossed
fluctuations of the components of the system−bath interaction
which are (experimentally and numerically accessible) few-body
quantities. This relation provides a convenient platform to
determine decoherence times for any system−bath interaction
as demonstrated using the Holstein, spin-boson and Caldeira−
Legget models. A particularly important feature of eq 7 is that,
in the short-time, purity decay due to competing decoherence
processes is multiplicative or, equivalently, τd

−2 is additive. This
structure allows dealing with multiple baths in a simple way in
which each of their effects can be considered separately, and
then combined at the purity level.
Computationally, eq 7 provides means to determine

decoherence times without propagating system−bath dynamics,
or invoking approximations such as the rotating wave, pure
dephasing or harmonic bath approximation. It also constitutes a
useful testbed for approximate description of system−bath
quantum dynamics. In particular, we demonstrated that a class
of mixed quantum-classical schemes for molecular dynamics,
that includes Ehrenfest dynamics, correctly capture the
decoherence time when the initial conditions for the
trajectories are sampled from the Wigner distribution of the
quantum state. These developments provide a well-defined
theoretical platform to quantify decoherence using approximate
methods for quantum dynamics.
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(7) Reńyi, A. On measures of entropy and information. Proceedings of
the fourth Berkeley symposium on mathematical statistics and probability;
University of California Press: Berkeley, CA, 1961; pp 547−561.
(8) Franco, I.; Appel, H. Reduced purities as measures of
decoherence in many-electron systems. J. Chem. Phys. 2013, 139,
094109.
(9) Kar, A.; Franco, I. Quantifying fermionic decoherence in many-
body systems. J. Chem. Phys. 2017, 146, 214107.
(10) Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T.-K.; Mancal, T.;
Cheng, Y.-C.; Blankenship, R. E.; Fleming, G. R. Evidence for wavelike
energy transfer through quantum coherence in photosynthetic
systems. Nature 2007, 446, 782−786.
(11) Collini, E.; Wong, C. Y.; Wilk, K. E.; Curmi, P. M. G.; Brumer,
P.; Scholes, G. D. Coherently wired light-harvesting in photosynthetic
marine algae at ambient temperature. Nature 2010, 463, 644−647.
(12) Zewail, A. H. Optical molecular dephasing: principles of and
probings by coherent laser spectroscopy. Acc. Chem. Res. 1980, 13,
360−368.
(13) Wang, Y.-T.; Tang, J.-S.; Wei, Z.-Y.; Yu, S.; Ke, Z.-J.; Xu, X.-Y.;
Li, C.-F.; Guo, G.-C. Directly Measuring the Degree of Quantum
Coherence using Interference Fringes. Phys. Rev. Lett. 2017, 118,
020403.
(14) Kubo, R. Advances in Chemical Physics; John Wiley & Sons, Inc.:
New York, 2007; pp 101−127.
(15) Allen, L.; Eberly, J. Optical Resonance and Two-level Atoms;
Dover: Mineola, NY, 1975.
(16) Ballmann, S.; Har̈tle, R.; Coto, P. B.; Elbing, M.; Mayor, M.;
Bryce, M. R.; Thoss, M.; Weber, H. B. Experimental Evidence for
Quantum Interference and Vibrationally Induced Decoherence in
Single-Molecule Junctions. Phys. Rev. Lett. 2012, 109, 056801.
(17) Gong, J.; Brumer, P. When is Quantum Decoherence Dynamics
Classical? Phys. Rev. Lett. 2003, 90, 50402.
(18) Izmaylov, A. F.; Franco, I. Entanglement in the BornOppen-
heimer Approximation. J. Chem. Theory Comput. 2017, 13, 20−28.
(19) Kar, A.; Chen, L.; Franco, I. Understanding the Fundamental
Connection Between Electronic Correlation and Decoherence. J. Phys.
Chem. Lett. 2016, 7, 1616−1621.
(20) Kim, J. I.; Nemes, M. C.; de Toledo Piza, A. F. R.; Borges, H. E.
Perturbative Expansion for Loss. Phys. Rev. Lett. 1996, 77, 207−210.
(21) de Lange, G.; Wang, Z. H.; Riste,̀ D.; Dobrovitski, V. V.;
Hanson, R. Universal Dynamical Decoupling of a Single Solid-State
Spin from a Spin Bath. Science 2010, 330, 60−63.
(22) Franco, I.; Brumer, P. Electronic coherence dynamics in trans-
polyacetylene oligomers. J. Chem. Phys. 2012, 136, 144501.
(23) Vacher, M.; Bearpark, M. J.; Robb, M. A.; Malhado, J. a. P.
Electron Dynamics upon Ionization of Polyatomic Molecules:

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.7b01817
J. Phys. Chem. Lett. 2017, 8, 4289−4294

4293

mailto:ignacio.franco@rochester.edu
http://orcid.org/0000-0002-0802-8185
http://dx.doi.org/10.1021/acs.jpclett.7b01817
http://pubs.acs.org/action/showLinks?pmid=28358065&crossref=10.1038%2Fnature21425&coi=1%3ACAS%3A528%3ADC%252BC2sXltl2iur8%253D&citationId=p_n_4_1
http://pubs.acs.org/action/showLinks?pmid=20130647&crossref=10.1038%2Fnature08811&coi=1%3ACAS%3A528%3ADC%252BC3cXhsVygu7o%253D&citationId=p_n_32_1
http://pubs.acs.org/action/showLinks?pmid=17429397&crossref=10.1038%2Fnature05678&coi=1%3ACAS%3A528%3ADC%252BD2sXktVeqt78%253D&citationId=p_n_27_1
http://pubs.acs.org/action/showLinks?pmid=22502527&crossref=10.1063%2F1.3700445&coi=1%3ACAS%3A528%3ADC%252BC38Xlt1emtrc%253D&citationId=p_n_71_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevLett.90.050402&citationId=p_n_51_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FRevModPhys.75.715&citationId=p_n_8_1
http://pubs.acs.org/action/showLinks?pmid=23006194&crossref=10.1103%2FPhysRevLett.109.056801&coi=1%3ACAS%3A528%3ADC%252BC38Xht1Ors7fO&citationId=p_n_49_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Facs.jctc.6b00959&coi=1%3ACAS%3A528%3ADC%252BC28XitVKqurzP&citationId=p_n_53_1
http://pubs.acs.org/action/showLinks?pmid=28595395&crossref=10.1063%2F1.4984128&coi=1%3ACAS%3A528%3ADC%252BC2sXpt1Ors7c%253D&citationId=p_n_23_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FRevModPhys.80.517&coi=1%3ACAS%3A528%3ADC%252BD1cXmvFSqu78%253D&citationId=p_n_10_1


Coupling to Quantum Nuclear Motion and Decoherence. Phys. Rev.
Lett. 2017, 118, 083001.
(24) Arnold, C.; Vendrell, O.; Santra, R. Electronic decoherence
following photoionization: Full quantum-dynamical treatment of the
influence of nuclear motion. Phys. Rev. A: At., Mol., Opt. Phys. 2017, 95,
033425.
(25) Joutsuka, T.; Thompson, W. H.; Laage, D. Vibrational Quantum
Decoherence in Liquid Water. J. Phys. Chem. Lett. 2016, 7, 616−621.
(26) Prezhdo, O. V.; Rossky, P. J. Relationship between Quantum
Decoherence Times and Solvation Dynamics in Condensed Phase
Chemical Systems. Phys. Rev. Lett. 1998, 81, 5294−5297.
(27) Akimov, A. V.; Prezhdo, O. V. Persistent electronic coherence
despite rapid loss of electron-nuclear correlation. J. Phys. Chem. Lett.
2013, 4, 3857−3864.
(28) Ekert, A.; Knight, P. L. Entangled quantum systems and the
Schmidt decomposition. Am. J. Phys. 1995, 63, 415−423.
(29) Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A.;
Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system.
Rev. Mod. Phys. 1987, 59, 1−85.
(30) Gilmore, J.; McKenzie, R. H. Spin boson models for quantum
decoherence of electronic excitations of biomolecules and quantum
dots in a solvent. J. Phys.: Condens. Matter 2005, 17, 1735.
(31) Feynman, R. P.; Hibbs, A. R. Quantum Mechanics and Path
Integrals; McGraw-Hill: New York, 1965.
(32) Caldeira, A.; Leggett, A. Quantum tunnelling in a dissipative
system. Ann. Phys. 1983, 149, 374−456.
(33) Gottwald, F.; Ivanov, S. D.; Kühn, O. Applicability of the
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