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Quantifying fermionic decoherence in many-body systems
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Practical measures of electronic decoherence, called distilled purities, that are applicable to many-
body systems are introduced. While usual measures of electronic decoherence such as the purity
employ the full N-particle density matrix which is generally unavailable, the distilled purities are
based on the r-body reduced density matrices (r-RDMs) which are more accessible quantities. The
r-body distilled purities are derivative quantities of the previously introduced r-body reduced purities
[I. Franco and H. Appel, J. Chem. Phys. 139, 094109 (2013)] that measure the non-idempotency of
the r-RDMs. Specifically, the distilled purities exploit the structure of the reduced purities to extract
coherences between Slater determinants with integer occupations defined by a given single-particle
basis that compose an electronic state. In this way, the distilled purities offer a practical platform to
quantify coherences in a given basis that can be used to analyze the quantum dynamics of many-
electron systems. Exact expressions for the one-body and two-body distilled purities are presented
and the utility of the approach is exemplified via an analysis of the dynamics of oligo-acetylene as
described by the Su-Schrieffer-Heeger Hamiltonian. Last, the advantages and limitations of the purity,
reduced purity, and distilled purity as measures of electronic coherence are discussed. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4984128]

I. INTRODUCTION

Decoherence refers to the change of a state of a
system from a pure state ⇢̂e = | ih | to a mixed state
⇢̂e =

P
i wi | iih i | due to interactions with an environment.1–4

In isolated electron-nuclear systems, electronic decoherence
arises due to the entanglement of the electrons with the nuclear
degrees of freedom caused by electron-nuclear couplings. As
such, electronic decoherence is a basic feature of correlated
electron-nuclear states5 and accompanies most dynamical pro-
cesses in molecules. In addition to its interest at a fundamental
level, determining mechanisms for electronic decoherence6 is
central to interpreting coherence phenomena in matter,4,7–11

to the development of methods to follow correlated electron–
nuclear dynamics,12,13 and is the starting point to develop
potential protocols to protect coherences for quantum control
applications.14,15

In this paper, we focus on the problem of how to quan-
tify electronic coherences16–18 in many-body systems by using
purity and purity-related measures. The purity of an electronic
state is defined as

P(t) = Tr[ ⇢̂2
e(t)] =

X

i

�2
i , (1)

where ⇢̂e(t) is the N-particle electronic density matrix
(obtained by tracing out the nuclear coordinates from the
electron-nuclear density matrix ⇢̂, i.e., ⇢̂e(t)=TrN [ ⇢̂(t)]) and
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�i its eigenvalues (the Schmidt coefficients squared). The
purity is a well-defined measure of electronic decoherence.
It is basis-independent and easy to interpret (P = 1 for pure
systems where the density matrix is idempotent, ⇢̂2

e = ⇢̂e, and
P < 1 for mixed states19,20). In spite of these advantages, it
is often not possible to apply the purity to quantify coher-
ence in many-electron systems because it requires knowing the
N-particle electronic density matrix ⇢̂e(t) which is an exper-
imentally and computationally challenging quantity to obtain
except for few-level problems.21

Thus, it is desirable to develop measures of coherence
that are based on more accessible quantities such as the r-
body electronic reduced density matrices (r-RDMs), (r)�̂. The
r-RDMs are defined by tracing out (N r) electronic degrees
of freedom out of ⇢̂e. In particular, the one and two-body
RDMs are useful targets as they can be propagated directly in
state-of-the-art simulations of many-body systems,22 and they
determine most observable quantities of physical interest. In
analogy with the purity [Eq. (1)], one can define a reduced
purity,23

Pr(t) = Tr[(r)�̂2] =
X

i

(r)
�2

i , (2)

that measures the non-idempotency of the r-RDM, where
(r)�i are the eigenvalues of the r-RDM. As is the case of
purity, the reduced purities are representation independent
and decay with electronic coherence loss in the system.23

Nevertheless, contrary to the purity, as a measure of coher-
ence, these quantities can be difficult to interpret. This is
because the non-idempotency of the r-RDMs induced by
decoherence can also arise due to increased electronic cor-
relation.24 In fact, due to the reduced information contained
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in the r-RDMs, at the r-RDM level, it is very challenging to
distinguish contributions of electronic correlation and deco-
herence to the non-idempotency of (r)�̂. This makes it difficult
to distinguish, for instance, a pure state of an electronically
correlated molecule from a mixed state of an electronically
uncorrelated molecule.

As an alternative, here we introduce distilled purities
[defined by Eqs. (13) and (14)] as a practical measure of
fermionic decoherence in many-body systems. The distilled
purities are based on the r-RDMs and are derivative quanti-
ties of the reduced purities. They summarize the coherence
content between single Slater determinants that form the elec-
tronic state. These quantities are easy to calculate and useful
in interpreting the quantum dynamics of many body systems
in a situation where the well-defined measures of decoher-
ence are not accessible. Nevertheless, as discussed below,
they have the limitation of being manifestly basis-dependent
and of not being simply related to well-defined measures of
coherence such as the purity. As such, the distilled purities
should be seen as useful quantities to interpret dynamics, and
not as fundamental quantities. This is akin to atomic popula-
tion analysis in molecular systems, which are of a significant
interpretative value but for which there is no apparent correct
definition.

This paper is organized as follows: In Sec. II, we define
different kinds of coherences that can be associated with a
many-body electronic density matrix. As the mathematical
formalism of the reduced purities is necessary to introduce
the distilled purities, in Sec. III, we briefly review the reduced
purities and present exact expressions for the one- and two-
body reduced purities. Then, in Sec. IV, we define the dis-
tilled purities, derive exact expressions for the one-body and
two-body distilled purities, and isolate their limiting values.
In Sec. V, the behavior of the reduced and distilled purities
is exemplified for a model molecular system with electron-
vibrational interactions. Last, in Sec. VI, we summarize our
findings and discuss the merits and limitations of the purity,
reduced purity, and distilled purity as measures of electronic
decoherence.

II. DEFINITIONS OF COHERENCE

We begin by defining different types of coherences that
can be studied in the context of many body systems. For defini-
tiveness, consider a pure state of an electron-nuclear system
in the Schmidt form |⌦i= P

i
p
�i |Eii |Rii, where

p
�i are the

Schmidt coefficients, and |Eii and |Rii are the orthonormal
states of the electronic and nuclear subsystems. In the eigen-
basis of the electronic Hamiltonian for a fixed nuclear configu-
ration {|Ej i}, |⌦ i=

P
j |Ej i|�ji, where | Ei i=

P
j cij |Ej i and

|�ji=
P

i
p
�icij |Rii. |�ji can be viewed as the nuclear wave

packets associated with the jth electronic state. In this context,
the N-body electronic density matrix is given by

⇢̂e(t) = TrN
⇥|⌦(t)i h⌦(t)|⇤ =

X

i

�i |Eii hEi |

=
X

j,k

h�k(t)|�j(t)i|EjihEk | , (3)

where the partial trace is over the nuclear degrees of free-
dom.23 In the {|Eji} eigenbasis, the off-diagonal elements of
the electron density matrix are determined by the overlap
|h�k(t)| �j(t)i| between the nuclear wavepackets associated
with different electronic states. In turn, in the Schmidt basis,
⇢̂e(t) is a diagonal matrix with the squared Schmidt coefficients
in the diagonal (

P
i �i = 1).

A. Coherence

We define the degree of coherence of ⇢̂e(t) through the
purity

P(t) = Tr[ ⇢̂2
e(t)] =

X

i

�2
i

=
X

j,k

|h�k(t)| �j(t)i|2  1. (4)

For pure systems, only one Schmidt coefficient is non-zero
and the purity is one. For mixed states with reduced coher-
ence properties, there is more than one non-zero Schmidt
coefficient, and the purity is less than one. From the per-
spective of electron-nuclear dynamics, such decoherence
occurs due to a decay of the overlaps |h�k(t)| �j(t)i| between
the nuclear wavepackets associated with different electronic
states.

B. B-coherence

The purity definition of coherence is well defined and
basis-independent. Nevertheless, often by coherences it is sim-
ply meant that the non-zero off-diagonal elements of the sub-
system’s density matrix are expressed in a given basis,25,26

typically the position or the energy basis. For instance, the
coherences of ⇢̂e in the {|Eji} eigenbasis [see Eq. (3)] are
given by the nuclear wavepacket overlaps |h�k(t)|�j(t)i|. We
will refer to this type of basis-dependent coherence as B-
coherences. While a decay in the B-coherences can lead to
a decay in the state purity, the absence of B-coherences does
not necessarily signal an incoherent state. In this sense, the
B-coherences are useful in interpreting the dynamics of the
system, but they are not necessarily well-defined measures of
coherence.

C. S-coherence

As a particular class of B-coherences, in many-fermion
systems, one is often interested in the B-coherences of the
electronic density matrix expressed in a basis of single Slater
determinants. We will refer to this type of coherence as S-
coherences. These Slater determinants are defined by a given
single-particle orbital basis and refer to the anti-symmetrized
products of such orbitals with integer occupation numbers. A
complete basis of single Slater determinants is constructed by
considering all possible distribution of the electrons among the
single-particle states.

These three definitions of coherences will be of impor-
tance when discussing the utility of the reduced and the
distilled purities.
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III. REDUCED PURITIES

The distilled purities are derivative quantities of the
reduced purities. To define them and understand their sig-
nificance, it is necessary to review basic aspects of the
reduced purities.23 Below we present exact expressions for
the one- and two-body reduced purities, which are the most
important and readily applicable reduced purities. The final
expression for these reduced purities will lead to expres-
sions for the associated one- and two-body distilled puri-
ties. The expressions below generalize the developments in
Ref. 23. As discussed, Eqs. (19) and (21) in Ref. 23 apply
to many-body states with no distinct pairs of Slater determi-
nants that differ by the same particle transition. The equations
below overcome this limitation and apply to general electronic
states.

The reduced purities are a hierarchy of measures of deco-
herence that are based on the well-known hierarchy of r-RDM,
{(r)�̂} (r = 1, 2, . . .). The r-RDMs that define the reduced puri-
ties are obtained by tracing out (N r) electronic degrees of
freedom out of ⇢̂e. Specifically,

(r)�
✏ 01...✏

0
r

✏1...✏r (t) =
1
r!

Tr[c†✏1
c†✏2
. . . c†✏r

c✏ 0r . . . c✏ 02 c✏ 01 ⇢e(t)], (5)

where c†✏i (or c✏i ) creates (or annihilates) a fermion in the
ith spin-orbital, i.e., |✏ ii = c†✏i |0i, where |0i is the vacuum
state.27,28 The creation and annihilation operators satisfy the
usual fermionic anticommutation relations, {c✏i , c†✏j } = �✏i✏j and

{c✏i , c✏j } = {c†✏i , c†✏j } = 0. The r-body reduced purity measures
the non-idempotency of (r)�̂, as defined in Eq. (2). In doing
so, it captures coherences in the system that manifest at the
r-particle level.

At this point, it is convenient to express ⇢̂e in terms of a
basis of Slater determinants,

⇢̂e =
X

n,m

anm |�ni h�m | , (6)

where |�ni corresponds to a single Slater determinant with
integer occupation numbers in a given single particle basis
{|✏ ii}. ann in Eq. (6) denote the population of Slater determi-
nant n, while anm refer to the S-coherences between the n, m
pairs.

As in Ref. 23, we define the order snm of the S-coherence
anm as the number of single particle transitions required to do
a |�ni ! |�mi transition. Specifically,

snm = N �
X

✏

fn(✏)fm(✏), (7)

where fn(✏)= h�n | c†✏c✏ |�ni is the distribution function of
the state |�ni and adopts values of 0 or 1 based on
whether the spin-orbital |✏i is unoccupied or occupied, such
that f 2

n (✏)= fn(✏). The quantity snm 2 [0, N] and takes the
value 1 for pairs of states that differ by single excitations, 2 for
doubles, etc. Note that Pr in Eq. (2) captures S-coherences
of order r or less. This is because S-coherences between
states differing by more than r-body transitions do not appear
in (r)�̂ [Eq. (5)] and are thus not reflected in the r-body
purity.

To obtain expressions for P1 and P2, we adopt the expan-
sion in Slater determinants of ⇢̂e in Eq. (6) and focus on the case

where a distinct pair of states differs by at most two-particle
transitions. Higher-order S-coherences do not contribute to
P1 and P2 and can be ignored. Thus, given the state |�mi in
Eq. (6), all the other states |�ni (n , m) in ⇢̂e that contribute
to the reduced purity are supposed to be at most two-particle
transitions away from |�mi such that snm  2. That is,

|�ni = c†↵2
c�2 c†↵1

c�1 |�mi . (8)

Here the choice ↵1 , �1, ↵2 , �2 is made to guarantee that
|�ni , |�mi. Also, ↵1 , ↵2, �1 , �2 and c†�1

|�mi = c↵1 |�mi
= c↵2 |�mi = 0 is chosen to prevent |�ni from vanishing.
Note that no particular requirement on the occupation of
state �2 is adopted to be able to capture states that differ by
both a single and a two-particle transition within this frame-
work. Further note that the labels ↵1, ↵2, �1, �2 depend on
the pair of states |�ni and |�mi, and they should always be
thought as having the implicit n, m dependence. Such depen-
dence is not made explicit in the interest of simplicity in the
notation.

The detailed calculation of the reduced purities is included
in the Appendix. The one-body reduced density matrix (1-
RDM) associated with ⇢̂e is given by

(1)�✏2
✏1
=

X

m

amm�✏1✏2 fm(✏1) +
X

n,m
n,m

0
anmfm(�1)(1 � fm(↵1))

⇥ (1 � fm(↵2))�↵1�2�✏1�1�✏2↵2 . (9)

Here and throughout, the prime in the second sum indicates
that only pairs of states that differ by at most two-particle
transitions should be considered. The resulting expression for
the one-body purity is given by

P1 =
X

✏1,✏2

(1)
�✏2
✏1

(1)
�✏1
✏2
=

X

✏

*
,
X

m

ammfm(✏)+-
2

+
X

n,m
n,m

0X

p,q
p,q

0
anmapqA1�↵1�2��1�2�↵2�1��1�2 , (10)

where A1 = fm(�1)(1 � fm(↵1))(1 � fm(↵2))fq(�1)(1 � fq(�1))
(1 � fq(�2)). Here we have used the labels ⇢̂e =

P
p,q

apq |�pih�q|

with |�pi = c†�2 c�2 c†�1 c�1 |�qi (p , q) to obtain the transpose of
1-RDM, (1)�✏1

✏2 , as required to evaluate P1. The populations of
the Slater determinants contribute to the first part of P1, while
the S-coherences are captured by the second part. �↵1�2 (��1�2 )
in the second term shows that P1 captures S-coherences of
order 1 between the pair of states |�ni and |�mi(|�pi and |�qi).
Further, distinct pairs of states n, m and p, q contribute to
P1 provided they differ by the same one-particle transition as
indicated by �↵2�1��1�2 . These contributions due to distinct
pairs of states differing by the same one-particle transition
were absent in the previously derived Eq. (19) in Ref. 23.
When these states are not present in ⇢̂e, Eq. (10) reduces to
Eq. (19) in Ref. 23.

Similarly, the 2-RDM associated with the many-body
density matrix in Eq. (6) is
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(2)�✏4,✏3
✏1,✏2 =

1
2

fX
m

ammfm(✏1)fm(✏2)(�✏1✏4�✏2✏3 � �✏1✏3�✏2✏4 )

+
X

n,m
n,m

0
anmfm(�1)(1 � fm(↵1))(1 � fm(↵2))

⇥ fm(✏1)fm(✏2)
⇥
�↵1�2(�✏1�1 (�✏2✏3�↵2✏4 � �✏2✏4�↵2✏3 )

� �✏2�1 (�✏1✏3�↵2✏4 � �✏1✏4�↵2✏3 ))

+ (�✏1�2�✏2�1 � �✏1�1�✏2�2 )

⇥ (�↵1✏3�↵2✏4 � �↵2✏3�↵1✏4 )
⇤ g

. (11)

Adopting the same labels as in P1, the final expression for the
two-body purity is given by

P2 =
X

✏1,✏2,✏3,✏4

(2)
�✏4,✏3
✏1,✏2

(2)
�✏1,✏2
✏4,✏3

=
1
2

X

n,p

annapp

2666664
*
,
X

✏

fn(✏)fp(✏)+-
2

�
X

✏

fn(✏)fp(✏)
3777775

+
X

n,m
n,m

0X

p,q
p,q

0
anmapqA2

f
�↵1�2��1�2�↵2�1��1�2 (N � smq)

+ A3(��1�1��2�2 � ��1�2��2�1 )(�↵1�1�↵2�2 � �↵1�2�↵2�1 )
g
,

(12)

where A2 = fm(�1)(1 � fm(↵1))(1 � fm(↵2))fq(�1)(1 � fq(�1))
(1 � fq(�2)) and A3 = fm(�2)fq(�2). The diagonal terms of
⇢̂e in the single-Slater determinant basis [Eq. (6)] appear
in the first square bracket of the expression whereas the S-
coherences are present in the second square bracket. In addi-
tion to the population-dependent terms and the S-coherences
already captured by Eq. (21) in Ref. 23, Eq. (12) captures S-
coherences of order 1 (or 2) between distinct pairs of states
that differ by the same one-body (or two-body) transition
from each other. This is imposed by the terms �↵2�1��1�2

and (��1�1��2�2 � ��1�2��2�1 )(�↵1�1�↵2�2 � �↵1�2�↵2�1 ) for the
one-body and two-body transitions, respectively.

IV. DISTILLED PURITIES
A. Definition and basic properties

The reduced purities, while numerically accessible, are
typically difficult to interpret because the non-idempotency of
(r)�̂ can arise due to decoherence or due to electronic corre-
lation.23 In fact, the degree to which (1)�̂ deviates from idem-
potency is an established measure of electronic correlation
in isolated many-electron systems.24,29 Further, even the less
demanding goal of attempting to isolate B-coherences among
general many-particle states at the r-RDM level is quite chal-
lenging because these B-coherences can get all mixed up in (r)�̂
when invoking a particular single-particle basis to construct the
r-RDM.

One type of B-coherence among many-particle states that
can, in fact, be isolated at the r-RDM level is that among
Slater determinants defined by a given single-particle basis,
i.e., the S-coherences. As can be seen in Eqs. (10) and (12), both
the one-body and two-body reduced purities are composed of
a term that depends on the populations of the single Slater
determinants, while the second term is completely determined

by the S-coherences. Note that while the S-coherences are not
necessarily indicative of the degree of purity of the system,
they can provide useful information to interpret the dynamics.
The role of the distilled purities introduced below is precisely
to extract the contributions of the S-coherences to the reduced
purities.

The one-body and two-body distilled purities, P̃1 and P̃2,
are defined as follows:

P̃1 = P1 �
X

✏

⇣
(1)�✏✏

⌘2
, (13)

P̃2 = P2 � 2
X

✏1,✏2

⇣
(2)�✏1✏2

✏1✏2

⌘2
. (14)

In essence, the second term in this expression distills the contri-
butions of the S-coherences to Pr by removing the term depen-
dent on the populations of the Slater determinants. Specifically,
the one-body distilled purity is given by

P̃1 =
X

n,m
n,m

0X

p,q
p,q

0
anmapqA1�↵1�2��1�2�↵2�1��1�2 , (15)

where A1 = fm(�1)(1 � fm(↵1))(1 � fm(↵2))fq(�1)(1 � fq(�1))
(1 � fq(�2)), and the sums are over pairs of states that differ
by at most two particle transitions. In obtaining Eq. (15), we
have used the fact that (1)�✏✏ =

P
n annfn(✏), as can be verified

from Eq. (9). In turn, from Eqs. (11) and (12), it follows that
the two-body purity is given by

P̃2 =
X

n,m

0X

p,q

0
anmapqA2

f
�↵1�2��1�2�↵2�1��1�2 (N � smq)

+ A3(��1�1��2�2 � ��1�2��2�1 )(�↵1�1�↵2�2 � �↵1�2�↵2�1 )
g
,

(16)

where A2 = fm(�1)(1 � fm(↵1))(1 � fm(↵2))fq(�1)(1 � fq(�1))
(1 � fq(�2)) and A3 = fm(�2)fq(�2). A detailed calculation of
the one-body and two-body distilled purities is provided in the
Appendix.

The distilled purities provide a succinct way to summarize
the S-coherences in the system in a particular basis. They are
easy to obtain by simple matrix manipulations of the r-RDMs
as indicated in Eqs. (13) and (14). The one-body distilled purity
can capture S-coherences between pairs of Slater determinants
that differ by at most a one-body transition. In fact, the terms
�↵1�2 and ��1�2 guarantee that this is the case. In turn, P̃2 cap-
tures S-coherences of order 1 or 2. When distinct pairs of states
(i.e., {p, q} , {n, m}) appear, they contribute to P̃1 (or P̃2)
only if they differ by the same one-body (or one and two-
body) transition. The distilled purities provide a manifestly
basis dependent measure of coherence that succinctly cap-
tures the behavior of the off-diagonal elements of the few-body
reduced density matrices expressed in a given single-particle
basis.

B. Limiting values

To aid the interpretation of the dynamics of P̃1 and P̃2
in Eqs. (13) and (14), it is useful to determine a few limit-
ing values. The minimum value for the distilled purities is, of
course, P̃r = 0 (r = 1, 2). This occurs when all S-coherences
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of order r or less are zero, i.e., anm = 0, 8n,m. For exam-
ple, when the state can be described as a single-Slater deter-
minant in the given basis, or when the S-coherences in the
system are of order greater than r. A non-zero distilled purity
signals S-coherences in the particular basis. The maximum
reduced purity is achieved for a pure electronic state that can
be described as a single Slater determinant in some basis. In
this case, P1 = N and P2 = N(N + 1)/223 (when contrasting
with the result in Ref. 23, note that a superposition of the sin-
gle Slater determinant in which all the determinants differ by
one particle transitions, snm = 1, must also be a single Slater
determinant30,31). Thus, the maximum value for the distilled
purity is given by

P̃max
1  Pmax

1 �
X

✏

⇣
(1)�✏✏

⌘2

 N �
X

✏

*
,
X

m

ammfm(✏)+-
2


X

m,n

ammannsnm, (17)

where we have used Eq. (7) and the fact that snn = 0. Note
that snm in the equation above can have any value snm 2 [0, N]
because it arises from the contribution of the populations of
the Slater determinants. A less restricting inequality can be
obtained by taking into account that smax

nm = N ,

P̃max
1  N

X

m,n

ammann

 N(1 �
X

n

a2
nn). (18)

By the Cauchy-Schwarz inequality [(
P

i uivi)2  (
P

i u2
i )

(
P

i v
2
i )],

*
,
X

n

ann
+
-

2

= 1  *
,
X

n

a2
nn
+
-
*
,
X

m

1+- = K
X

n

a2
nn, (19)

where K is the total number of determinants that can be
constructed in the given basis. Using this inequality,

P̃max
1  N

 
1 � 1

K

!
. (20)

By a similar argument,

P̃max
2 

X

n>m

ammannsnm(2N � snm � 1)

 N(N � 1)
2

 
1 � 1

K

!
, (21)

where the first inequality is significantly more restrictive than
the second one.

An increase in the distilled purities from their mini-
mum value of 0 indicates the creation of S-coherences in the
given basis. An increase (or decrease) in the value of the S-
coherences will generally lead to an increase (or decrease) in
the distilled purities. Exceptions can arise in the case where
there are distinct pairs of states that differ by the same single
or double particle transition in the superposition as the phase,
and not just the magnitude, of these S-coherences influence
the distilled purities, see Eqs. (A12) and (A23).

V. NUMERICAL EXAMPLES

We now exemplify the behavior of the distilled purities
and contrast it to that of the reduced purities, in the context of
a Su-Schrieffer-Heeger (SSH) model for oligoacetylene,32 a
tight-binding model of non-interacting electrons with electron-
vibrational couplings. Specifically, we consider the dynamics
of a SSH chain composed of four carbon atoms and four ⇡ elec-
trons. The four ⇡ electrons are distributed in four molecular
orbitals |eii of energy ei, leading to 19 possible configurations
(without counting spin degeneracies). A detailed discussion
of the SSH model and the Ehrenfest mixed quantum-classical
technique used to follow the vibronic dynamics has been
presented before.33–35 Here the electrons are the system of
interest, the nuclei are the bath, and the electron-ion coupling
is the source of electronic decoherence.

To test the utility of the distilled purity to inform about
dynamical processes in the system, we consider the fol-
lowing exemplifying cases: (i) An initial separable vibronic
state in which the electrons are in a superposition of energy
eigenstates, i.e.,

|⌦(0)i = 1p
2

(|�0i + |�1i) ⌦ | �0i , (22)

where | �0i is the ground vibrational state associated with
the ground electronic state |�0i, and |�1i is an excited elec-
tronic state. Both |�0i and |�1i are taken to be the sin-
gle Slater determinants; (ii) a chain in the ground vibronic
state subject to a laser pulse that is resonant with a spe-
cific electronic transition. Case (i) is simple to interpret using
reduced purities because the population of the Slater determi-
nants remains approximately constant, and thus, the dynam-
ics of the reduced purities reflect the dynamics of the S-
coherences.23 By contrast, in case (ii) the populations of the
Slater determinants involved change in time, making it chal-
lenging to separate the dynamics of the S-coherences from
the dynamics of the populations using the reduced purities.
Through (i), we illustrate how the distilled purities reflect
the decay of the initial S-coherences. Through (ii), we test
the ability of the distilled purities to monitor laser-induced S-
coherences that are obscured by the population dynamics in the
reduced-purities.

To explore the effect of changing the basis, the distilled
and reduced purities are computed in the molecular orbital
(energy) |eii = c†ei |0i and the site |ni = c†n |0i basis, where |0i
is the vacuum state. The molecular orbitals are the eigenstates
of the single-particle SSH Hamiltonian in the optimal geome-
try of the chain. In turn, the sites refer to the spatially localized
orbitals located at the positions of the carbon atoms in the
chain. Naturally, these two basis are connected via a unitary
transformation: c†n =

P
i hei |ni c†ei

. By applying this transfor-
mation to the 1-RDM and 2-RDM, the distilled and reduced
purities can be computed in either the site or energy basis using
Eqs. (2), (13), and (14). Roughly speaking, the S-coherences in
site representation signal spatial coherences in the state, while
the S-coherences in energy representation signal dynamics.

Figure 1 shows the dynamics of the distilled purities for
the SSH chain prepared in an initial superposition of the form
Eq. (22), where |�0i and |�1i differ by (a) one- or (b) two-
particle transition in the molecular orbital basis as specified
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FIG. 1. Distilled (blue, red) and reduced purity (brown, green) in energy and site basis during the vibronic evolution of a neutral SSH chain with four
electrons and clamped ends. The system is initially prepared in a superposition of the electronic ground state |�0i and an excited state |�1i with an initial
state |⌦(0)i = 1p

2
( |�0i + |�1i) ⌦ |�(0)i, where |�(0)i is the ground vibrational nuclear state. The occupation of the molecular orbitals in the single Slater

determinants |�0i and |�1i in each case is shown in the inset. In (a), |�0i and |�1i differ by a one-body transition, while in (b) |�0i and |�1i differ by a
two-body transition. The dashed lines show limiting values for the distilled and reduced purities for (in black) a pure electronic state ⇢̂e = | i h |, where
| i = 1p

2
( |�0i + |�1i), and (in purple) a mixed state of the form ⇢̂e =

1
2 ( |�0i h�0 | + |�1i h�1 |).

in the figure. During the vibronic dynamics of such states,
there is evolution of the nuclear wavepacket in the excited
state potential energy surface. Such evolution leads to a decay
of the nuclear wavepacket overlap |h�0(t) | �1(t)i| associated
with the ground |�0i (| �0i) and excited electronic states |�1i
(| �1i). Such an overlap determines the S-coherences between
|�0i and |�1i and its decay leads to a decay of the purity
of the electronic subsystem [cf. Eq. (4)] and thus to a decay
in the reduced purity.23 As shown in Fig. 1, the distilled
purities capture the wavepacket evolution that leads to such
decoherence. In both the energy and site bases, the distilled
purities display a fast initial decay with recurrences every
⇠30 fs. These recurrences arise from the time dependence of
the overlap of the nuclear wavefunctions in the ground and
excited electronic states [see Eq. (4)] and signal the oscillatory
motion of the nuclear wavepacket in the excited state potential.
Between consecutive recurrences, the amplitude of the dis-
tilled purity diminishes and eventually reaches an asymptotic
value.

Note that in this case the dynamics of the distilled puri-
ties closely mimics that of the reduced purities. The reason for
this is because in this particular case there are no apprecia-
ble changes in the populations of the two Slater determinants
involved [amm in Eq. (10)], and thus, the dynamics of both
quantities is determined by the S-coherences. Nevertheless,
while the reduced purities are basis independent, the value

of the distilled purities depends on the single-particle basis
employed. In fact, in the energy basis, the distilled puri-
ties asymptotically go to zero signaling the fact that the S-
coherences between the Slater determinants constructed using
the molecular orbitals basis decay to zero upon time evolution.
However, the distilled purities in the site basis do not go to
zero indicating that even for the asymptotic state some spatial
coherences remain, as is expected for a quantum mechanical
system.

Consider now how the distilled purities change with the
coherence order. The initial superposition in Fig. 1(a) is of
order one, while that of (b) is of order 2. The superposition in
(a) is visible both in P̃1 and P̃2, and the fall of P̃2 is (N 1)
times larger than that of P̃1. By contrast, in (b) P̃2 follows the
decay of S-coherences while P̃1 remains constant because it
cannot distinguish a coherence of second order from a mixture
of such states. At initial time, P̃2 takes its maximum value that
is consistent with the superposition in question and evolves
with the vibronic evolution.

Figure 2 shows the dynamics of the polarization and the
distilled and reduced purities during resonant photoexcitation
with a 10 fs laser pulse. Such a laser creates a superposition
of single Slater determinants that is then subject to decoher-
ence due to vibronic couplings. During photoexcitation, the
one- and two-body purity decays, as a result of the popu-
lation of other possible Slater determinants and subsequent
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FIG. 2. Distilled and reduced purities during resonant photoexcitation of a
neutral SSH chain with 4 electrons initially in the ground vibronic state with

a 10 fs laser pulse. The laser pulse E(t) = E0e
�
✓

t�5t!
t!

◆2

cos(!t) (upper panel
in black) is chosen to be at resonance with the HOMO-LUMO transition.
Here, tw = 10 fs, E0 = 1.0 V/Å, and ~! = 4.15 eV. The dipole moment
dynamics is shown in red in the upper panel. Notice the growth and decay
of the distilled purities in the energy basis as the field develops, signaling
laser-induced S-coherences and their eventual decay.

decoherence processes after photoexcitation. Such a decay is
mirrored by the distilled purities in the site basis that signal
the decay of spatial S-coherences that is onset by photoexcita-
tion. Interpreting the dynamics of the reduced purities is quite
challenging as it involves determining all the Slater determi-
nants that participate in the dynamics, their populations, and
the S-coherences among them. By contrast, the distilled puri-
ties in the energy basis clearly show the S-coherences that are
created by the laser pulse and their eventual decay due to deco-
herence, as signaled by the growth of the distilled purities and
their decay in the energy basis. The distilled purities in the
energy basis attain a maximum at 50 fs when the laser pulse
is at its maximum and follow the dynamics of the polarization
as both quantities depend on the S-coherences in the energy
basis. This example clearly shows how the distilled purities can
aid the interpretation of the dynamics of many-body systems
by signaling S-coherences that are created/destroyed during
evolution.

VI. FINAL REMARKS

The basic features of the three measures of electronic
decoherence discussed in this paper—purity, reduced purity,

and distilled purity—are summarized in Table I. The purity
is a well-defined basis-independent measure of coherence
that directly signals the extent to which the electronic sub-
system is described as a mixed state. Whenever possible,
this is our preferred quantity to interpret decoherence. How-
ever, to obtain it, one needs the N-particle electronic density
matrix which is generally inaccessible, making the purity often
impractical to measure electronic decoherence in many body
systems.

The reduced purities introduced in Ref. 23 measure
the non-idempotency of the r-RDMs. These quantities are
basis independent and accessible from simulations that prop-
agate the 1-RDM and 2-RDM directly. For non-interacting
electronic systems, the decay of the reduced purity directly
signals coherence loss. Nevertheless, in the general case
where both electron-nuclear and electron-electron interac-
tions play a role in the dynamics, the decay of the reduced
purity can come from electronic correlation or from deco-
herence. Since these two effects are challenging to sepa-
rate at the r-RDM level, the reduced purities are of lim-
ited applicability as a measure of electronic coherence or
correlation.

As a practical alternative, here we have introduced the
one- and two-body distilled purities in Eqs. (13) and (14) as
a tool to interpret the dynamics of many-body systems in the
presence of decoherence. The distilled purities are derivative
quantities of the reduced purities that distill the contributions
of the S-coherences to the reduced purities. That is, the dis-
tilled purities summarize the S-coherences among N-particle
single Slater determinant states with integer occupations as
defined by a given single particle basis. In this analysis, we
have derived an exact expression for the one-body and two-
body distilled purities of general electronic states. For this, we
generalized the expressions for the one- and two-body reduced
purities in Ref. 23, by capturing possible contributions coming
from two distinct pairs of states that differ by the same one- or
two-particle transition.

The distilled purities are manifestly basis-dependent
quantities that are useful in interpreting the dynamics of many-
body systems. As an example, the distilled purities were
shown to be able to signal S-coherences that are generated
during resonant photoexcitation of a model molecule, which
are obscure in the reduced purities. Further, since the r-body
distilled purities can capture S-coherences of order r or less,
investigating the behavior of the distilled purities of different
orders can aid the interpretation of the many-body dynamics.
In spite of these advantages, the distilled purity is not sim-
ply related to the N-body purity of the system, and thus, it
is not indicative of the degree of coherence of the system.
For example, a pure electronic state that can be described
as a single Slater determinant in a given basis will have a
distilled purity of zero in such a basis. This limitation is
shared with other basis-dependent measures of coherence. For
instance, in the energy eigenbasis, a ground state molecule
in a pure state will have no off-diagonal elements in the
density matrix and thus zero B-coherences, even when it is
in a pure state. Albeit not necessarily indicative of whether
there is actual decoherence in the system, these quantities
are useful in analyzing the quantum dynamics of many-body
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TABLE I. Basic features of the different ways to quantify electronic decoherence in many-body systems.

Type Definition Remarks

Purity P = Tr[⇢̂2
e ]

•Measures the non-idempotency of ⇢̂e

•Well-defined and easy-to-interpret measure of
coherence
•Basis independent
•Numerically removed for many-body systems

Reduced purity Pr = Tr[(r)�̂2]

•Measures the non-idempotency of (r)�̂

•Difficult to interpret as both decoherence
and correlation among electrons lead to non-
idempotency of (r)�̂

•Basis independent
•Easy to compute

Distilled purity

P̃1 = P1 �
X

✏

⇣
(1)�✏✏

⌘2
•Summarizes S-coherences (off-diagonal ele-

ments among Slater determinants defined by
a given single particle basis)

P̃2 = P2 � 2
X

✏1,✏2

⇣
(2)�

✏1✏2
✏1✏2

⌘2
•Useful and easy to interpret, but not necessar-

ily informative of state purity
•Basis dependent
•Easy to compute

systems in a situation where the purity is an inaccessible
quantity.
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APPENDIX: DERIVATION OF THE REDUCED
AND DISTILLED PURITIES

Below we derive the one- and two-body reduced and dis-
tilled purities [Eqs. (10), (12), (15), and (16)] for the general
electronic state in Eq. (6).

1. One-body reduced and distilled purity
a. 1-RDM

The 1-RDM for a general electronic state of the form in
Eq. (6) is given by

(1)�✏2
✏1
= Tr[c†✏1

c✏2 ⇢̂e]

=
X

n

ann h�n | c†✏1
c✏2 |�ni +

X

n,m
n,m

anm h�m | c†✏1
c✏2 |�ni

=
X

n

ann h�n | c†✏1
c✏2 |�ni

+
X

n,m
n,m

0
anm h�m | c†✏1

c✏2 c†↵2
c�2 c†↵1

c�1 |�mi , (A1)

where we have used Eqs. (5) and (8), and where the prime
indicates that the sum goes over pairs of states that dif-
fer by at most two-particle transitions. Note that in the last
summation, only those states that differ by a single particle
transition contribute, as pairs with coherences of higher order
are not visible in the 1-RDM. As mentioned in the text, the
labels ↵1, ↵2, �1, �2 have the implicit dependence on n and m.

The second term can be developed further by first taking the
creation and annihilation operators into normal ordering and
then employing the restrictions on ↵1, ↵2, �1, �2 detailed
under Eq. (8) in Sec. III,

h�m | c†✏1
c✏2 c†↵2

c�2 c†↵1
c�1 |�mi

= fm(�1)(1 � fm(↵1))(1 � fm(↵2))

⇥ h�m |
⇣
�✏2↵2�↵1�2 c†✏1

c�1 + �↵1�2 c†✏1
c†↵2

c�1 c✏2

+ �↵2✏2 c†✏1
c†↵1

c�1 c�2 + �↵1✏2 c†✏1
c†↵2

c�2 c�1

+ c†✏1
c†↵2

c†↵1
c�1 c�2 c✏2

⌘
|�mi

= �↵1�2�✏1�1�✏2↵2 fm(�1)(1� fm(↵1))(1� fm(↵2)). (A2)

By inserting Eq. (A2) into Eq. (A1), it then follows that

(1)�✏2
✏1
=

X

m

ammX +
X

n,m
n,m

0
anmY , (A3)

where X = �✏1✏2 fm(✏1), Y = fm(�1)(1� fm(↵1))(1� fm(↵2))�↵1�2

�✏1�1�✏2↵2 , which is Eq. (9) in the main text. For obtaining
the one body purity, it is also useful to express the transpose
of the 1-RDM in Eq. (A1) with a different set of labels p
and q ( ⇢̂e =

P
p,q

apq |�pih�q | and |�pi = c†�2 c�2 c†�1 c�1 |�qi) as

follows:

(1)�✏1
✏2
=

X

q

aqqZ +
X

p,q
p,q

0
apqW , (A4)

where Z = �✏2✏1 fq(✏2), W = fq(�1)(1� fq(�1))(1� fq(�2))��1�2

�✏2�1�✏1�2 . Note that the labels �1, �2, �1, �2 depend on p, q
implicitly. The expressions in Eqs. (A3) and (A4) for 1-RDM
are now employed to find P1.
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b. One-body reduced purity

The one-body reduced purity is given by

P1 = Tr[(1)�̂2] =
X

✏1,✏2

(1)
�✏2
✏1

(1)
�✏1
✏2

=
X

✏1,✏2

*..
,
X

m

ammX +
X

n,m
n,m

0
anmY

+//
-
*...
,
X

q

aqqZ +
X

p,q
p,q

0
apqW

+///
-

=
X

✏1,✏2

26666664
X

m,q

ammaqqXZ +
X

n,m
n,m

0X

q

anmaqqYZ

+
X

m

X

p,q
p,q

0
ammapqXW +

X

n,m
n,m

0X

p,q
p,q

0
anmapqYW

377777775
, (A5)

where

XZ = �✏1✏2 fm(✏1)fq(✏2),

YZ = �✏1✏2�↵1�2�✏1�1�✏2↵2 fq(✏2)fm(�1)

⇥ (1 � fm(↵1))(1 � fm(↵2)) = 0,

XW = �✏1✏2��1�2�✏2�1�✏1�2 fm(✏1)fq(�1)

⇥ (1 � fq(�1))(1 � fq(�2)) = 0,

YW = A1�↵1�2�✏1�1�✏2↵2��1�2�✏2�1�✏1�2

(A6)

and A1 = fm(�1)(1� fm(↵1))(1 � fm(↵2))fq(�1)(1 � fq(�1))
(1� fq(�2)). By removing the terms that vanish, and simpli-
fying, one obtains a final expression for the one-body purity
[Eq. (10)],

P1 =
X

✏

*
,
X

m

ammfm(✏)+-
2

+
X

n,m
n,m

0X

p,q
p,q

0
anmapqA1�↵1�2��1�2�↵2�1��1�2 . (A7)

This equation can be simplified further by noticing that
�↵1�2 (��1�2 ) implies that the pair n, m (p, q) is connected by
a one-body transition. Thus

P1 =
X

✏

*
,
X

m

ammfm(✏)+-
2

+
X

n,m
n,m

X

p,q
p,q

anmapqA1�snm ,1�spq ,1�↵2�1��1�2 . (A8)

c. One-body distilled purity

To calculate the one-body distilled purity in Eq. (13), it is
necessary to obtain the square of the diagonal element of (1)�̂.
From Eq. (A3),

X

✏

⇣
(1)�✏✏

⌘2
=

X

✏

*
,
X

m

ammfm(✏)+-
2

. (A9)

This is exactly the same as the first term in Eq. (A8). Thus the
one-body distilled purity in Eq. (13) can be simplified to

P̃1 =
X

n,m
n,m

X

p,q
p,q

anmapqA1�snm ,1�spq ,1�↵2�1��1�2 ,
(A10)

where A1 = fm(�1)(1� fm(↵1))(1� fm(↵2))fq(�1)(1� fq(�1))(1
� fq(�2)). The equation above is equivalent to
Eq. (15).

d. Example

As a simple example, consider P1 for a 2-particle system
with ⇢̂e =

P4
n,m=1 anm |�ni h�m |, where |�1i = c†1c†2 |0i , |�2i

= c†3c†4 |0i , |�3i = c†1c†4 |0i , |�4i = c†2c†3 |0i. In this case,
Eq. (A8) yields

P1 = (a11 + a33)2 + (a11 + a44)2 + (a22 + a44)2 + (a22 + a33)2

+ 2
⇣
|a13 |2 + |a14 |2 + |a23 |2 + |a24 |2

⌘

� 2
⇣
a14a23 + a24a13 + a⇤13a⇤24 + a⇤23a⇤14

⌘
. (A11)

The associated distilled purity is then

P̃1 = 2
⇣
|a13 |2 + |a14 |2 + |a23 |2 + |a24 |2

⌘

� 2
⇣
a14a23 + a24a13 + a⇤13a⇤24 + a⇤23a⇤14

⌘
. (A12)

Notice that the reduced purity is composed of a part that
depends on the populations of the Slater determinants and
another one on the S-coherences. The distilled purities extract
the contributions due to the S-coherences. The S-coherences
between each pair of states that differ by a one body transi-
tion contribute to P1 and P̃1. In addition, there are additional
contributions in P1 that arise when two distinct pairs of states
differ by the same one-particle transition. For example, the
term a14a23 appears in P1 because both pairs of states (|�1i
and |�4i, and |�2i and |�3i) differ by the same one-body
transition as |�2i = c†3c1 |�3i and |�4i = � c†3c1 |�1i. The
negative sign in the expression arises from the ordering of the
states.

2. Two-body reduced and distilled purity
a. 2-RDM

The 2-RDM for the state in Eq. (6) is given by

(2)�✏4,✏3
✏1,✏2 =

1
2

Tr[c†✏1
c†✏2

c✏3 c✏4 ⇢̂e]

=
1
2

X

m

ammh�m |c†✏1
c†✏2

c✏3 c✏4 |�mi

+
1
2

X

n,m
n,m

0
anmh�m |c†✏1

c†✏2
c✏3 c✏4 c†↵2

c�2 c†↵1
c�1 |�mi,

(A13)
where we have used Eqs. (5) and (8). Note that in the last sum-
mation only those states that differ by one- or two-particle
transition contribute, as pairs with coherences of higher
order are not visible in the 2-RDM. This summation can be
developed further by adopting normal ordering and imposing
the restrictions on ↵1, ↵2, �1, and �2,
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h�m | c†✏1
c†✏2

c✏3 c✏4 c†↵2
c�2 c†↵1

c�1 |�mi = fm(�1)(1 � fm(↵1))(1 � fm(↵2)) h�m |
�
�↵2✏4�↵1�2 c†✏1

c†✏2
c✏3 c�1 � �↵2✏4�↵1✏3 c†✏1

c†✏2
c�2 c�1

� �↵2✏4 c†✏1
c†✏2

c†↵1
c�2 c✏3 c�1 + �↵1�2�↵2✏3 c†✏1

c†✏2
c�1 c✏4 � �↵1�2 c†✏1

c†✏2
c†↵2

c✏4 c✏3 c�1

� �↵1✏4�↵2✏3 c†✏1
c†✏2

c�1 c�2 + �↵1✏4 c†✏1
c†✏2

c†↵2
c✏3 c�1 c�2 � �↵2✏3 c†✏1

c†✏2
c†↵1

c�2 c�1 c✏4

+ �↵1✏3 c†✏1
c†✏2

c†↵2
c✏4 c�2 c�1 + c†✏1

c†✏2
c†↵2

c†↵1
c�2 c✏4 c✏3 c�1

� |�mi
= fm(�1)(1 � fm(↵1))(1 � fm(↵2))fm(✏1)fm(✏2)

⇥
�↵1�2

�
�✏1�1 (�✏2✏3�↵2✏4 � �✏2✏4�↵2✏3 )

� �✏2�1 (�✏1✏3�↵2✏4 � �✏1✏4�↵2✏3 )
�

+ (�✏1�2�✏2�1 � �✏1�1�✏2�2 )(�↵1✏3�↵2✏4 � �↵2✏3�↵1✏4 )
⇤
.

(A14)

Inserting this expression into Eq. (A13), we obtain a final expression for the 2-RDM [Eq. (11)],

(2)�✏4,✏3
✏1,✏2 =

1
2

266664
X

n
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X

n,m
n,m

0
anmfm(�1)(1 � fm(↵1))(1 � fm(↵2))fm(✏1)fm(✏2)

⇥
f
�↵1�2

⇣
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� �✏2�1 (�✏1✏3�↵2✏4 � �✏1✏4�↵2✏3 )
⌘

+ (�✏1�2�✏2�1 � �✏1�1�✏2�2 )(�↵1✏3�↵2✏4 � �↵2✏3�↵1✏4 )
g 3777775

. (A15)

To calculate the purity, it is also useful to obtain an expression for the transpose of Eq. (A15) with alternative indexes. Specifically,
we employ ⇢̂e =

P
p,q

apq |�p i h �q | and |�p i = c†�2 c�2 c†�1 c�1 |�q i. In this case,

(2)�✏1,✏2
✏4,✏3
=

1
2

2666664
X

p
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X
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+ (�✏4�2�✏3�1 � �✏4�1�✏3�2 )(��1✏2��2✏1 � ��2✏2��1✏1 )
g 3777775

. (A16)

The expressions in Eqs. (A15) and (A16) are now employed to find P2.

b. Two-body reduced purity

The two-body reduced purity is given by

P2 =
X
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+///
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377777775
, (A17)
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where

AC =
X

✏1,✏2,✏3,✏4

fn(✏1)fn(✏2)fp(✏3)fp(✏4)(�✏1✏4�✏2✏3 � �✏1✏3�✏2✏4 )2

= 2
X

✏1,✏2

fn(✏1)fp(✏1)fn(✏2)fp(✏2) � 2
X

✏1

fn(✏1)fp(✏1),

BD = 4A2

f
�↵1�2��1�2�↵2�1��2�1 (N � smq)

+ A3(��1�1��2�2 � ��1�2��2�1 )(�↵1�1�↵2�2 � �↵1�2�↵2�1 )
g
,

with A2 = fm(�1)fq(�1)(1 � fm(↵1))(1 � fm(↵2))(1 � fq(�1))
(1 � fq(�2)) and A3 = fm(�2)fq(�2). The terms BC and AD
vanish after simplification because of the constraints on
↵1, ↵2, �1, �2, �1, �2, �1, �2. Thus, the final expression for the
two-body reduced purity is [Eq. (12)]
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⇤
.

(A18)

c. Two-body distilled purity

To calculate the distilled purity using Eq. (14), it is nec-
essary to first determine the square of the diagonal elements

of (2)�̂, i.e.,
⇣

(2)�✏1✏2
✏1✏2

⌘2
. From Eq. (A15),
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(A19)

Thus,
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(A20)

Note that this term is identical to the term in the first square
bracket of Eq. (A18). Inserting Eqs. (A20) and (A18) into
Eq. (14), we arrive at the final form of the two-body distilled
purity in Eq. (16),

P̃2 =
X

n,m
n,m

0X

p,q
p,q

0
anmapqA2

f
�snm ,1�spq,1�↵2�1��1�2 (N � smq)

+ A3(��1�1��2�2 � ��1�2��2�1 )(�↵1�1�↵2�2 � �↵1�2�↵2�1 )
g
,

(A21)

where A2 = fm(�1)fq(�1)(1 � fm(↵1))(1 � fm(↵2))(1 � fq(�1))
(1� fq(�2)) and A3 = fm(�2)fq(�2). Both S-coherences of order
1 and 2 are captured by P̃2.

d. Example

As an example, consider the 3-particle system with
⇢̂e =

P4
n,m=1 anm |�ni h�m |, where |�1i = c†1c†2c†3 |0i , |�2i

= c†1c†2c†6 |0i , |�3i = c†3c†4c†5 |0i , |�4i = c†4c†5c†6 |0i. In this case,
Eq. (A18) yields

P2 = 2(a2
11 + a2

22 + a2
33 + a2

44) + (a11 + a22)2

+ (a33 + a44)2 + 4(|a12 |2 + |a34 |2)

+ 2(|a13 |2 + |a24 |2 + a13a42 + a31a24). (A22)

The associated distilled purity is

P̃2 = 4(|a12 |2 + |a34 |2)

+ 2(|a13 |2 + |a24 |2 + a13a42 + a31a24). (A23)

The reduced purity has contributions from the populations of
the Slater determinant states and the S-coherences between
them, while the distilled purities capture just the S-coherences.
The S-coherences between the states that differ by the one-
body transition and the two-body transition contribute to P2
and P̃2, respectively. For example, the term |a12|2 appears
due to a one-body transition between |�1i and |�2i, while
|a13|2 appears due to a two-body transition between |�1i and
|�3i. Moreover, two distinct pairs of states that differ by
the same two-body transition also contribute to the two-body
reduced and distilled purities. The term a13a42 appears as
both pairs of states (|�1i and |�3i, and |�2i and |�4i) dif-
fer by the same two-body transition as |�3i = c†5c2c†4c1 |�1i
and |�4i = c†5c2c†4c1 |�2i.
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