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Phase-controllable transport in laser-irradiated spatially symmetric systems is shown to arise both
quantum mechanically and classically from a common field-driven interference mechanism. Specifically,
the quantum-to-classical transition for symmetry breaking in a quartic oscillator driven by an !� 2!
field is studied. For this, a double perturbation theory in the oscillator anharmonicity and external field
strength, that admits an analytic classical limit, is carried out in the Heisenberg picture. The interferences
responsible for the symmetry breaking are shown to survive in the classical limit and are the origins of
classical control. Differences between reflection symmetry that plays a key role in the analysis, and parity
that does not, are discussed.
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There are several qualitatively different ways to induce
directed charge transport in spatially symmetric systems.
The obvious choice is to subject the system to a bias
voltage. Alternatively, it is also possible to drive the system
with a zero-mean time-periodic electric field (e.g., a laser
source) with frequency components j! and k!, where j
and k are integers of different parity. The response of the
system is net dipoles or currents whose magnitude and sign
can be manipulated by varying the relative phase between
the two laser frequencies. Hence, the j!� k! field breaks
the inherent left/right symmetry of the system without
introducing a bias in the potential. Below we focus on
the popular case of j � 1, k � 2, although the arguments
are quite general.

Laser-induced symmetry breaking has been studied
theoretically [1–5] and demonstrated experimentally [6–
8] in systems ranging from atoms to solid state samples.
The effect is of general applicability and, with current laser
technology, can be used to induce directed transport on a
femtosecond time scale in any anharmonic symmetric
system. Such field-induced asymmetry in quantum me-
chanics is attributed [1–3,8] to the creation of superposi-
tion states that are not eigenstates of the parity operator.
Further, the quantum picture regards the symmetry break-
ing as arising from interference between two independent
optical pathways to the same final state [1–3,7,8], an effect
that is also nonclassical. Specifically, the two pathways in
this case are a one-photon and a two-photon route. Since
the one-photon process creates states with opposite parity
to the initial state while the two-photon process couples
states with the same parity, the interference between them
creates an excited state of broken symmetry.

However, symmetry breaking has also been observed in
classical mechanics [9], where parity is not a conserved
quantity and quantum interference does not play a role.
Further, unrelated classical and quantum arguments for
symmetry breaking have been given in terms of the third-
order nonlinear response of the system to the radiation field

[10–12]. In this order, the system response mixes the laser
frequencies and their harmonics in such a way as to gen-
erate a phase-controllable zero-harmonic (dc) component
in the photoinduced dipoles/currents.

Given this collection of results it is, quite simply, unclear
how quantum and classical symmetry breaking are related,
if at all.

In this Letter we address this issue by analytically con-
sidering the quantum-to-classical transition of the net di-
pole induced by an !� 2! field in a quartic oscillator.
This is the simplest model with well-defined classical
analog wherein induced symmetry breaking is manifest.
To do so, we introduce a time-dependent perturbation
theory approach in the Heisenberg representation that ad-
mits an analytic classical (@ � 0) limit [13] in the response
of the oscillator to the field.

In addition to the actual result on symmetry breaking,
the approach below significantly extends recent develop-
ments in perturbative studies in the Heisenberg picture
[14,15] by (a) including the effects of the external field
in the perturbative expansion, and (b) in establishing the
power of the method in studies of classical-quantum cor-
respondence. Further, by working in the Heisenberg pic-
ture we construct a useful time-dependent perturbation
theory that is general and independent of the initial state.
Although individual terms in the resultant quantum ex-
pression are found to have a singular classical limit, the
overall result is shown to have an analytic @ � 0 limit that
coincides with true classical behavior. In this way, it pro-
vides direct insight into symmetry breaking arising classi-
cally and quantum mechanically. Since physical insight is
the primary focus of this work, resultant complicated
analytic formulas are relegated to supplementary informa-
tion [16].

Consider then a charged particle confined in a bounding
quartic potential that is being driven by an external radia-
tion field E�t� in the dipole approximation. The anhar-
monic oscillator is defined by the Hamiltonian
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where x, p, and m denote the coordinate, momenta, and
mass of the particle. Here � 2 f0; 1g, � > 0, with � deter-
mining the strength of the anharmonicities in the potential.
The total system Hamiltonian is

 H�x; p; t� � H0�x; p� � qxE�t�; (2)

where q is the charge on the system and E�t� �
�! cos�!t��!� � �2! cos�2!t��2!�.

Insight into spatial asymmetry induced by E�t� can be
obtained via the long-time average of the position operator
in Heisenberg picture, i.e., x̂H�t�, a quantity which mea-
sures the average symmetry breaking. To obtain this quan-
tity we perform a double perturbative expansion for the
operator x̂H�t� in the anharmonicities and in the radiation-
matter interaction. The anharmonicities are included to
minimal order in a multiple-scale approximation, while
the interaction with the radiation field is taken into account
up to third order.

Given x̂H�t�, the classical solution x�t� can then be
extracted by first identifying the position and momentum
operators, x̂ � x̂H�0� and p̂ � p̂H�0�, in x̂H�t� with the
classical position and momentum variables, x � x�0� and
p � p�0�, and then taking the limit @! 0, i.e.,

 x̂ H�x̂; p̂; t� �������������!x̂!x;p̂!p

@!0
x�x�0�; p�0�; t�: (3)

With x̂H�t� and x�t� one can then calculate quantum or
classical averages for any initial state,

 hx̂i�t� � Tr�x̂H�t��̂0�; hxic�t� � Tr�x�t��0�x; p��; (4)

respectively. Here, �̂0 is the density matrix of the quantum
system at preparation time, while �0�x; p� is a classical
phase-space distribution of initial conditions.

Consider then the evolution operator Û�t�, which
provides x̂H�t� � Ûy�t�x̂ Û�t�. A perturbative expansion
of Û�t� is most conveniently carried out in the inter-
action picture. In it, Û�t� � Û0�t�ÛI�t�, where Û0�t� �
exp�� i

@
Ĥ0t� is the evolution operator in the absence of

the field while ÛI�t� captures the effects induced by V̂�t� �
�qx̂E�t� on the dynamics. In this way the problem is split
into two steps—a perturbative analysis to include the
oscillator anharmonicity and a subsequent perturbation to
include the external field. The former utilizes a recently
obtained exact operator solution for x̂I�t� � Ûy0 �t�x̂Û0�t� to
minimal order in a quantum multiple-scale perturbation
theory [15]. This solution includes corrections to all orders
in the anharmonicities and, in this way, captures an addi-
tional time scale in the dynamics (the quantum analog of a
first-order frequency shift). Reexpressed in terms of raising
(ây) and lowering (â) operators and modified to adopt the
units in the Hamiltonian [Eq. (1)], it reads

 x̂ I�t� � x0�ei�!0��̂
��tây � e�i�!0��̂

��tâ�: (5)

Here, �̂n � �Ĥ � n@!0=2�� is an operator that contains
the renormalization of !0 due to the anharmonicities, � �
3��=�m!3

0� is proportional to the strength of the anharmo-

nicities, Ĥ �x̂; p̂� � p̂2

2m�
1
2m!

2
0x̂

2 is the Harmonic oscil-
lator Hamiltonian operator, x̂ � x0�â

y � â� and
p̂ � im!0x0�â

y � â� are the position and momentum op-
erators in the Schrödinger picture, and x0 �

���������������������
@=�2m!0�

p
is

a characteristic length. In deriving Eq. (5) from the one in
Ref. [15], it is useful to note that
 

âf�Ĥ � k� � f�Ĥ � @!0 � k�â;

âyf�Ĥ � k� � f�Ĥ � @!0 � k�ây;
(6)

for any operator f�Ĥ � k� �
P
1
n�0�Ĥ � k�nfn, where

fn and k are c numbers. This follows from the commuta-
tion relations between â and ây, �â; ây� � 1̂.

The perturbative expansion for ÛI�t� is given by [17]
ÛI�t� � Û�0�I � Û

�1�
I �t� � Û

�2�
I �t� � Û

�3�
I �t� � � � � , where

Û�0�I � 1̂ is the zeroth-order term and

 Û �n�I �t� � �
i
@

Z t

0
dt0V̂I�t0�Û

�n�1�
I �t0� �n 	 1�; (7)

the nth order correction. Here, V̂I�t� � �qx̂I�t�E�t� is the
radiation-matter interaction in the interaction picture. In
order to solve Eq. (7) it is necessary to guarantee that all the
operators within the integral commute; the required opera-
tor reordering was done using Eq. (6). Within this frame-
work, x̂H�t� � ÛyI �t�x̂I�t�ÛI�t� was calculated up to third
order in the field. The result (where H.c. stands for
Hermitian conjugate),
 

x̂H�t� � x̂I � �Û
�0�y
I x̂I�Û

�1�
I � Û

�2�
I � Û

�3�
I � �

1
2Û
�1�y
I x̂IÛ

�1�
I

� Û�1�yI x̂IÛ
�2�
I � H:c:�; (8)

is composed of 34 370 oscillatory terms that evolve on
various time scales determined by the different combina-
tions of the natural oscillator frequencies and the two laser
frequencies. Out of all of them, only that subset that has a
zero-frequency (dc) component in the oscillatory exponen-
tials contributes to the net dipole. The remaining terms,
with a residual frequency dependence, average out to zero
in time. For example, all terms that are first order in the
field average out to zero, so that symmetry breaking is a
nonlinear optical effect.

Not all the dc terms in Eq. (8) induce symmetry break-
ing. If the initial state is symmetric, only those terms for
which i� j is odd in Û�i�yI x̂I�t�Û

�j�
I give a nonzero contri-

bution to the expectation value. That is, symmetry breaking
comes from the interference between an even and an odd
order response to the field. This result is well known when
the initial state is a parity eigenstate [1–3,7]. However, in
fact this result arises from considerations of reflection
symmetry, rather than of conservation of parity, a subtle
but significant distinction since parity is nonclassical.
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To make explicit the distinction between being reflection
symmetric and being in a state of definite parity, consider
the density operator in the position representation:
��x0; x� � hx0j�̂jxi. If ��x0; x� � ���x0;�x� the state is
said to be reflection symmetric. Note that the Wigner
distribution associated with such state will satisfy
�W�x; p� � �W��x;�p�, the usual statement of reflection
symmetry. If, in addition, all the contributing states in the
general mixture �̂ �

P
ipij�iih�ij are of the same parity

then ��x0; x� � 
��x0;�x� � 
���x0; x� and �̂ is of defi-
nite parity. The latter two properties are a consequence of
parity only and not of reflection symmetry. Being in a state
of definite parity always implies reflection symmetry, but
the converse is only true for pure states.

Consider then the role of reflection in determining the
response to the field. Specifically, consider hx̂np̂mi �R

dxdx0hxjx̂np̂mjx0i��x0; x� � �2�@��1
R

dxdx0dpxnpm�
ei�x�x

0�p=@��x0; x�. If ��x0; x� � ���x0;�x� then hx̂np̂mi �
��1�n�mhx̂np̂mi. Hence, only those terms with (n�m)
even make a nonzero contribution to the trace. In Eq. (8),
this only happens for those terms with (i� j) odd in
Û�i�yI x̂I�t�Û

�j�
I because they have ânâym with (n�m)

even, where â � �x̂� ip̂=m!0�=�2x0�. As a result, the
zeroth and second-order terms in Eq. (8) do not contribute
to the expectation value and can be discarded. Parity con-
siderations that solely arise in quantum mechanics do not,
however, add anything to the analysis.

This approach yields a final operator expression for the
net dipole:

 

x̂H�t� � x̂I�t�Û
�3�
I �t� � Û

�1�y
I �t�x̂I�t�Û

�2�
I �t� � H:c:;

�
q3�2

!�2!

16m2!0

�̂�Ĥ ; !; �; @� cos�2�! ��2!�; (9)

where the overbar denotes time averaging. The explicit
expression for the operator �̂ is given in the supplementary
material [16]. Note that the only operator entering into �̂ is

Ĥ , i.e., �̂�Ĥ ; !; �; @� �
P
1
n�0 �n�!; �; @�Ĥ

n
, where the

�n coefficients are c numbers. Further, in the limit of zero
anharmonicity, all symmetry breaking effects are lost, i.e.

lim�!0 �̂�Ĥ ; !; �; @� � 0. Hence, it is precisely because
of the anharmonicities that the system can exhibit a non-
linear response to the laser, mix the frequencies of the field
and generate a zero-harmonic component in the response.

Equation (9) makes clear, first and foremost that the sign
and magnitude of the dipole can be manipulated by varying
the relative phase between the two frequency components
of the laser. This central feature arises irrespective of the
initial state and it is the source of control in laser-induced
symmetry breaking. Further, the @! 0 limit of Eq. (9) is
analytic and nonzero, despite the fact that individual per-
turbative terms entering into Eq. (9) can exhibit singular
behavior as @! 0. Hence, the field-induced interferences
responsible for symmetry breaking do not disappear in the
classical limit and are the source of classical control.

A comparison of the classical solution

 x�t� �
q3�2

!�2!

16m2!0

�c�H ; !; �� cos�2�! ��2!� (10)

extracted from x̂H�t� as in Eq. (3) [where �c�H ; !; �� is
given in the supplementary material [16]] with a separate
fully classical calculation, shows excellent agreement. For
example, Fig. 1 shows a comparison of x�t� with a numeri-
cal integration of Newton’s equations for a particle initially
at rest (H � 0). The two coincide for a wide range of
anharmonicities and field strengths, the agreement being
excellent for weak fields and small anharmonicities where
the perturbative considerations are valid. Thus, we are able
to recover true classical symmetry breaking from the quan-
tum solution. Hence, the quantum and classical versions of
laser control of symmetry breaking are one and the same
physical phenomenon.

In the quantum case, the net dipoles can be divided
into an @-independent classical-like contribution x̂c�t� �
lim@!0 x̂H�t� and an entirely quantum-mechanical part
x̂q�t�, so that:

 x̂H�t� � x̂c�t� � x̂q�t�: (11)

The nature of the quantum corrections in this equation can
be associated with the @ dependence of the resonance
structure of the oscillator. Indeed, within the approxima-
tions that underlie Eq. (9), the!� 2! laser samples a total

of eight resonances at f 1
2 �!0 � �Ĥ 
 @!0=2���, !0 �

�Ĥ 
 @!0=2��, !0 � �Ĥ 
 @!0��, 2�!0 � �Ĥ 

@!0���g. As @! 0 these eight resonances merge together

into three broad classical resonances at [ 1
2 �!0 � �Ĥ �,

!0 � �Ĥ , 2�!0 � �Ĥ �] changing, in this way, the mag-
nitude and sometimes the sign of symmetry breaking. For
small anharmonicities the quantum character of the reso-
nances is not apparent and x̂H�t� � x̂c�t�. In fact, quantum
corrections only begin to appear at third order in �.

FIG. 1. Comparison of the classical limit of x̂H�t�, x�t� (solid
line), with the numerical solution (points) of Newton’s equa-
tions, with 2�! ��2! � 0 and H � 0. Here � �
q3�2

!�2!��
3=2=�m3!9

0� is a quantifier of the strength of the field
and the anharmonicities.
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Interestingly, when expectation values are calculated, as
in Eq. (4), different initial states emphasize either x̂c�t� or
x̂q�t� depending on the nature of the state. To demonstrate
this and expose the differences between quantum and
classical symmetry breaking, we explore the whole pa-
rameter space of Eqs. (9) and (10). To do so we are required
to select an initial state. In the quantum case, we choose the

nth eigenstate of Ĥ with energy En � @!0�n�
1
2�. In the

classical case, we choose a classical ensemble of particles
with phase-space density �0�x; p� � ��H � En�=�,
where � is a normalization factor. For this density the
classical ensemble average of x�t� coincides with the ex-
pectation value of the classical part of x̂H, hx�t�ic � hx̂c�t�i.
This is true because h�c�H ; !; ��ic � �c�En;!; �� in
close analogy with the quantum case.

Figure 2 shows some representative results. The classi-
cal solution [Fig. 2(a)], which in the parameter space
shown is the same for all En, is composed of three broad
resonances at ! � �12 �!0 � �En�; !0 � �En; 2�!0 �

�En��. In contrast, the quantum solutions exhibit a fine
@-dependent resonance structure, making quantum sym-
metry breaking look very different from the classical one.
For example, the quantum n � 0 case [Fig. 2(b)] differs
dramatically from the classical solution except at small
values for the anharmonicities. In all other cases, out of
resonance and at small anharmonicities the classical and
quantum solutions resemble one another. The situation is
very different near resonances where the quantum features
can be dominant. Nevertheless, as the energy En of the
initial state increases [the progression shown in Figs. 2(b)–
2(e)], and becomes large with respect to @!0, the quantum
resonances gradually merge together into three broad clas-
sical resonances. That is, the state progressively empha-
sizes the classical part of x̂H�t�, x̂c�t�, and quantum and
classical symmetry breaking coincide.

In conclusion, we have shown that laser control of
symmetry breaking in quantum and classical systems cor-
respond to the same physical phenomenon, with a common
reliance on classically meaningful reflection symmetry
arguments, rather than parity. The observed symmetry

breaking is a consequence of field-driven interferences
that do not vanish in the classical limit.
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FIG. 2 (color). Net dipole induced by an !� 2! field in a quantum and classical anharmonic oscillator. The contour plots show the
dependence of 2

� arctan��16m2!4
0En=�q

3�2
!�2! cos�2�! ��2!���hx̂H�t�i� on the anharmonicities of the potential (x axis) and the

frequency of the field (y axis). The system is initially prepared in the nth eigenstate of Ĥ with energy En � @!0�n�
1
2�. Panel

(a) shows the classical part of the solution which in this parameter space is the same for all En. The remaining panels show the full
quantum-mechanical solution for: (b) n � 0; (c) n � 1; (d) n � 3; and (e) n � 40. The color code is given at the far right.
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