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When can time-dependent currents be reproduced by the Landauer
steady-state approximation?
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We establish well-defined limits in which the time-dependent electronic currents across a molecular
junction subject to a fluctuating environment can be quantitatively captured via the Landauer steady-
state approximation. For this, we calculate the exact time-dependent non-equilibrium Green’s function
(TD-NEGF) current along a model two-site molecular junction, in which the site energies are subject
to correlated noise, and contrast it with that obtained from the Landauer approach. The ability of the
steady-state approximation to capture the TD-NEGF behavior at each instant of time is quantified via
the same-time correlation function of the currents obtained from the two methods, while their global
agreement is quantified by examining differences in the average currents. The Landauer steady-state
approach is found to be a useful approximation when (i) the fluctuations do not disrupt the degree of
delocalization of the molecular eigenstates responsible for transport and (ii) the characteristic time
for charge exchange between the molecule and leads is fast with respect to the molecular correlation
time. For resonant transport, when these conditions are satisfied, the Landauer approach is found
to accurately describe the current, both on average and at each instant of time. For non-resonant
transport, we find that while the steady-state approach fails to capture the time-dependent transport
at each instant of time, it still provides a good approximation to the average currents. These criteria
can be employed to adopt effective modeling strategies for transport through molecular junctions in
interaction with a fluctuating environment, as is necessary to describe experiments. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4981915]

I. INTRODUCTION

Recent years have seen remarkable progress in the
measurement, modeling, and understanding of structure-
function relations in single-molecule junctions.1–9 Much of
this progress has been catalyzed by experimental develop-
ments that have allowed for reliable single molecule junction
formation and characterization.10–20 In particular, the scan-
ning tunneling microscope based break-junction (STM-BJ)
technique offers statistically reproducible properties through
rapid, sequential measurement of large numbers of nanoscale
junctions.12

All of these experiments are performed in an explicitly
time-dependent fashion. The time-dependence can arise from
repeatedly creating, elongating, and eventually breaking the
molecular junction. It can also arise from interactions of the
molecule with a thermally fluctuating environment, such as
the electrodes or the surrounding solvent. Therefore, in princi-
ple, to model this class of experiments it is necessary to solve
the Liouville von Neumann equation for a molecule in the
presence of leads21–33 using, for example, the time-dependent
non-equilibrium Green’s function (TD-NEGF) method.28–33

Nevertheless, for computational convenience, it is often
desirable to approximate the time-dependent transport with
steady-state techniques such as the Landauer formalism by
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supposing that, even in the presence of time-dependent forces,
the transport across the junction is in steady-state at each
instant of time during the dynamics. In fact, a standard
approach when investigating transport in fluctuating molecu-
lar junctions is to perform the molecular dynamics simulation
of the fluctuating junction, generate a series of snapshots
for the junction geometry, and then calculate the steady-
state Landauer transport for each snapshot encountered during
the dynamics.20,34–42 This approach is convenient because it
avoids numerically propagating the dynamics of the density
matrix to describe experiments.

Recently, the validity of this often-used steady-state strat-
egy has been called into question43 in the context of simula-
tions of transport through DNA in a solvent which indicates
that the steady-state approximation can offer a qualitatively
wrong description of the dynamics. While the steady-state
approach is clearly not expected to be quantitative under
all modeling conditions, its practicality makes it desirable
to understand the regime in which it can safely be used to
model time-dependent transport phenomena. In this work, we
determine well-defined limits in which the time-dependent
transport characteristics of molecules subject to a fluctuating
environment can be quantitatively captured via the Landauer
approach.

To do so, we consider electron transport through a two-site
tight-binding molecular junction with on-site energies sub-
ject to correlated noise and contrast the current that results
from an exact TD-NEGF28 method with that generated by
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supposing that the system is at steady-state at each instant of
time. We focus on molecular junctions composed of identical
subunits in which the molecular energy eigenstates are delo-
calized across the junction and connect the two contacts. We
study the effect of the molecule-lead coupling, the intramolec-
ular coupling, and the energy fluctuations on the agreement
between the two formalisms. As detailed below, the Landauer
steady-state approach is found to be a useful approximation
when (i) the fluctuations do not disrupt the degree of local-
ization of the molecular eigenstates responsible for transport
and (ii) the characteristic time for charge exchange between
molecule and leads is fast with respect to the molecular corre-
lation time. These criteria can be employed to adopt effective
modeling strategies for transport through molecular junctions
in interaction with a fluctuating environment, as is necessary
to describe state-of-the-art experiments.

This manuscript is organized as follows: Sec. II defines
the model fluctuating molecular junction, the computational
strategy, and the metrics of agreement employed in this work.
Sec. III discusses the computationally observed agreement
between Landauer and TD-NEGF currents under a wide
variety of modeling conditions and presents an interpreta-
tion of the results in terms of noise-induced changes in the
degree of localization. Our main conclusions are summarized
in Sec. IV.

II. MODEL AND METHODS
A. Fluctuating molecular junction

As a model of a molecular junction that is subject to a
fluctuating environment, we consider a two-site tight-binding
molecule coupled to macroscopic electrodes in which the on-
site energies are subject to correlated noise, see Fig. 1. The
Hamiltonian for the composite metal-molecule-metal junction
is given by

H(t) = HM(t) + HL + HML, (1)

where HM(t) describes the molecule, HL the leads, and HML
the molecule-lead coupling. Here, the molecular Hamiltonian
can be expressed as

HM(t) = ✏1(t)c†1c1 + ✏2(t)c†2c2 � �(c†1c2 + c†2c1), (2)

FIG. 1. Two-site tight-binding molecular junction with on-site energies ✏i(t)
subject to correlated noise. Here � is the tight-binding couplings between
sites, �/~ the rate of charge transfer between molecule and contacts, and µ�

the chemical potential of lead � = l, r.

where the operator c†n (or cn) creates (or annihilates) a fermion
in a single site n of energy ✏n(t), i.e., |ni= c†n |0i, where
|0i refers to vacuum. The sites are coupled to one another
through the tight-binding coupling �, and the time-dependence
of the on-site energies arises from fluctuations induced by
the external environment. As a model of such fluctuations,
the time series ✏ i(t) is generated using exponentially corre-
lated Gaussian distributed noise of strength � centered around
h✏ i(t)iT = limT!1 1

T s
T

0 ✏ i(t)dt, where h· · · iT denotes time
averages. The initial conditions are sampled from an initial
Gaussian distribution of the form44,45

P(✏ i(t = 0)) =

r
1

2⇡�2
e�(✏i�✏̄i)2/2�2

(3)

centered around ✏̄ i = 0 and the fluctuations between sites are
assumed to be uncorrelated and defined by

h✏ i(t)iT = 0; {h✏ i(t)✏ j(s)iT } = �ij�
2e�(t�s)/⌧corr (t > s),

(4)

where ⌧corr is the correlation time of the site energies, and
where {· · · } denotes average over initial conditions. Through-
out this work ⌧corr = 40 fs.

In turn, the leads are described by

HL(t) =
X

�=l,r

X

q

✏�qc†�qc�q, (5)

where c†�q and c�q are the fermionic operators for the lead states
and � = l or r denotes the left or right lead, respectively. Last,
we assume that only site |1i couples to the left lead, while site
|2i only couples to the right one, such that the molecule-lead
coupling is given by

HML =
X

q

⇣
Vl

1qc†lqc1 + Vr
2qc†rqc2 + H.c.

⌘
, (6)

where V�
nq are the couplings between the molecule and lead

�, and H.c. denotes the Hermitian conjugate. The effective
molecule-lead coupling is specified by the spectral density
�n,�(") = 2⇡

P
q |V�

nq |2�(" � "�q), a quantity that contains
information about the characteristic frequencies of the leads
and their coupling to the molecule. We focus on the wide-
band limit (WBL) where V�

nq and leads’ density of states
⇣� =

P
q �(" � "�q) are assumed to be energy independent.

In this case, the spectral density is also energy independent
and given by

�n,� = 2⇡⇣� |V�
n |2. (7)

In this work, we use �1,l = �2,r = �, and zero otherwise. The
quantity � dictates the characteristic time scale, ~/�, for charge
exchange between the molecule and contacts and generates an
effective Lorentzian broadening of the molecular energy levels
by 2�.

B. Transport computations

For a given trajectory, ✏ i(t), the transport was computed
using the Landauer formula and the TD-NEGF as developed
and implemented by Chen et al.28 In the Landauer compu-
tations, at each time t, the transmission function, T (E), was
computed for all relevant energies and the total current ILD(t)
was numerically evaluated via the Landauer formula. That is,
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ILD(t) = e
⇡~ s dE[fl(E)� fr(E)]T (E), where e is the elementary

charge of an electron, and f� is the room-temperature (300 K)
Fermi function of lead � with chemical potential µ� . The
current was evaluated at equally spaced time intervals every
⌧corr/2000.

In turn, in the TD-NEGF the current is obtained by
solving the Liouville von Neumann equation for the single-
particle electronic reduced density matrix in the presence
of leads. In it, the current entering lead � is defined by
I�(t) = �e d

dt

⇣P
qhc†�qc�qi

⌘
and the net current passing through

the nanojunction is calculated as the average current flowing
into the two leads ITD(t) = (Il(t) � Ir(t))/2. The employed
method28 combines time dependent density functional the-
ory, NEGF, and the hierarchical equation of motion (HEOM)
approach.28–31 Specifically, Ref. 28 presents a computational
efficient closed set of equations (Eqs. (3), (12), and (14) in
Ref. 28) to capture time dependent transport by invoking the
wide-band limit and a Padè expansion of the Fermi distribution
function. The former allows closing the resulting hierarchy of
equations at first tier in the HEOM sense. In turn, the Padè
expansion allows for analytically solving the energy integrals
that appear in the definition of the self-energies. Here, results
were checked for convergence on the number of Padé func-
tions (20) required to represent the leads and on the integration
time step (⌧corr/2000) of the Runge Kutta method of order
four employed in the numerical integration of the equations of
motion.

C. Agreement between methods

The ability of the steady-state approximation to capture
the TD-NEGF behavior at each instant of time is quantified via
a normalized same-time correlation function of the currents
obtained from the two methods,

% =
{hILD(t)ITD(t)iT }q
{hI2

LD(t)iT }{hI2
TD(t)iT }

. (8)

The value of % ranges from 0 to 1, with 1 being perfect corre-
lation and 0 signaling the uncorrelated case. Note that % = 1
provided that ILD(t) = ↵ITD(t) where ↵ is some constant. As
such, %measures correlations at each instant of time but is not
necessarily indicative of quantitative agreement between the
two methods. The global agreement is quantified by examining
differences in the average currents

# =
{hILD(t)iT }
{hITD(t)iT }

. (9)

Since the TD-NEGF method captures additional transport
mechanisms that are not included in Landauer, typically
#  1.

Time and ensemble averages in Eqs. (8) and (9) were
obtained by averaging over 1000 individual trajectories each
100⌧corr long. Results were checked for convergence on the
number of trajectories and the total propagation time.

III. RESULTS AND DISCUSSION

In order to demonstrate when the Landauer formalism can
capture time dependent transport, we quantitatively contrast
the Landauer steady-state current with the TD-NEGF current

for a variety of lead-induced broadenings �, tight-binding cou-
plings �, noise strengths �, and for different bias voltages
eV = µl � µr . The simulations encompass both resonant and
non-resonant transport, circumstances in which the strength
of the fluctuations are dominant or perturbative with respect
to the tight-binding coupling, and situations in which the time
scale for charge transfer between the molecule and leads is
either short or long with respect to the molecular correlation
time ⌧corr. Below, we first summarize our basic computational
observations (Secs. III A–III D) and then analyze the results
in terms of noise-disruption of the degree of delocalization of
the levels that dominate transport (Sec. III E).

A. Sample trajectories

Consider first the case in which the molecular orbitals
are within the transport window of the leads (between µL and
µR), such that resonant transport is the dominant mechanism
for current formation. Figure 2 shows the time dependent site
energies, net charge on the molecular bridge, and TD-NEGF
and Landauer currents for two particular trajectories under
different modeling conditions in which (A) the two methods
agree and (B) Landauer offers a poor approximation to the true
dynamics (for completeness, additional examples of trajecto-
ries comparing TD-NEGF and Landauer currents are included
in Fig. S1 of the supplementary material). Qualitatively, in the
case in which Landauer is a good approximation, the steady
state transport properties of the junction change mildly during
the dynamics (up to an order of magnitude or so) and thus
the TD-NEGF current stays close to the steady-state limit. By
contrast, in Fig. 2(b) the steady state transport changes by four
orders of magnitude when the molecular site energies come in
and out of resonance. As a consequence, the current through
the system is not near the steady state, and TD-NEGF and
Landauer do not coincide.

B. Agreement is determined by �/�

Figure 3 shows the degree of local [Eq. (8)] and global
[Eq. (9)] agreement between the TD-NEGF and Landauer
for 129 modeling conditions. Each point corresponds to an
average over 1000 realizations chosen such that the pristine
molecule would be under resonant transport conditions. The
simulations systematically vary the basic parameters of the
model (�, �, and �) and all results are plotted against a single
parameter ⌘ = �/�. The quantity ⌘ summarizes the extent to
which the strength of the noise � dominates over the tight-
binding coupling � between sites. The lead induced broaden-
ing � is color coded and plotted with respect to the energy
gap of the pristine molecule 2�. The exact modeling condi-
tions employed to construct the figure are summarized in the
supplementary material.

Remarkably, under a wide range of modelling conditions
the agreement between the TD-NEGF and Landauer is mostly
determined by a single parameter ⌘ = �/�. When ⌘ � 1,
the noise is perturbative with respect to the tight-binding cou-
pling and the Landauer steady-state approximation provides
an adequate description of the current dynamics. Under these
conditions, Landauer adequately describes the TD-NEGF cur-
rent not only on average (Fig. 3(b)) but at each instant of
time (Fig. 3(a)). By contrast, when the noise dominates over

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-004717
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-004717
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FIG. 2. Resonant transport: Comparison of the TD-NEGF and Landauer time-dependent currents in a situation in which Landauer is (a) a useful (% = 0.9893
and # = 0.9694) and (b) poor (% = 0.2114 and # = 0.2381) approximation to the dynamics. The plot shows a segment of the dynamics of the site energies ✏1(t)
and ✏2(t) (top panel), net charge in the junction (middle panel), and associated currents (bottom panel) for a single trajectory. The chemical potentials µL = 1.5 eV
and µR = �1.5 eV are chosen such that the molecular orbitals are in the transport window at each instant of time, so that resonant transport dominates. (a) � = 0.1
eV, � = 0.1 eV, � = 0.1 eV. (b) � = 0.005 eV, � = 0.01 eV, � = 0.5 eV. Note that Landauer fails when the noise induces large changes in the steady-state
transport properties.

�, ⌘⌧ 1 and the Landauer strategy to model time-dependent
transport fails both locally and globally.

C. Non-resonant transport

Results thus far have focused on the case of resonant trans-
port. Nevertheless, simulations of time-dependent processes
using the Landauer strategy often focus on the zero-bias limit
where the conductance across the junction is determined by
the transmission at the Fermi level T (EF). This is a practi-
cal limit in simulations where a large number (105–109) of
molecular snapshots need to be taken into account because
it avoids computing the transmission at several energies. It is
thus important to determine how the above observations are
modified when the molecular energy eigenstates are not in the
transport window. Figure 4 shows the local and global agree-
ment for different bias voltages under circumstances in which
Landauer is both a good (⌘ = 10) and a modest (⌘ = 0.5)
approximation to the TD-NEGF resonant transport. As the

voltage is decreased, the transport goes from a resonant to a
non-resonant mechanism. The voltage at which this transition
approximately happens is signaled by a gray line in the fig-
ure. In both cases, as the voltage is decreased Landauer retains
its ability to describe the TD-NEGF transport on average as
quantified by %. However, the local agreement becomes poor
when transitioning to non-resonant transport. To understand
why this is the case, consider Fig. 5 which shows the on-site
energies and current for a particular trajectory with ⌘ = 10.
While the NEGF currents can be positive or negative due to
forward and backward scattering events, the Landauer current
is strictly positive. Thus, the two currents are not correlated at
each instant of time even when their averages coincide.

D. Dependence on the molecule-lead charge
transfer rate

Figure 6 shows the dependence of the local and global
agreement on the lead-induced broadening � under resonant

FIG. 3. (a) Local and (b) global agree-
ment between Landauer and TD-NEGF
for resonant transport as a function of
⌘ = �/�. The plotted data correspond
to simulations with different �, �, and
�. The color code signals the strength
of the lead induced broadening � with
respect to the energy gap of the pris-
tine molecule. For all simulations, we
employed a 3 V bias voltage and T
= 300 K. Note that under a wide range
of modeling conditions Landauer and
TD-NEGF agree locally and globally
when ⌘ & 1. The agreement further
improves with increasing �.
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FIG. 4. Agreement between the TD-NEGF and Landauer under non-resonant conditions. The plot shows the local (%) and global (#) agreement as a function
of bias voltage for (a) large and (b) moderate ⌘. In (a) � = 0.1 eV, � = 0.1 eV, � = 0.01 eV, and the Fermi energy µF = �2 eV. In (b) � = 0.01 eV,
� = 0.05 eV, � = 0.1 eV, and µF = 0 eV. In both cases, the bias voltage is applied symmetrically around µF . As the bias increases, the transport
transitions from a non-resonant to a resonant mechanism. The gray line indicates the voltage above which transport for the pristine molecule becomes
resonant. Note how under the non-resonant condition the TD-NEGF and Landauer can agree on average, even when they do not agree at every instant
in time.

(left panel) and non-resonant (right panel) conditions. In cir-
cumstances where⌘ & 1, for the Landauer strategy to be a good
approximation to the true current across the system the char-
acteristic time scale for charge transfer between the molecule
and metallic contacts (~/�) must be small with respect to the
molecular correlation time ⌧corr, i.e., � � ~/⌧corr. In this way,
the leads can resolve any significant changes in the molecule

FIG. 5. Non-resonant transport: Comparison of the TD-NEGF and Landauer
time-dependent currents for a single trajectory. The plot shows a segment
of the dynamics of the site energies ✏1(t) and ✏2(t) (top panel), net charge
of the junction (middle panel), and associated current (bottom panel). Here,
� = 0.1 eV, � = 0.1 eV, � = 0.01 eV. The chemical potentials (µL = �0.5
eV, µR = �3.5 eV) are chosen such that the molecular orbitals are always
outside the transport window. Under these conditions, non-resonant transport
is dominant. Note that while the TD-NEGF and Landauer currents disagree
at each instant of time (% = 0.7049), the two quantities agree on average
(# = 0.9963).

induced by the noise and the current can stay close to its steady
state value.

The inset in Fig. 3 shows how the global and local agree-
ment changes when increasing �/2� for different fixed values
of ⌘. In circumstances when ⌘ . 1, where the Landauer strat-
egy is not a useful approximation, increasing �/2� actually
improves the agreement between Landauer and TD-NEGF
both globally and locally. From a time-dependent perspective,
this occurs because by increasing � one is reducing the time
required for the junction to reestablish steady state transport.

E. Interpretation in terms of noise-induced
changes in localization

The collection of numerical results discussed in
Secs. III A–III D indicates that Landauer is a useful approxi-
mation to the true TD-NEGF dynamics when (i) the time scale
for charge transfer between the molecule and leads is fast with
respect to the molecular correlation time � � ~/⌧corr and (ii)
the strength of the noise in the site energies is small with respect
to the tight-binding coupling between sites, i.e., ⌘ = �/� � 1.
Remarkably, provided that � & ~/⌧corr, the degree of agree-
ment between Landauer and TD-NEGF is well described by
a single parameter ⌘ over a wide range of simulation con-
ditions. Further, we have observed that when ⌘ is subopti-
mal, increasing � actually improves the agreement between
the TD-NEGF and Landauer. How to interpret these basic
observations?

For the Landauer approach to time-dependent currents
to be a useful strategy, transport needs to be close to the
steady state during the dynamics. Thus, Landauer becomes
a poor approximation when the noise constantly induces large
changes to the steady state transport because the NEGF dynam-
ics is kept far from the steady state. Insight into how this can
happen is provided by considering the Landauer current in
the case in which both molecular levels are in the transport
window, as described below.
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FIG. 6. Agreement between the TD-
NEGF and Landauer as a function of
lead-induced broadening � under (a)
resonant and (b) non-resonant condi-
tions. In (a) � = 0.15 eV, � =
0.1 eV, and V = 3 V. In (b) � = 0.1
eV, � = 0.01 eV, µF = 2 eV, and
V = 3 V. The gray line indicates the
value of ~/⌧corr. When the time scale
for charge transfer between molecules
and lead ~/� � ⌧corr, the two methods
coincide for ⌘ & 1.

1. Resonant steady-state transport through
a two-level junction

The Landauer current through a junction with two molec-
ular levels ↵ = ± is written as

I(V ) =
e
⇡~

X

↵=±

⌅ 1

�1
T↵(E)(fl(E + eV/2) � fr(E � eV/2)) dE,

(10)

where f�(E) is the Fermi function of lead �, and

T↵(E) =
�l
↵(E)�r

↵(E)

(E � E↵)2 + [(1/2)�↵(E)]2
(11)

is the transmission function at a given energy E associated
with level ↵ of energy E↵.46 Here �↵(E) = �l

↵(E) + �r
↵(E) and

�
�
↵(E) = 2⇡

P
q |H�q,E↵ |2�(E�✏�q). The quantity H�q,E↵ is the

matrix element of the Hamiltonian between the level q in lead
� and the molecular orbital. In the site basis, the molecular
orbital |E↵i =

P
n c(↵)

n |ni and thus

�
�
↵(E) = 2⇡

X

q

|H�q,E↵ |2�(µF � ✏�q)

= 2⇡
X

q2�
|
X

n

c(↵)
n V�

q,n |2�(µF � ✏�q)

= 2⇡
X

q2�
(|c(↵)

1 |
2 |Vl

q,1 |2��,l + |c(↵)
2 |

2 |Vr
q,2 |2��,r)

⇥�(µF � ✏�q)
= (|c(↵)

1 |
2��,l + |c(↵)

2 |
2��,r)�,

(12)

where we have taken into account that only site 1 (2) couples to
the left (right) contact and Eq. (7). In the 0 K approximation for
the Fermi functions, and when the molecular orbitals are inside
the transport window [ eV/2, eV/2], the Landauer current
Eq. (10) simplifies to

I ⇡ e
⇡~

X

↵

|c(↵)
1 |

2 |c(↵)
2 |

2
⌅ 1

�1

�2

(E � E↵)2 + �2/4
dE,

=
4e�
~
|c(±)

1 |
2 |(1 � |c(±)

1 |
2),

(13)

where we employed Eq. (12). In the last step, we also took
into account that for a two-level junction there is a symmetry
in the site occupations for the ground and excited states: |c(�)

1 |2
= |c(+)

2 |2 and |c(�)
2 |2 = |c

(+)
1 |2. As shown, the current through

the junction depends on the product of the populations of the
molecular orbitals at the contact sites |c(±)

1 |2 | |c
(±)
2 |2.

Equation (13) can be developed further. Define ✏̄ =
✏1+✏2

2 and � = ✏2 � ✏1. The energy eigenvalues are E± = ✏̄

±
p
�2/4 + �2 and the corresponding eigenstates

|E±i =
�±q
�2
± + 1

|1i +
1

q
�2
± + 1

|2i, (14)

where �± = � 1

�/2�±
p

(�/2�)2+1
. Substituting c(±)

1 = �±p
�2
±+1

into

Eq. (13), yields

I =
4e�
~

�����
�+

(�2
+ + 1)

�����
2

=
e�
~

1
�2/4�2 + 1

.
(15)

Therefore the current is reduced when the noise induces a
large separation between site energies |�| with respect to 2�.
When this happens, the molecular orbitals localize in one of the
sites, reducing the effective coupling between the molecule and
the two leads and, thus, reducing the current. The maximum
current is achieved when the molecular levels are maximally
delocalized such that ��c1��2 = 1/2.

2. Noise-induced changes in the steady-state current

During the stochastic dynamics, the fluctuations of the
site energies lead to changes in the steady-state current by
changing |�| = |✏1 � ✏2 |. The average |�| in a given trajectory
is given by

h|�|iT =
1

2⇡�2

⌅ ⌅
e�(✏2

1 +✏2
2 )/2�2 |✏1 � ✏2 | d✏1d✏2

=
1

2⇡�2

⌅
|�|e��2/4�2

d�
⌅

e�✏̄
2/�2

d ✏̄

=
2�p
⇡

.

(16)

Thus, the figure of merit that controls how much the stochastic
fluctuations generate appreciable current fluctuations can be
defined as

�

h|�|iT
⇠ �
�
= ⌘, (17)

which is the quantity used to analyze the data.
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3. Origin of the observed trends

The key idea in understanding the observed trends is that,
provided that � & ~/⌧corr, a discrepancy between the TD-
NEGF and Landauer occurs when the noise can lead to strong
changes in the steady state current. In light of Eq. (13), this
happens when the noise completely changes the degree of
localization of the molecular orbitals. The extent to which this
is possible in a given trajectory is determined by ⌘ = �/�.
When ⌘ is small, fluctuations in the site energies can strongly
change the degree of localization of the molecular orbitals.
Such changes keep the TD-NEGF current far from the steady
state and make the Landauer estimate of the time-dependent
currents of limited applicability. In other words, Landauer is a
useful approximation for the TD-NEGF currents only when the
noise does not induce changes in the degree of delocalization
of the molecular orbitals responsible for transport.

IV. FINAL REMARKS

In conclusion, we have isolated well-defined conditions
under which the time-dependent electronic currents across a
molecular junction subject to a fluctuating environment can be
quantitatively captured via the Landauer steady-state approx-
imation. The Landauer steady-state approach is found to be a
useful approximation when (i) the fluctuations do not disrupt
the degree of localization of the molecular eigenstates respon-
sible for transport and (ii) the characteristic time for charge
exchange between the molecule and leads is fast with respect
to the molecular correlation time. In the context of the model
investigated here, the first condition requires ⌘ = �/� � 1
while the second one requires ~/� ⌧ ⌧corr. In essence, con-
dition (i) guarantees that the magnitude of the steady state
current does not vary drastically as a consequence of changes
induced by the noise. If that is the case, the TD-NEGF cur-
rent will stay close to the steady state and Landauer becomes
a useful approximation to capture the current dynamics. In
turn, condition (ii) guarantees that the rate of charge-transfer
between the molecule and contacts is sufficiently fast such
that it can resolve any significant dynamical changes in the
molecule.

For resonant transport, when these conditions are satis-
fied, the Landauer approach is found to accurately describe
the current, both on average and at each instant of time. For
non-resonant transport, we find that while the steady-state
approach fails to capture the time-dependent transport at each
instant of time, it still provides a good approximation to the
average current. This latter observation brings light into the
important question of how to interpret the non-resonant cur-
rent INR or, equivalently, the low-bias conductance G = INR/V
computed for individual snapshots encountered in a MD tra-
jectory of the junction of evolution. As observed, the current
across (conductance of) each snapshot of the junction has
no obvious relation with experimentally measurable values.
However, the time-averaged currents that are experimentally
recorded do coincide with the Landauer currents averaged over
a statistically significant set of molecular conformations.

These conditions for agreement between Landauer and
TD-NEGF were isolated based on simulations on a tight-
binding molecule coupled by its ends to metallic contacts

described in the wide bandwidth limit. Both the molecule
and leads were supposed to be well described by an effec-
tive single-particle electronic Hamiltonian. Further, no back
action of the molecule to the fluctuating environment was
considered. While the isolated conditions are expected to be
applicable in a wide variety of situations, additional condi-
tions may emerge for more complex leads and lead-molecule
couplings, for systems where Coulomb blockade is impor-
tant, or in situations in which the current generates significant
electron-nuclear dynamics.

At this point, it is useful to connect these results with
previous observations on the ability of Landauer to reproduce
TD-NEGF currents in fluctuating junctions. The DNA simula-
tions investigated in Ref. 43 are in a situation in which� ⇠ 0.1
eV, � ⇠ 0.03 eV, � = 1 meV, and ⌧corr ⇠ 200 fs. Thus, ~/�
is long with respect to the molecular correlation time and the
strength of the noise is large with respect to the tight binding
couplings. Thus, the simulations violate both identified con-
ditions and Landauer is a poor approximation to the current
dynamics. In Ref. 47, the authors argue that in order to have
coherent transport the molecular orbitals responsible for the
transport across the junction must be delocalized. In light of
the results presented here, it becomes clear that this statement is
not entirely precise as, in the absence of fluctuations, transport
through a junction with localized states will be well described
by the Landauer approach. What leads to the disagreement
between Landauer and TD-NEGF in Ref. 47 is that the noise
can strongly change the magnitude of the steady-state current
by changing the degree of localization of the states involved
in the transport.

It is important to stress that the isolated conditions apply
to physical circumstances where the effect of the environment
can be described as a time-dependent potential term in the
Hamiltonian. Deciding which type of quantum environment
admits such a time-dependent description ultimately relies
on contrasting with the experiment. Nevertheless, theoretical
analyses48 suggest that this can occur when there is no entan-
glement between the molecular degrees of freedom of interest
(i.e., the levels responsible for transport) and the environmental
degrees of freedom and when the environment can be thought
of in the classical limit. We thus expect the above considera-
tions to apply to the thermal dynamics induced by poor solvents
or torsional motions. By contrast, high frequency molecular
vibrations or highly entangled vibronic states are expected to
require a full quantum description to be correctly captured in
the TD-NEGF.

Under plausible experimental conditions at room temper-
ature and in solution, � ⇠ 0.1 eV and � ⇠ 0.01 eV.47,49

Under such conditions, the Landauer approach is useful for
molecules with tight-binding couplings that dominate over the
noise and correlation times longer than ⇠60 fs. In this sce-
nario, for instance, the time-dependent current through rigid
conjugated molecules can be well described by Landauer as
conformational changes are not expected to change the degree
of level delocalization. By contrast, systems with tight-binding
couplings between constitutive units that are small with respect
to noise in the site energies such as DNA, RNA, or molecular
dimers will be cases in which the use of Landauer approach
can be problematic. These criteria can be employed to adopt
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effective modeling strategies for transport through molecular
junctions in interaction with a fluctuating environment, as is
necessary to describe experiments.

SUPPLEMENTARY MATERIAL

See supplementary material for trajectories comparing
TD-NEGF and Landauer currents under representative model-
ing conditions and simulation conditions employed to produce
Fig. 3.
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