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ABSTRACT: The role of electron−nuclear entanglement on the validity of the
Born−Oppenheimer (BO) approximation is investigated. Although nonadiabatic
couplings generally lead to entanglement and to a failure of the BO approximation,
surprisingly the degree of electron−nuclear entanglement is found to be uncorrelated
with the degree of validity of the BO approximation. This is because while the degree
of entanglement of BO states is determined by their deviation from the
corresponding states in the crude BO approximation, the accuracy of the BO
approximation is dictated, instead, by the deviation of the BO states from the exact
electron−nuclear states. In fact, in the context of a minimal avoided crossing model,
extreme cases are identified where an adequate BO state is seen to be maximally entangled, and where the BO approximation fails
but the associated BO state remains approximately unentangled. Further, the BO states are found to not preserve the
entanglement properties of the exact electron−nuclear eigenstates, and to be completely unentangled only in the limit in which
the BO approximation becomes exact.

1. INTRODUCTION
The Born−Oppenheimer (BO) approximation forms the basis
of our interpretation of chemical phenomena. As a con-
sequence, considerable effort has been devoted to under-
standing its scope, and to developing methods that allow us to
think and model matter beyond its limits.1−8 A relatively
unexplored aspect of the BO approximation is its connection
with entanglement,9,10 a basic quantum-mechanical correlation
that is the essential resource for quantum information.11−13 In
addition to its interest at a fundamental level, understanding the
role of entanglement in the BO picture is central in interpreting
coherence phenomena in matter and in the development of
methods to follow correlated electron−nuclear dynamics.
Specifically, to be able to capture all relevant quantum
correlations, approximate semiclassical or quantum descriptions
of the electron−nuclear evolution of molecules1,2,4,14−17 should
preserve the entanglement character18 of the electron−nuclear
states. Further, the understanding of coherence phenomena in
molecules,19−26 such as coherent spectroscopies, photoexcited
dynamics and electron transfer events, requires a detailed
understanding of the molecular events that lead to electronic
decoherence through entanglement with the nuclear environ-
ment.27−32

To appreciate the nontrivial role of entanglement in the BO
picture, consider the exact wave function of a pure electron−
nuclear system in a factorized form5,33−35

ϕ χΨ =r R r R R( , ) ( ; ) ( )(e) (e) (1)

where

∫χ = |Ψ | ΘR r r R( ) ( d ( , ) ) ei tR
(e)

2 1/2 ( , )
(2)

is the nuclear wave function where Θ(R,t) is a real function
(∫ dR |χ(e)(R)|2 = 1), and

ϕ χ= Ψr R r R R( ; ) ( , )/ ( )(e) (e) (3)

is the conditional probability amplitude of finding electrons at r
given that the nuclear configuration is R (∫ dr |ϕ(e)(r;R)|2 = 1).
This exact decomposition represents an entangled electron−
nuclear state because of the dependency of the electronic
conditional probability amplitude ϕ(e)(r;R) on R. By contrast,
in the crude Born−Oppenheimer (CBO) approach, the
electron−nuclear wave function is approximated as

ϕ χΨ ≈ ̃r R r R R( , ) ( ; ) ( )0 (4)

where ϕ(r;R0) is an eigenfunction of the electronic
Hamiltonian He(r;R) for a particular nuclear configuration R
= R0, i.e.

ϕ ϕ̂ =H Er R r R R r R( ; ) ( ; ) ( ) ( ; )e 0 0 0 0 (5)

and χ(̃R) is the nuclear counterpart. Considering that a CBO
state is a separable product between a nuclear state and an
electronic state [eq 4], the electron and nuclear degree of
freedoms are clearly not entangled with each other. The BO
states are intermediate between these two limiting situations

ϕ χΨ ≈ Ψ =r R r R r R R( , ) ( , ) ( ; ) ( )BO (6)

where the electronic function ϕ(r;R) is obtained as an
eigenfunction of the electronic Hamiltonian for all nuclear
configurations
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ϕ ϕ̂ =H Er R r R R r R( ; ) ( ; ) ( ) ( ; )e (7)

Thus, ϕ(r;R) is allowed an R dependence, suggesting that BO
states feature electronic−nuclear entanglement.9,10 However,
such a dependency is restricted so that nuclear motion proceeds
without changes in the quantum state of the electron cloud,
suggesting that the nuclear and electronic dynamics are
somewhat less correlated. Further, at a formal level, this
restriction of the nuclear motion results in neglecting the
nonadiabatic couplings, the terms involving nuclear derivatives
of the BO electronic wave functions. Thus, the main questions
are, How much electronic−nuclear entanglement is present in
BO states? Does the BO approximation preserve the
entanglement character of the exact states? Is there a relation
between the degree of entanglement of electron−nuclear states
and the validity of the BO approximation?
Here, we address these questions and clarify the role of

electron−nuclear entanglement in the BO approximation. This
is done through formal considerations and model computations
in a two-state one-dimensional system with an avoided crossing.
Specifically, we show that BO states generally involve some
measure of electronic−nuclear entanglement except in the limit
in which the BO approximation becomes mathematically exact.
Note that we clearly distinguish two cases: (i) when the BO
approximation is valid (or adequate) and (ii) when it is
mathematically exact. Exactness means that the differences
between approximate and exact energies and wave functions go
to zero. In turn, validity means that the differences between
approximate and exact energies and wave functions are small
but can be finite. Interestingly, though nonadiabatic couplings
can lead to entanglement and to a failure of the BO
approximation, entanglement does not necessarily lead to a
significant failure of the BO approximation. In fact, as discussed,
in periodic systems the entanglement of the ground BO state
can be made arbitrarily strong even though the BO
approximation is adequate. This contrasts with recent analyses9

that intuitively associate the degree of electron−nuclear
entanglement with the degree of validity of the BO
approximation.
The structure of this paper is as follows: Section 2 introduces

purity as a measure of entanglement in the context of electron−
nuclear systems. This purity measure is used in section 3 to
analyze the general entangled character of exact and BO states,
and the unentangled limit in which the BO approximation
becomes formally exact. Section 4 introduces a one-dimen-
sional two-state model with an avoided crossing that is used to
illustrate numerically the correlation, or lack thereof, between
the accuracy of the BO approximation and the degree of
entanglement. In section 5 we summarize our main findings
and discuss their implication in the interpretation of coherence
phenomena.

2. PURITY AS A MEASURE OF ENTANGLEMENT
As a measure of entanglement between electrons and nuclei, we
can employ the purity of either the electronic

ρ= ̂P Tr{ }e e
2

(8)

or nuclear subsystem

ρ= ̂P Tr{ }N N
2

(9)

where ρê = TrN{ρ}̂ (ρN̂ = Tre{ρ}̂) is the electronic (nuclear)
reduced density matrix obtained by tracing out the nuclear

(electronic) degrees of freedom out of the density matrix of the
full system ρ =̂ |Ψ⟩⟨Ψ|. For unentangled electron−nuclear
systems, Pe = PN = 1, whereas entanglement leads to a
nonidempotency of the reduced density matrix and thus Pe and
PN values lower than 1. Such entanglement is a basic source of
electronic (or nuclear) decoherence as it leads to a mixed
density matrix for the electronic (or nuclear) subsystem.
As a consequence of the Schmidt theorem13,36 (or the

Carlson−Keller theorem37), for pure electron−nuclear systems
the electronic and nuclear purity actually coincide, i.e., Pe = PN
= P. The Schmidt theorem can be readily verified for the
general electron−nuclear state in eq 1. The nuclear reduced
density matrix is given by

∫ρ χ χ ϕ ϕ′ = * ′ * ′R R R R r r R r R( , ) ( ) ( ) d ( ; ) ( ; )N (e) (e) (e) (e)

(10)

where the integral is not a normalization integral because R and
R′ can have different values. The corresponding electronic
density matrix is

∫ρ χ ϕ ϕ′ = | | * ′r r R R r R r R( , ) d ( ) ( ; ) ( ; )e (e)
2

(e) (e) (11)

The purity of the electronic and nuclear state coincide because

∫
∫

∫

ρ ρ ρ

χ χ

ϕ ϕ ϕ ϕ

ρ ρ

ρ

̂ = ′ ′ ′

= ′ ′ | | | ′ |

× * ′ * ′ ′ ′

= ′ ′ ′

= ̂ = P

r r r r r r

r r R R R R

r R r R r R r R

R R R R R R

Tr{ } d d ( , ) ( , )

d d d d ( ) ( )

( ; ) ( ; ) ( ; ) ( ; )

d d ( , ) ( , )

Tr{ }

e
2

e e

(e)
2

(e)
2

(e) (e) (e) (e)

N N

N
2

(12)

Naturally, this theorem also applies to BO electron−nuclear
states. Therefore, without loss of generality, to quantify
entanglement in the exact and BO case we can focus on the
purity of the nuclear subsystem. As it turns out, this choice is
particularly convenient because of the inherent asymmetry in
the electronic and nuclear coordinates of the BO state.

3. ENTANGLEMENT OF ELECTRON−NUCLEAR
STATES

To illustrate the entanglement in terms of purity for the exact
[eq 1] and BO [eq 6] electron−nuclear states, it is instructive
to consider an expansion of their electronic components in the
CBO basis {ϕi(r; R0)}. Because the algebra involved in our
consideration is exactly the same for the exact electronic
conditional probability and BO electronic state, we will derive
the purity expression only for the BO case. The electronic BO
function can be written as

∑ϕ ϕ= Cr R r R R( ; ) ( ; ) ( )
i

i i0
(13)

which makes the BO electron−nuclear function

∑

∑

ϕ χ

ϕ χ

Ψ =

= ̃

Cr R r R R R

r R R

( , ) ( ; ) ( ) ( )

( ; ) ( )
i

i i

i
i i

BO 0

0
(14)

Here
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∫ ∫χ χ| ̃ | = | | | | ≤R R R R Rd ( ) d ( ) C ( ) 1i i
2 2 2

(15)

which is a consequence of the positivity of the absolute squares
and the unit upper boundary for |Ci(R)|2 function. The equality
is only possible for the case when there is only one term in the
CBO expansion [eq 13].
Using the CBO basis, the nuclear density expands as

∑

∑

ρ χ χ ϕ ϕ

χ χ

′ = ̃ ̃* ′ ⟨ | ⟩

= ̃ ̃* ′

R R R R R R

R R

( , ) ( ) ( ) ( ) ( )

( ) ( )

ij
i j j i

i
i i

N 0 0

(16)

where we have taken into account the orthogonality of the
CBO states. This form is convenient for illustrating the fact that
the nuclear density matrix represents a mixed state due to
entanglement:

∫
∑

ρ ρ ρ

χ χ χ χ

= ̂ = ′ ′ ′

= ⟨ ̃ | ̃ ⟩⟨ ̃ | ̃ ⟩

P R R R R R RTr{ } d d ( , ) ( , )

ij
j i i j

N
2

N N

(17)

Substituting Sij = ⟨χĩ| χj̃⟩ we have

∑ ∑= | | ≤ =P S S S 1
ij

ij
ij

ii jj
2

(18)

where we have taken into account the Schwarz inequality and
the normalization condition ∑iSii = 1. The equality in eq 18 is
only possible for two special cases: when there is only a single
term in the CBO expansion or when all nuclear components χĩ
are equal to each other up to constant multiplicative factors.
Thus, eq 18 clearly shows that for electron−nuclear states,
exact or BO, are generally entangled, as expected.
A complementary perspective on the origin of entanglement

in BO electron−nuclear states can be gleaned from the purity
of the BO state without performing the CBO expansion

∫ χ χ ϕ ϕ= ′ | | | ′ | |⟨ | ′ ⟩|P R R R R R Rd d ( ) ( ) ( ) ( )2 2 2
(19)

The electronic part |⟨ϕ(R)|ϕ(R′)⟩|2 can be bounded from
above by the Schwartz inequality

ϕ ϕ ϕ ϕ ϕ ϕ|⟨ | ′ ⟩| ≤ ⟨ | ⟩⟨ ′ | ′ ⟩ =R R R R R R( ) ( ) ( ) ( ) ( ) ( ) 12

(20)

As in eq 18, for general electronic wave functions the equality
in eq 20 is not relevant as any nuclear dependence in
|⟨ϕ(R)|ϕ(R′)⟩|2 leads to values lower than 1. Taking into
account the normalization of χ(R) and that |χ(R)|2 > 0, it
follows that any nuclear dependence in |⟨ϕ(R)|ϕ(R′)⟩|2 also
results in P < 1. Naturally, this result is consistent with the
CBO expansion because a nuclear dependence of the electronic
wave function leads to multiple terms in the CBO expansion.
To elucidate this dependence, let us consider the expansion of
the BO electronic wave function ϕ(r;R′) = ϕ(r;R+a) around R′
= R (a = 0):

∑

ϕ ϕ

ϕ

+ = ℏ · ̂

= ! ℏ · ̂
=

∞

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠n

r R a a P r R

a P r R

( ; ) exp i ( ; )

1 i ( ; )
n

n

0 (21)

where P̂ = −iℏ∂R is the total nuclear momentum operator.
Inserting eq 21 into eq 10 yields

∑
ρ

χ χ ϕ ϕ

+

= * + + ! ⟨ | ℏ · ̂ | ⟩
=

∞
⎜ ⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟n

P

R R a

R R a R a R

( , )

( ) ( ) 1 1 ( ) i ( )
n

n

N

1

(22)

The first term corresponds to the pure (idempotent) nuclear
density matrix. Any entanglement is introduced by the second
term governed by the derivatives of the electronic wave
functions with respect to the nuclear coordinates. In the full
formalism, these derivatives appear in the nonadiabatic
couplings. The BO approximation assumes a weak dependence
of the electronic wave function on the nuclear configuration
and neglects all the nonadiabatic couplings. In fact, in the limit
where the BO approximation is exact, all derivatives in eq 22
should be zero. In this limit, the electron−nuclear states
become unentangled, and the expansion of the electron−
nuclear state in the CBO basis consists of only one term [cf. eq
13]. That is, the BO and CBO states coincide. However, note
that even a mild dependence of the electronic states on the
nuclear coordinates can lead to appreciable entanglement. This
effect is particularly important when the nuclear state is highly
delocalized in space such that the terms χ(R) χ*(R+a)⟨ϕ

(R)| · ̂
ℏ( )a P

ni |ϕ(R)⟩ are appreciable even for large n’s. The

delocalization of the nuclear wave function makes both χ(R)
and χ(R+a) appreciable even for large ∥a∥. In turn, a large ∥a∥
enhances the whole term due to its nth power even for small
derivatives of the electronic wave function. For this reason, as
discussed in section 4.2, for nuclear states with a strong degree
of spatial delocalization the adequacy of the BO approximation
is not necessarily correlated with the degree of entanglement of
the states.

4. ENTANGLEMENT IN AN AVOIDED CROSSING
MODEL

We illustrate the relation between entanglement and the
validity of the BO approximation on a minimal model for an
avoided crossing (AC) problem (or one-dimensional spin-
boson model).38 The AC model is one of the simplest cases
where breakdown of the BO approximation can be modeled
easily.39,40

4.1. Theory and Model. Model Hamiltonian. We
introduce two diabatic states, |φ1⟩ and |φ2⟩, which will
represent the complete set of CBO basis functions
{ϕi(r;R0)},

a and whose explicit electronic coordinate depend-
ence will not be of importance. Presenting the total wave
function as

χ φ χ φ|Ψ⟩ = | ̃ ⟩| ⟩ + | ̃ ⟩| ⟩1 1 2 2 (23)

we project the total time-independent Schrod̈inger equation
(TISE) onto the electronic states {|φi⟩}i=1,2

χ
χ

χ
χ

̂
| ̃ ⟩
| ̃ ⟩

=
| ̃ ⟩
| ̃ ⟩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H E1

2

1

2 (24)

where

̂ = ̂ +
⎛
⎝⎜

⎞
⎠⎟H T

V V

V V
12

11 12

12 22 (25)
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̂ = − ∂T x
1
2

2 is the nuclear kinetic energy operator (the units are
chosen such that ℏ = m = 1 and, for simplicity, the nuclear
subspace contains only one coordinate R = x), and 12 is a 2 × 2
unit matrix. The diabatic potentials V11 and V22 are identical 1D
parabolas shifted in the x-direction by a and in energy by Δ, i.e.

ω=V x
211

2 2

(26)

ω= − + ΔV x a
2

( )22

2
2

(27)

To have an avoided crossing in the adiabatic representation, V11
and V22 are coupled by a constant potential V12 = c.
Switching to the adiabatic representation for the 1D AC

Hamiltonian in eq 25 is done by diagonalizing the potential
matrix using a unitary transformation

θ θ
θ θ

=
−

⎛
⎝⎜

⎞
⎠⎟U

cos sin
sin cos (28)

where θ = θ(x) is a mixing angle in the superposition between
the diabatic electronic states states |φ1⟩ and |φ2⟩ and is given by

θ γ= − = −
V

V V x b
1
2

arctan
2 1

2
arctan12

11 22 (29)

Here, b = Δ/(ω2a) is the x-coordinate of the crossing point,
and

γ ω= c a2 /( )2 (30)

is a coupling strength between the diabatic states.
The transformation U(θ) defines the BO electronic states

ϕ θ φ θ φ| ⟩ = | ⟩ + | ⟩x( ) cos sin1 1 2 (31)

ϕ θ φ θ φ| ⟩ = − | ⟩ + | ⟩x( ) sin cos2 1 2 (32)

and gives rise to the 1D AC Hamiltonian in the adiabatic
representation Ĥadi = UĤU†,

τ τ
τ τ

̂ =
̂ + ̂ ̂

̂ ̂ + ̂
+ −

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟H

T

T

W
W
0

0adi
11 12

21 22 (33)

where

= + ± − +±W V V V V V1
2

( ) 1
2

( ) 411 22 11 22
2

12
2

(34)

are the adiabatic potentials and τij = −⟨ϕi(x)|∂xϕj(x)⟩∂x −
1
2
⟨ϕi(x)|∂x2ϕj(x)⟩ are the nonadiabatic couplings (NACs). For

this model, the NACs can be expressed as

τ τ θ̂ = ̂ = ∂ x1
2

[ ( )]x11 22
2

(35)

τ τ θ θ̂ = − ̂ = −∂ ∂ − ∂x x( ) 1
2

( )x x x21 12
2

(36)

The BO approximation neglects all nonadiabatic terms τ̂ij and
formulates the nuclear TISE as

χ χ̂ + =±T W x x E x[ ( )] ( ) ( )BO (37)

The adequacy of the BO approximation in this model depends
on the NAC element

ϕ ϕ θ
γ

γ

⟨ |∂ ⟩ = ∂
=

+ −

x x x

x b

( ) ( ) ( )

4 ( )

x x2 1

2 2 (38)

The maximum of ∂xθ(x) is at the crossing point x = b and has a
simple dependence on model parameters

θ γ∂ =( ) 1
4x max

(39)

Although it may seem that eq 39 provides a straightforward way
to predict the failure or success of the BO approximation, to get
an accurate assessment, one also needs to consider the nuclear
density at the vicinity of the crossing point b. This is because
⟨ϕ2(x)|∂xϕ1(x)⟩ is part of the nuclear kinetic energy operator in
eq 33, and therefore, without non-negligible nuclear density, a
large NAC value will not have a significant effect.

Purity. As for entanglement measured in terms of the purity,
eq 18 for this two-state case can be expressed as

ρ ̂ = + − −
= − −

S S S S S

S S S

Tr[ ] ( ) 2( )

1 2( )
N

2
11 22

2
11 22 12

2

11 22 12
2

(40)

This shows that the loss of purity comes from the interplay
between diagonal and off-diagonal nuclear overlap matrix
elements Sij. For exact and BO states, we will refer to nuclear
states with Sii ≫ Sjj as localized and those with S11 ≈S22 ≈1/2
as delocalized. Note that due to the Schwarz inequality S11S22 ≥
S12

2 and the normalization condition S11 + S22 = 1, the
localization condition Sii ≫ Sjj always leads to vanishing S12

2,
whereas the delocalization condition S11 ≈S22 ≈1/2 does not
require S12 to be small.

BO Wave Function. To analyze entanglement in the BO
wave function, without loss of generality,b we focus on the
ground-electronic-state wave function expressed in the diabatic
basis

χ ϕ
χ φ φ
χ φ χ φ

⟨ |Ψ ⟩ = ⟨ | ⟩| ⟩
= ⟨ | ⟩ | ⟩ + | ⟩
= ⟨ | ̃ ⟩| ⟩ + ⟨ | ̃ ⟩| ⟩

x x x

x C x C x

x x

( )

( ( ) ( ) )
BO 1

1 1 2 2

1 1 2 2 (41)

where ⟨x|χ1̃⟩ = χ(x) cos[θ(x)] and ⟨x|χ2̃⟩ = χ(x) sin[θ(x)] are
the nuclear components in the diabatic basis. The terms
cos[θ(x)]2 and sin[θ(x)]2, depicted in Figure 1, can be thought
of as partitioning functions that split the nuclear BO probability
density |χ|2 into the diabatic components |χ1̃|2 and |χ2̃|2. As
exemplified in Figure 1, these complementary partitioning
functions go from 0 to 1 around x = b in a characteristic length

Figure 1. Partitioning function cos[θ(x)]2 for different γ’s and the
crossing point for two parabolas b = 4 au.
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proportional to γ. This γ dependence arises because
∂x cos[θ(x)]

2 ∼∂x sin[θ(x)]
2 ∼∂xθ(x) and eq 38.

Using these partitioning functions, the S12
2 part of eq 40 can

be expressed as

∫
∫

∫

χ θ θ

χ γ

χ
γ

=

= −

=
+ −

⎜ ⎟
⎛
⎝⎜

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥
⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

S x x x x

x x
x b

x x

x b

( d ( ) cos[ ( )] sin[ ( )])

1
4

d ( ) sin arctan

1
4

d ( )

( )

12
2 2 2

2
2

2

2 2

2

(42)

Therefore, S12 will be large if the BO nuclear probability density
χ2(x) is high at the intersection point x = b. Also, S12

2 can be
bounded from above using the Schwarz inequality

∫ ∫
∫

χ
γ

γ π χ

≤
+ −

=

S x x x
x b

x x

1
4

d ( ) d
( )

4
d ( )

12
2 4

2 2

4
(43)

Hence, S12
2 ∼γ, which allows us to simplify the purity in the

limiting case of divergent NACs γ→ 0 (recall eq 39)

= − ≈
≫
≈γ→ ⎪

⎪⎧⎨
⎩

P S S
S S

S
lim 1 2

1 if

1/2 if 1/2

ii jj

ii0
N 11 22

(44)

In turn, when γis appreciable, S12
2 can become comparable

with S11S22 and this leads to an increased purity up to PN ≈1.
In the limit of γ→ ∞ the BO approximation is exact and the
purity goes to 1. One of the simplest ways to see this is to
consider the a → 0 approach to the γ→ ∞ limit. If a → 0, the
two parabolas will always be parallel to each other and a unitary
transformation diagonalizing the potential matrix [eq 25] in
one nuclear configuration will diagonalize it for all other
configurations. Therefore, the CBO and BO states will be
identical, which is sufficient for the purity to be 1 [eq 18].
Other approaches to the γ→∞ limit (ω→ 0 and c→∞) give
the same result. Also, in the γ→ ∞ limit the exact and BO
states coincide because nonadiabatic couplings are zero.
Therefore, we will not focus on large γ’s in the numerical
examples presented below.
4.2. Numerical Examples. To quantitatively investigate

the correlation between the adequacy of the BO approximation
and the degree of entanglement, we consider three model cases
defined by the parameters in Table 1. The PESs associated with

each of the models are shown in Figures 2a−4a. In each case,
entanglement is quantified through the purity, whereas the
adequacy of the BO approximation is assessed by examining the
difference of the exact total energy E [eq 24] with that obtained
in the BO approximation EBO, as well as the magnitude of the
overlap between the corresponding electron−nuclear wave
functions |⟨Ψ|ΨBO⟩|.

As detailed below, the ground-state PES for Models 1 and 2
consist of two minima; Model 1 corresponds to the degenerate
case whereas Model 2 is nondegenerate. In turn, Model 3 has a
single minimum. Through these models we isolate limiting
cases that illustrate that the validity of the BO approximation is
uncorrelated to the degree of entanglement. Specifically, Model
1 captures the case in which the BO approximation is
appropriate even when the electron−nuclear states are
maximally entangled. Model 2 presents the case in which the
BO states are entangled but the exact states are not, with only
modest errors in the BO energy. Lastly, in Model 3, the BO
approximation breaks down even when the BO eigenstates
remain approximately unentangled.

4.2.1. Entanglement in Stationary States. Model 1: In this
case, the ground PES has two degenerate minima, and the
excited PES has a single minimum located at the midpoint
between the ground-state minima, see Figure 2a. The first few
states in this model are well described by the BO approximation
(Figure 2b,c) because their nuclear wave functions do not have
large probability density in the vicinity of the NAC function
maximum [eq 39]. The first state that has a substantial
deviation from the exact wave function according to the overlap
criterion is the seventh BO state. The reason for the large
discrepancy is that the seventh BO state is the ground
vibrational state on the excited electronic BO-PES. Thus, it has
large nuclear probability density in the vicinity of the NAC
maximum. Higher energy states in the BO approximation
correspond to either the excited or the ground electronic states.
Generally, the overlap with the exact wave function is better for
the BO states of the ground electronic state. Because the
ordering of the eigenstates is done on the basis of their
energies, alternation of states from the ground and excited BO-
PESs creates oscillations in absolute overlaps in Figure 2c.
For most states considered, the purity is close to 1/2 in both

the exact and BO treatments (Figure 2d). That is, the BO states
approximately preserve the entangled character of the exact
states. This takes place for both methods because nuclear
overlaps S12 are small and the nuclear component of the
eigenstates is delocalized (S11 ≈S22 ≈1/2). To understand the
delocalization in the exact wave functions, one can use first-
order perturbation theory to estimate the relative contributions
of the diabatic vibrational states to the nuclear component of
the exact wave function: The low coupling (c) between the
diabatic vibrational states is overpowered by the vibrational
level alignment of two parabolas (as Δ = 0). Degenerate
perturbation theory yields equal contributions of the two
diabatic degenerate states to the eigenstates. In this case, the S12
elements are Franck−Condon overlaps between energetically
aligned diabatic vibrational states and they are small as a result
of a relatively large spatial shift a = 4. In turn, the BO states are
generally delocalized due to the symmetry of BO-PESs W±.
The low magnitude for the overlaps S12 is a result of a small γ
[eq 43]. The only appreciable increase in purity across the BO
states can be seen for the seventh state, because of the highest
localization of nuclear probability density at the crossing region
in this state and as a result an increased overlap S12 [eqs 42 and
40].
In this model, the BO eigenstates provide a clear example of

a system in which the BO approximation is appropriate (albeit
not exact) but where the (exact and BO) electron−nuclear
states are maximally entangled.
Model 2: By introduction of an electronic energy shift Δ =

1.5ω, which breaks the diabatic vibrational level alignment of

Table 1. Parameters of the Three Model Systems with
Hamiltonian Eq 25 (in All Models, ω = 1 and c = ω/5 au)

model a Δ γ

1 4 0 0.1
2 4 1.5ω 0.1
3 1 4ω 0.4
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Model 1, the exact wave functions now acquire a high degree of
localization. In perturbation theory terms, a relatively small

coupling c = ω/5 cannot generate appreciable contributions
from the vibrational states of the two diabats when the minimal

Figure 2. Model 1: (a) Adiabats (solid) and diabats (dashed). (b) Absolute energy differences between exact and BO eigenstates. (c) Absolute
overlaps between exact and BO eigenfunctions. (d) Purities of the BO (blue) and exact (red) eigenstates.

Figure 3. Model 2: (a) Adiabats (solid) and diabats (dashed). (b) Absolute energy differences between exact and BO eigenstates. (c) Absolute
overlaps between exact and BO eigenfunctions. (d) Purities of the BO (blue) and exact (red) eigenstates.

Figure 4. Model 3: (a) Adiabats (solid) and diabats (dashed). (b) Absolute energy differences between exact and BO eigenstates. (c) Absolute
overlaps between exact and BO eigenfunctions. (d) Purities of the BO (blue) and exact (red) eigenstates.
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energy difference between levels is ω/2. In turn, in the BO
approximation this localization is present only in the first few
states that are localized in the lower energy well. Delocalization
of the higher energy states in BO leads to a failure of the BO
approximation for these states (Figure 3,c). The localization in
the exact wave functions leads to S12 ≈0 and S11S22 ≈0 in eq
40, and therefore, the purity for all states is very close to 1
(Figure 3d). By contrast, the purity in the BO approximation
quickly drops to 1/2 because of the states’ delocalization [eq
44].
This model exemplifies a case in which the exact eigenstates

are approximately unentangled, whereas the corresponding BO
states can be strongly entangled. For some of these states (i.e.,
state 5) the disparity between the degree of entanglement
between the exact and BO states leads to only modest energetic
errors. That is, the BO state can be adequate from an energetic
perspective even when the entanglement content of the BO
state is a poor approximation to the exact eigenstate.
Model 3: Owing to the electronic energy shift Δ = 4ω that

preserves an energetic alignment of the diabatic vibrational
levels, and a smaller coordinate shift, a = 1, the high energy
exact wave functions of this model consist of almost equal
contributions from the two diabatic states. Nuclear functions χ1̃
and χ2̃ corresponding to these contributions are almost
orthogonal (S12 ≈0 in eq 40) due to a very different number
of nodes in energetically aligned vibrational states from the two
parabolas. This leads to the purity close to 1/2 for these states
(Figure 4d).
As in Model 2, the BO approximation is adequate only for

lower states where both methods produce localized nuclear
wave functions (Figure 4b,c). In this case, the purity and energy
of the BO states is an excellent approximation to the exact
states. Naturally, the purity for these low states is close to 1
(Figure 4d). However, in contrast to Model 2, the purity of BO
states stays close to 1 even for higher excited states because of
persistent localization of states that makes the product S11S22
and overlaps S12 in eq 40 small. In spite of the higher value of γ
in this model with respect to the other models, localized states
occur here because of a disproportional partitioning of the
nuclear BO wave function into large and small (norm-wise)
diabatic components χ1̃ and χ2̃. This disproportionality
originates from the right shift of the diabatic intersection
point, b = 4 (Figure 4a), which regulates the partitioning
location (Figure 1). Such a right shifted partitioning of the BO
nuclear probability density produces one nuclear component
which is dominant and the other one that only represents a
small tail of the original distribution. Thus, in Model 3, we have
states where the BO approximation breaks down even when the
BO eigenstates are only weakly entangled.
4.2.2. Entanglement in Nonstationary States. The BO

approximation can be accurate in a significant domain of
nuclear geometries. This makes the corresponding BO
molecular dynamics an adequate alternative to more complex
nonadiabatic dynamics. To illustrate how entanglement can
change as a result of nuclear dynamics within a single BO state,
we now consider two cases where the dynamics is adequately
represented by the BO approximation.
First, consider the ground-state wave packet of the diabatic

uncoupled parabola
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centered at the bottom of the left well x0 = 0 of Model 1. In the
BO representation, this wave packet is mostly composed of the
two lowest energy eigenstates of the double-well problem:
symmetric and antisymmetric wave functions which after
summation give localization in a single well. Due to the
superposition nature, this initial nuclear wave packet will tunnel
back and forth between two wells. Figure 5 presents both

coherent oscillations of the left well population and the purity
dynamics. Naturally, the purity is 1 at the end points
corresponding to localization of a wave packet within a
particular well, and it drops as low as 1/2 during the period of
coherent oscillations.
As a second case, consider the same initial wave packet [eq

45] but placed on the left slope (x0 = −1 au) of the lower
potential of Model 3. This wave packet represents a coherent
superposition of low energy BO vibrational states that do not
have enough energy to transfer on to the upper BO electronic
state. Thus, wave packet dynamics represents vibrational
coherent oscillations at the bottom of the lowest BO state
without changing the purity of the wave packet over time
(Figure 6).

4.2.3. Criterion for Disentanglement of BO States. For
devising a simple qualitative picture to understand entangle-
ment for an arbitrary electron−nuclear state, it is useful to
introduce the notion of nuclear function support. We define a
function support as a collection of x-ranges where the function
has non-negligible value. Then we introduce a domain of
adequacy for each CBO configuration as an x-range where the
BO electronic wave function has a dominant contribution from
this CBO configuration (e.g., |Ci(R)| ≫ |Cj(R)| for ∀j ≠ i).
There are also intermediate regions in the x-space where the
BO electronic function can have comparable contributions
from different CBO configurations. If the nuclear component
has a functional support in these regions, the BO approx-

Figure 5. Average nuclear position (dashed blue) and purity PN (solid
red) as functions of time for Model 1 BO dynamics with a
nonstationary nuclear wave packet.

Figure 6. Average nuclear position (dashed blue) and purity PN (solid
red) as functions of time for Model 3 BO dynamics with a
nonstationary nuclear wave packet.
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imation can become inadequate, and therefore, entanglement
considerations would require accounting for nonadiabatic
effects. In cases where the BO approximation is adequate and
the nuclear function support is located only in domains of
adequacy for single CBO configurations, a simple estimate can
be made for the BO-state purity. From eq 17, if the support of
the nuclear function χ (x) spans ND single CBO configuration
domains, i+ , then the purity will be

∑≈
=

P w
i

N

iN
1

2
D

(46)

where individual domain weights are given by

∫ χ= | |w x x( ) di
2

i+ (47)

Thus, a simple criterion for disentanglement of a BO state is
that its nuclear function support spans a single CBO
configuration domain, ND = 1.
If we extend our model to N 1D parabolic potentials all

shifted along the x-axis consequentially from the origin and
constantly coupled, then the purity of the ground state will be
1/N. This setup can be thought of as a finite model for a
periodic system, and it shows that entanglement of the ground
BO state can be made indefinitely strong by increasing N, even
when the BO approximation is adequate.

5. FINAL REMARKS
The formal and numerical results presented above show that
when the BO approximation is exact (γ→ ∞ for the AC
model), the resulting BO states are unentangled and coincide
with the CBO states. However, in the usual situation in which
the BO strategy is an approximation, the resulting BO states
will generally involve electron−nuclear entanglement. Contrary
to intuition,9 we find that although nonadiabatic couplings can
lead to electron−nuclear entanglement and to a failure of the
BO approximation, the degree of entanglement of a BO state
and the degree of validity of the BO approximation are
generally uncorrelated. Thus, it is possible to find accurate BO
states with a high degree of entanglement and poor BO states
with a low entanglement level. Further, the purity of the BO
states can be either higher or lower than that of the exact
eigenstates.
The reason for this counterintuitive behavior is that while the

degree of entanglement of BO states is determined by their
deviation from the corresponding states in the crude BO
approximation, the accuracy of the BO approximation is
dictated, instead, by the deviation of the BO states from the
exact electron−nuclear states. These two metrics are not
necessarily simply connected and this explains the absence of
an apparent correlation.
The intuitive picture is restored in the limit where the BO

states coincide with the CBO states (cf. the first few levels in
Model 3). In this limit, any entanglement in the BO state also
signals a decay in the validity of the BO approximation. By
contrast, when the BO states are very different from the
corresponding CBO states, this intuition does not hold any
more. This was dramatically illustrated by the double-well
problem in Model 1 that involves “nonlocal” BO states with
nuclear probability amplitude associated with distinct electronic
diabatic states. These states are seen to be strongly entangled
even when the BO states provide a useful approximation to the
exact states.

In fact, we find that a more adequate criterion for
unentanglement of BO states is to require that the nuclear
wave function support is within the domain of adequacy of a
single CBO configuration. Entanglement in the BO state is
inevitable if this support spans a region where more than one
CBO configuration contributes to the BO state. The
implication is that in molecules, electron−nuclear entanglement
and thus electronic decoherence can occur even in the ground-
state, zero-temperature, BO approximation.
Importantly, we observe that the BO approximation does not

necessarily preserve the entanglement character of the exact
states even when the BO approximation is adequate from an
energetic perspective. This fact complicates the interpretation
of coherence phenomena for electrons in molecules. This is
because the degree of coherence for the electronic subsystem
when the electron−nuclear system is in a given superposition of
exact eigenstates can be very different from that predicted by
the same superposition but among the BO equivalents to the
exact eigenstates. This implies that analyzing electronic
coherences starting from BO states for the system plus bath
should involve consideration of how accurately those states
preserve the entanglement properties of the exact states.
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■ ADDITIONAL NOTES
aThis equivalence is true up to a constant unitary trans-
formation diagonalizing a matrix of the electronic Hamiltonian
within the two-state subspace at the R0 configuration.
bAll subsequent derivations for the S12 quantity can be repeated
with the excited electronic state arriving at the same outcome.
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