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ABSTRACT: We introduce a theory that exposes the fundamental and previously
overlooked connection between the correlation among electrons and the degree of quantum
coherence of electronic states in matter. For arbitrary states, the effects only decouple when
the electronic dynamics induced by the nuclear bath is pure-dephasing in nature such that
[HS,HSB] = 0, where HS is the electronic Hamiltonian and HSB is the electron−nuclear
coupling. We quantitatively illustrate this connection via exact simulations of a Hubbard−
Holstein molecule using the Hierarchical Equations of Motion that show that increasing the
degree of electronic interactions can enhance or suppress the rate of electronic coherence
loss.

Understanding the behavior of electrons in matter is
fundamental to our ability to characterize, design, and

control the properties of molecules and materials.1,2 Electronic
correlations3,4 and decoherence5−7 are two basic properties that
are ubiquitously used to characterize the nature and quality of
electronic quantum states. Correlations among electrons arise
due to their pairwise Coulombic interactions, that lead to a
dependency of the motion of an electron with that of other
surrounding electrons. These correlations determine the
energetic properties of electrons in matter and the character
of their energy eigenstates.8,9 In turn, decoherence in molecules
typically arises due to the interactions of the electrons with the
nuclear degrees of freedom.10−12 The nuclei act as an
environment that induces a loss of phase relationship between
quantum electronic states. Establishing mechanisms for
electronic decoherence is central to our understanding of the
excited state dynamics of molecules,13−16 to the development
of useful approximations to model correlated electron−nuclear
dynamics,17,18 and to the design of strategies to preserve
electronic coherence that can subsequently be exploited in
quantum technologies.19,20

While electronic correlation and decoherence have been
amply investigated separately, the connection between the two,
if any, is not understood. This is partially due to the fact that
usual definitions of electronic correlation, such as correlation
energy21 or natural occupation numbers,22 are only applicable
to pure electronic systems23,24 and do not allow addressing this
fundamental question. For this reason, it is unclear whether
decoherence can induce changes in correlation and, conversely,
whether correlations can modify the coherence content of a
quantum state.

Here we demonstrate that electronic correlation and
decoherence are coupled physical phenomena that need to be
considered concurrently. We do so by extending the concept of
electronic correlation to open nonequilibrium quantum
systems, and showing that the electronic correlation modulates
the degree of entanglement between electrons and nuclei, and
thus the degree of electronic decoherence. Conversely, we also
show that the electronic decoherence modulates the degree of
electronic correlation, as evidenced by the correlation energy.
Further, we isolate conditions under which electronic
correlation and decoherence can be considered as uncoupled
physical phenomena and show that they are generally violated
by molecules and materials, demonstrating that the connection
between electronic correlation and decoherence is ubiquitous in
matter. These formal developments are quantitatively illus-
trated via numerically exact computations in a Hubbard-
Holstein molecule that show that increasing the electronic
interactions can strongly modulate the rate of electronic
coherence loss.
To proceed, consider a pure electron−nuclear system with

Hamiltonian = + +H H HS B SB, where HS is the electronic
Hamiltonian, HB is the nuclear component, and HSB is the
electron−nuclear couplings. Here, HSB is defined as the residual
electron−nuclear interactions that arise when the nuclear
geometry deviates from a given reference configuration (e.g.,
the optimal geometry). The electronic Hamiltonian HS = H0

S +
VS can be further decomposed into single-particle contributions
H0

S (e.g., Hartree−Fock) and residual two-body terms VS. The
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latter arise from Coulombic interactions that cannot be mapped
into one-body terms and introduce correlations among the
electrons. The associated noninteracting Hamiltonian is
obtained when VS = 0, and is given by = + +H H H0 0

S B SB.
To extend the concept of electronic correlation to open

nonequilibrium quantum systems, we require a correlation
metric and a reference uncorrelated state for each electron−
nuclear state. To construct the reference state, we imagine a
fictitious process where for each physical time t the VS term in
the Hamiltonian is turned off adiabatically slow along a
fictitious time coordinate τ (see Figure S1 in the Supporting
Information (SI)). Specifically, we suppose that the Hamil-
tonian of the system is of the form

τ = − ϵ >τ
ϵ

−ϵ| |e V( ) ( 0)S
(1)

where the second term is considered as a perturbation to the
-induced evolution. The physical evolution along t occurs at

the τ = τ0 → −∞ limit of the (t, τ) space for which the
Hamiltonian is in its fully interacting form τ =ϵ( )0 . In this
limit, the state of the fully interacting system is given by

∑ρ α α ψ ψ̂ = * | ⟩⟨ |t t t( ) ( ) ( )
i j

i j i j
, (2)

where |ψi⟩ are eigenstates of ( ψ ψ| ⟩ = | ⟩Ei i i ). The
uncorrelated reference state is generated by adiabatically
turning off, in the Interaction picture, the VS term in the
Hamiltonian in the τ = τ0 to τ = 0 interval, i.e.,

ρ τ ρ τ̂ = ̂
τϵ→ →−∞

ϵ ϵ
†t U t U( ) lim lim (0, ) ( ) (0, )u

0
I 0 I 0

0 (3)

where UϵI(τ, τ′) is the evolution operator in the Interaction
picture. The latter is defined by the Dyson series4

τ τ τ τ′ = + ∑ ′ϵ =
∞

ϵU U( , ) ( , )n
n

I 1 I
( ) , where

∫τ τ τ τ τ τ′ = −
ℏ

′
τ

τ
τ

ϵ
′

−ϵ| |
ϵ

−U
i

d e V U( , ) ( ) ( , )n
n n

n
nI

( )
I I

( 1)n

VI(τ) = −U0
†(τ)VSU0(τ) is the − VS operator in Interaction

picture, and τ = τ− ℏU e( ) i
0

/ is the perturbation-free evolution
operator.
Equation 3 captures changes in ρ̂(t) that are generated by the

process of turning off VS in the presence of a nuclear
environment. It has the desirable property that ρ̂u(t) = ρ̂(t)
when VS = 0, and it reduces to the usual adiabatic connection
for isolated electronic systems when HSB = 0. Note that we have
chosen UϵI(τ) instead of the full evolution operator U(τ) =
U0(τ)UϵI(τ) to generate the uncorrelated states. This is because
the U0(τ) component of U(τ) leads to changes in ρ̂(t) due to
electron−nuclear entanglements that are present even when VS

= 0. By contrast, UϵI(τ) solely captures electron−nuclear
entanglements that can be modulated by the electron−electron
interactions.
Switching off interactions adiabatically generates exact

eigenstates of the noninteracting system from those of the
interacting system via the Gell-Mann and Low theorem
(GMLT).1,4 The GMLT states that, given an eigenstate |ψi⟩
of the interacting , if the limit

ϕ ψ| ⟩ = −∞ | ⟩
ϵ→

ϵ

ϵ→

−
ϵA Ulim lim (0, )i i i0 0

1
I (4)

(where Ai = ⟨ψi|UϵI(0,−∞)|ψi⟩/|⟨ψi|UϵI(0,−∞)|ψi⟩| and |Ai|
2 =

1 because the |ϕi⟩ are chosen to be normalized) exists, then

limϵ→0|ϕ
ϵ
i⟩ = |ϕi⟩ is an eigenstate of the noninteracting 0.

Applying the GMLT in eq 3, we arrive at the uncorrelated
reference state that corresponds to ρ̂(t) in eq 2,

∑ρ α α ϕ ϕ̂ = * | ⟩⟨ |θ θ−t t t e( ) ( ) ( )
i j

i j
i

i j
u

,

( )i j

(5)

Here, we have assumed that limϵ→0AiAj* = ei(θi−θj) exists even
when the phase factors ∼ ϵA ei

i/ are known to be ill-behaved as
ϵ → 0.4 While the Ai introduce convergence issues at the wave
function level, observable quantities, including the density
operator, should remain finite during the unitary evolution.
As a physical measure of electronic correlation in electron−

nuclear systems, we choose the energetic difference between
the correlated and uncorrelated state:

ρ ρ= ̂ − ̂E t t t( ) Tr[ ( ) ] Tr[ ( ) ]cor
u

0 (6)

This quantity measures energetic changes in the electron−
nuclear system that are introduced by the process of turning off
VS during the adiabatic connection in eq 3, and parallels a
common metric for correlation21 used in closed electronic
systems. Note that any energetic measure of correlation based
on the properties of the electronic subsystem alone is not
appropriate since it will unavoidably include relaxation channels
due to interactions with the bath. Further note that definitions
of correlation based on the nonidempotency of the single-
particle electronic density matrix22,25 are not applicable since
the nonidempotency can arise due to correlation or due to
decoherence26 (see refs 27 and 28 for measures claimed to
operate in open quantum systems).
As a basis-independent measure of decoherence, we employ

the purity P(t) = Tr[ρ̂e
2(t)], where ρ̂e(t) = TrB[ρ̂(t)] is the N-

body electronic density matrix obtained by performing a partial
trace over the nuclear bath. The purity P = 1 for pure states and
P < 1 for mixed states. For pure electron−nuclear systems, the
decoherence of the electronic (or nuclear) subsystem is solely
due to electron−nuclear entanglement. Thus, in this regime,
the decay of P also measures the degree of electron−nuclear
entanglement.
In this context, it is now readily seen why correlation and

decoherence are strongly connected. For this, first note that the
coherence content of ρ̂e(t) and ρ̂e

u(t) are generally different. To
see this, consider ρ̂(t) = |Ψ(t)⟩⟨Ψ(t)| in eq 2 for which |Ψ(t)⟩ =
∑i αi(t)|ψi⟩. In light of the Schmidt decomposition,20 |Ψ(t)⟩
can be written as λ|Ψ ⟩ = ∑ | ⟩| ⟩t t s t b t( ) ( ) ( ) ( )i i i i , where |si(t)⟩
and |bi(t)⟩ are, respectively, orthonormal electron and nuclear
states, and λi are the Schmidt coefficients (∑iλi = 1, λi > 0).
In the Schmidt basis,

∑ρ λ λ̂ = | ⟩| ⟩⟨ |⟨ |t s b b s( )
i j

i j i i j j
, (7)

In terms of {λi}, the purity of the electronic (or nuclear)
subsystem is P(t) = ∑iλi

2(t). In turn, the uncorrelated state
ρ̂u(t) = |Φ(t)⟩⟨Φ(t)| (eq 5) is associated with |Φ(t)⟩ ≡ ∑i αi(t)
e i θ i |ϕ i ⟩ . U n d e r t h e S c hm i d t d e c ompo s i t i o n ,

μ|Φ ⟩ = ∑ | ⟩| ⟩t t S t B t( ) ( ) ( ) ( )i i i i and the resulting purity is

Pu(t) = ∑iμi
2(t). Since |Φ(t)⟩ ≠ |Ψ(t)⟩, the set {μi} is different

from the set {λi}, and therefore the purity for the correlated
state and its reference uncorrelated counterpart generally differ.
That is, for HSB ≠ 0, VS modulates the degree of coherence of
electronic states.
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Consider now the influence of HSB on the correlation energy
[eq 6],

∑ α= | | −E t t E( ) ( ) ( )
i

i i icor
2

(8)

where ψ ψ| ⟩ = | ⟩Ei i i and ϕ ϕ| ⟩ = | ⟩i i i0 . For VS ≠ 0, Ecor will
change if HSB changes because Ei and i vary differently as H

SB

is modified. That is, HSB influences Ecor because it modulates
the response of the electron−nuclear system to VS.
Decoherence and correlation decouple when

=H H[ , ] 0S SB (9)

for VS ≠ 0. When eq 9 holds, the HSB does not introduce
electronic relaxation, and the system-bath dynamics is pure
dephasing. To see how this sufficient condition arises, consider
the decoherence case first. For the purity of ρ̂e(t) and ρ̂e

u(t) to
coincide, the evolution operator in eq 3 must not change the
degree of entanglement between electrons and nuclei. For this
to happen, UϵI must be of the form

−∞ = −∞ ⊗ϵ ϵ U U(0, ) (0, )S
I I

B
(10)

where UϵI
S is a purely electronic operator and B is the identity

operator in the nuclear Hilbert space. Under these conditions,
and in light of eq 7, ρ λ λ̂ = ∑ | ′⟩| ⟩ ⊗ ⟨ |⟨ ′|t s b b s( ) i j i j i i j j

u
, , where

|si′⟩⟨sj′| = limϵ→0UϵI
S (0,−∞)|si⟩⟨sj|UϵI

S†(0,−∞). Since the Schmidt
coefficients for ρ̂u(t) are the same as those of ρ̂(t) (cf. eq 7), the
purity of the two states is identical. For UϵI to be of the form in
eq 10, VI(τ) must be a purely electronic operator, i.e.,

τ τ= ̂ ⊗ V O( ) ( )
S B

I , where ÔS is an operator in the Hilbert
space of the electronic subsystem. This is guaranteed when eq 9
is satisfied. Specifically,

τ = − τ τ τ τℏ + ℏ − + ℏ − ℏV e e V e e( ) i H i H H i H H i H
I

/ ( )/ S ( )/ /S B SB B SB S

where we have used the fact that [HS,HB] = 0 and the condition
in eq 9. We arrive at the desired form

τ τ= − ⊗ = ̂ ⊗τ τℏ − ℏ  V e V e O( ) ( )i H i H
I

/ S / B S BSS

(11)

by taking into account that [VS,HB] = 0, and the fact that
[VS,HSB] = 0 for Coulombic systems since VS and HSB are both
functions of the position operators.
The correlation energy also becomes independent of HSB

when the commutation relations in eq 9 are satisfied. To show
this, we contrast Ecor with the correlation energy Ecor

(0) that would
have been obtained if HSB is not allowed to influence the
response of the system as VS is adiabatically turned off in eq 3.
Specifically,

ρ ρ= ̂ − ̂E t t t( ) Tr[ ( ) ] Tr[ ( ) ]cor
(0)

(0)
u

0 (12)

where the reference state ρ̂(0)
u (t) = limτ0 → −∞, ϵ →0[UϵI′ (0, τ0)

ρ̂(t)UϵI′†(0, τ0)] is obtained by setting HSB = 0 throughout the
adiabatic process, i.e., UϵI′ (0, −∞) = UϵI(0, −∞)|HSB

= 0. The
interaction potential VI′(τ) in UϵI′ (t,−∞) is given by

τ τ′ = | = − ⊗τ τ
=

ℏ − ℏ V V e V e( ) ( ) H
i H i H

I I 0
/ S / B

SB
S S

(13)

where we have used the fact that [HS,HB] = [VS,HB] = 0. If
Ecor(t) = Ecor

(0)(t), the correlation energy is independent of HSB.
For this to happen, the identity VI(τ) = VI′(τ) must be satisfied
such that ρ̂(0)

u (t) and ρ̂u(t) coincide. Since VI′(τ) is identical to
the limiting VI(τ) in eq 11, by the same argument employed to

arrive at eq 11 we conclude that Ecor(t) = Ecor
(0)(t) when eq 9 is

true.
From the perspective of the correlation energy, when eq 9 is

satisfied Ecor is purely determined by the electronic subsystem.
This is because ⟨HSB + HB⟩ remains constant as VS is turned off
adiabatically (as can be seen by writing the Heisenberg
equations of motion for HSB + HB). From the perspective of
the purity, eq 9 guarantees that the effect of the bath will be the
same for the correlated system and its uncorrelated counterpart,
thus eliminating a possible VS dependence in the decoherence
dynamics. Note that even for stationary Born−Oppenheimer
(BO) states, it is not possible for decoherence and correlation
to be uncoupled unless eq 9 is satisfied. This is because even
when stationary BO states are not entangled, the corresponding
uncorrelated state generally will be.
The pure dephasing condition (eq 9) is generally violated by

molecules and materials, indicating that the connection
between electronic correlation and decoherence is ubiquitous
in matter. Nevertheless, pure dephasing dynamics can arise
when the frequencies associated with nuclear motion are far
detuned from the electronic transitions such that the nuclear
dynamics does not lead to electronic transitions in the
correlated and uncorrelated system, as can be the case in
semiconducting quantum dots.29,30 Under such conditions, HSB

≈∑n Fn⊗|En⟩⟨En|, where {|En⟩} are the eigenstates of HS, and
the Fn are nuclear operators defined such that [VS, HSB] = 0.
We now quantitatively illustrate this connection using a

neutral two-site, two-electron, Hubbard-Holstein model with
zero net spin as an example;1 a minimal molecular model that
violates the commutation relations in eq 9 and satisfies [VS,
HSB] = 0 as is expected for molecules. Here the electrons are
described by the Hubbard Hamiltonian

∑= − ̂ ̂ + ̂ ̂ + ̂ ̂ + ̂ ̂
σ

σ σ σ σ
∈ ↑ ↓

† †
↑ ↓ ↑ ↓H t d d d d U n n n n( ) ( )S

0
{ , }

1 2 2 1 1 1 2 2

(14)

where dîσ
† (or d ̂iσ) creates (or annihilates) an electron on site i

with spin σ and satisfies the usual anticommutation relations
{d ̂iσ, dĵσ′† } = δi,jδσ, σ′. The quantity nîσ = dîσ

† d ̂iσ is the number
operator, t0 is the hopping parameter, and U is the energy
penalty for having two electrons on the same site. The Hubbard
Hamiltonian can be decomposed into a Hartree−Fock
component H0

S = −t0 ∑σ ∈{↑,↓}(d ̂1σ† d ̂2σ + d2̂σ
† d ̂1σ)+2U ∑i,σ n ̂iσ

⟨n ̂i,−σ⟩ − U∑i,σ ⟨n ̂iσ⟩⟨n ̂i,−σ⟩, and a two-body term VS = HS−H0
S,

where the expectation value ⟨n ̂iσ⟩ = 1/2 is over the equilibrium
thermal state. The nuclei are described as four baths of Nb

m

harmonic oscillators, with Hamiltonian

∑ ∑ ω= +
= =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟H

p
x

2
1
2m j

N
mj

mj mj
B

1

4

1

2
2 2

m
b

(15)

where xmj is the mass-weighted displacement away from
equilibrium for the jth harmonic oscillator in the mth harmonic
bath, pmj is the momentum conjugate to xmj, and ωmj is its
oscillation frequency. We assume that each set of harmonic
oscillators couples to an independent electronic configuration
of zero net spin. Specifically, we choose

= ̂ ̂ + ̂ ̂ + ̂ ̂ + ̂ ̂↑ ↓ ↑ ↓ ↑ ↓ ↓ ↑H Fn n F n n F n n F n nSB
1 1 1 2 2 2 3 1 2 4 1 2 (16)

where Fm = ∑j=1
Nb

m

cmjxmj is a collective bath coordinate of bath m.
The effective electron−nuclear coupling is specified by the
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spectral density Jm(ω) =
π
2
∑j=1

Nb
m

ω

cmj

mj

2

δ(ω − ωmj), which is assumed

to be the same for all the states and of Debye form
ω η= γω

ω γ+
J( ) 2 2 . Here γ is the characteristic frequency of the

bath, and the parameter η effectively determines the electron−
nuclear coupling strength.
The electronic dynamics generated by this model is

propagated exactly using the Hierarchical Equations of Motion
approach,31−34 a nonperturbative and non-Markovian theory of
reduced system dynamics. As an initial state, we consider a
separable electron−nuclear state ρ̂(0) = ρ̂e(0)⊗ρ̂n(0), where
the nuclei are initially at thermal equilibrium ρ̂n(0) =
exp(−βHB) /TrB{exp(−βHB)} with inverse temperature β,
and the electrons ρ̂e(0) = |Ψ⟩⟨Ψ| in a superposition
|Ψ⟩ = | ⟩ + | ⟩E E( )1

2 1 2 between the ground and first excited

state.
Figure 1 shows the dynamics of the purity and the electronic

energy for different electronic interactions U and effective
electron−nuclear couplings η (inset: characteristic decay time
scales τi in P(t)). The fact that eq 9 is violated is reflected by
the energetic relaxation of the electrons. The purity observes a
sharp initial decay on a τ1 time scale, followed by a slower
dynamics on a τ2 time scale that asymptotically leads the
electronic subsystem to a state of thermal equilibrium. In the
presence of electronic correlations, varying U strongly

modulates the decoherence and relaxation dynamics. By
contrast, in the Hartree−Fock approximation, the purity for
this model is independent of U and equal to the one for U = 0.
For U ≤ 3t0, the decoherence is determined by τ2. In turn, for
U ≥ 4t0, the importance of τ2 in the dynamics (as characterized
by the dot sizes in Figure 1) is diminished, and the decoherence
time is determined by τ1. Note how increasing U can enhance or
suppress the rate of electronic decoherence. Specifically, for η =
0.1t0, increasing U leads to a decrease in the decoherence time.
By contrast, for η = 2.0t0, increasing U leads to a decrease
followed by an increase in the decoherence time. As expected,
the rate of decoherence is faster in the stronger η case.
The molecular mechanisms at play in Figure 1 can be

identified by examining the effect of changing η and U on the
potential energy surfaces (PESs). As detailed in the SI,
increasing U brings the ground and first excited state closer
together in energy, and reduces the difference in curvature
between their PESs. The first effect increases the decoherence
rate because it increases the nonadiabatic couplings between
the two states. Excitation by an incoherent bath leads to
decoherence.35 Thus, the enhanced excitation of the electrons
by the thermal nuclei increases the decoherence rate. The
second effect, by contrast, slows down the decoherence. To see
this, recall that for a general vibronic state |Ψ ⟩ =∑n|En⟩|χn⟩ the
electronic density matrix is given by ρ̂e= ∑nm⟨χm|χn⟩|En⟩⟨Em|.
The coherences between electronic states |En⟩ and |Em⟩ are thus

Figure 1. Purity and electronic energy during the evolution of the Hubbard−Holstein molecule (β = 1/t0, ℏ γ = 0.3t0). The inset shows characteristic
time scales in P(t) obtained from an exponential fit P − Pthermal = ∑i=1

3 ai exp(−t/τi) (see SI). The dot size measures the magnitude of |ai| (blue, ai >
0; red, ai < 0; a3 is small and not shown). Note how increasing U can enhance or suppress the decoherence.

Figure 2. Two-particle cumulant during the evolution in Figure 1.
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determined by the nuclear wavepacket overlap Smn =
⟨χm|χn⟩.

12,36 By making the PESs look more alike, increasing
U slows down the decay of Smn for each member of the initial
ensemble due to wavepacket evolution in alternative PESs. It is
the nontrivial competition between these two effects that leads
to the intricate dynamics in Figure 1.
Note that the nonadiabatic couplings between the ground

(singlet) and first excited (triplet) state that are responsible for
the first decoherence mechanism arise due to the F3n ̂1↑n̂2↓ and
F4n ̂1↓n̂2↑ terms in HSB. By contrast, the second decoherence
mechanism is determined by all four terms in HSB and survives
even in the absence of singlet−triplet couplings. In this limit,
increasing U protects the electrons from the decoherence.
Does decoherence help us reduce the complexity of the

many-body electron problem? Figure 2 shows the evolution of
the two-particle cumulant (Tr[λ2] = Tr[(1)Γ2 − (1)Γ], where
(1)Γ is the one-body electronic density matrix), which measures
the importance of two-body contributions to ρ̂e that cannot be
decomposed in terms of (1)Γ.25 For an uncorrelated closed
electronic system (1)Γ2 = (1)Γ and Tr[λ2] = 0. As shown, instead
of reducing the complexity, in this case increasing η (and U)
enhances the importance of higher order r-body electronic
density matrices to the BBGKY hierarchy.37

In conclusion, we have shown that the correlation among
electrons and the degree of quantum coherence of electronic
states are strongly coupled in matter. For arbitrary states, only
when the system-bath dynamics is pure dephasing such that eq
9 is satisfied can correlation and decoherence be considered as
uncoupled physical phenomena. Investigating the consequences
of this fundamental, ubiquitous, and previously overlooked
connection constitutes an emerging challenge in electronic
structure and molecular dynamics.
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