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ABSTRACT: A simple method that accurately captures the dynamics of metal−
molecule−metal junctions under the influence of time-dependent driving forces is
presented. In the method, the metallic contacts are modeled explicitly as a discrete set of
levels that are dynamically broadened via an artificial damping term in the equations of
motion. The approximations that underlie the method are revealed via a derivation of the
effective equations of motion within the framework of nonequilibrium Green’s functions
(NEGF) theory. As shown, the method applies to junctions that can be described by an
effective independent Fermion Hamiltonian, admits arbitrary time dependence in the
molecular Hamiltonian, and is restricted to time-dependent voltages that are adiabatically
slow. The method is trivial to implement computationally, has a well-defined range where
the results are independent of artificial model parameters, and is numerically shown to
quantitatively reproduce the time-dependent transport characteristics of a model molecular junction driven by laser fields as
described by an exact NEGF method in the wide band limit. As such, it generalizes previous efforts to capture Landauer transport
via effective Liouville equations of motion with damping terms and constitutes an intuitive and technically accessible method for
modeling time-dependent transport phenomena in molecular junctions that are driven by electric fields or fluctuating
environments.

1. INTRODUCTION

Considerable effort has been devoted to the development of
theoretical methods that are useful in the description of charge
transport along metal−molecule−metal junctions.1−4 The focus
has traditionally been placed on capturing the steady-state
current induced by an applied voltage where the scattering-based
Landauer−Büttiker formalism provides a useful starting point for
more sophisticated approaches.5,6 A more recent area of focus
has been the development of explicitly time-dependent
formulations for the transport that capture transient behavior
or transport under circumstances where no steady-state solution
exists.7−15 The latter occurs, for example, when the junction is
subject to a laser field, to a time-dependent voltage, or to
interaction with a fluctuating environment.
In its most basic form, the theoretical description of time-

dependent charge transport along a nanojunction is a problem in
open quantum system dynamics where the molecular system
exchanges particles and energy with the metallic contacts.
Approaches to describe time-dependent transport includemaster
equations techniques,9,16,17 open-boundary schemes within
time-dependent density functional theory (TDDFT),8 non-
equilibriumGreen’s functionmethods (NEGF),7,12 schemes that
combine TDDFT and NEGF with the hierarchical equation of
motion approach to open quantum dynamics,10,13−15 hybrid
Floquet−NEGF treatments,18,19 and the multilayer multi-
configuration time-dependent Hartree theory.20,21

While the push in the field has naturally been toward
developing methodologies of increased generality and sophisti-

cation, our objective here is quite different. The question that we
ask is: what is the simplest possible way to quantitatively describe
time-dependent transport along a nanoscale junction? Aside
from convenience in computation, simple methods often shed
light on the essential elements required in the physical
description of a problem.
A glimpse into how a simple methodology might be developed

in this case follows from the recent observations22−25 that the
Landauer current (and the nonequilibrium steady-state pop-
ulations23) can be reproduced by determining the steady-state
solution for the reduced density matrix of a molecule attached to
a finite segment of leads with damping terms in the equations of
motion that enforce open-boundary conditions.
In this paper, we investigate the possible use of the simple

equations of motion heuristically derived in ref 25 to follow
transient behavior in nanojunctions with time-dependent
Hamiltonians. For time-independent Hamiltonians, these
equations of motion are known to reproduce Landauer transport
in the steady state.25 However, because a rigorous derivation of
the equations of motion is lacking and no numerical comparison
with exact time-dependent transport results has been presented,
it is unclear if this approach can successfully capture transient or
time-dependent transport behavior.
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We show that, quite remarkably, this simple set of equations is
also capable of accurately reproducing the time-dependent
transport characteristics of a molecular wire even under rather
extreme driving conditions. As a particular time-dependent
realization, we focus on photoinduced transport;26 more
specifically, on laser-induced symmetry breaking27−32 and on
the coherent destruction of tunneling.9,33−36 The results are
benchmarked against Lodestar, which is a state-of-the-art NEGF
time-dependent transport code based on the developments
summarized in ref 15. To unveil the approximations that underlie
the method, the effective equations of motion are derived from
NEGF transport theory. As shown, the method is applicable to
any system with an effective independent electron Hamiltonian
such as that produced by TDDFT and allows for arbitrary
temperature, molecule−lead coupling, and driving forces on the
molecule. The time-dependence in the voltage can be captured at
the adiabatic level where it is supposed that changes in the
voltage do not lead to excitations in the metallic contacts.
The structure of this paper is as follows: In Section 2 the

phenomenological equations and parameters proposed to model
the time-dependent transport across molecular junctions are
introduced. Sections 3.1 and 3.2 illustrate the ability of the
method to accurately capture asymptotic and transient currents
using a laser- and voltage-driven two-level molecule as an
example. Section 3.3 identifies a well-defined range where the
results are independent of fictitious model parameters. In turn,
Section 3.4 presents a derivation of the equations of motion
within the framework of NEGFs. Our main results are
summarized in Section 4.

2. MODEL AND METHODS
The Hamiltonian for a time-dependent metal−molecule−metal
junction is given by

= + +H t H t H t H t( ) ( ) ( ) ( )M L ML (1)

whereHM(t) describes the molecule,HL(t) the leads, andHML(t)
the molecule−lead coupling. Here it is supposed that H(t) is an
effective single-particle Hamiltonian such as that expected from
TDDFT. In this case, the device region can be expressed as

∑ ∑ε= +†

≠

†H t t c c V t c c( ) ( ) ( )
n

n n n
n m

nm n mM
(2)

where the operator cn
† (or cn) creates (or annihilates) a Fermion

in a single-particle level n of energy εn(t). Such levels may be
coupled to one another through Vnm(t). The leads are described
by

∑ ∑ ε=
β

β β β
=

†H t t c c( ) ( )
q

q q qL
l,r (3)

where cβq
† and cβq are the Fermionic operators for the lead states

and β = l or r denotes the left or right lead, respectively. Last, the
molecule−lead coupling is given by

∑ ∑= +
β

β
β

=

†H t V t c c( ) ( ) H.c.
n q

nq q nML
l,r , (4)

where Vnq
β (t) are the couplings between the molecule and lead β,

and H.c. denotes Hermitian conjugate. The effective molecule−
lead coupling is specified by the spectral density

∑ε π δ ε εΓ = | | −β
β

βt V t( , ) 2 ( ) ( )n
q

nq q,
2

(5)

a quantity that contains information about the characteristic
frequencies of the leads and their coupling to the molecule.
Because the Hamiltonian in eq 1 is a single-particle operator, all
electronic properties of the composite system are determined by
the single-particle reduced density matrix

ρ = ⟨ ⟩†t c c( )uv v u (6)

where the labels in the Fermionic operators can refer to
molecular or lead levels. The dynamics of such reduced density
matrix is determined by the single-particle Liouville’s equation of
motion

ρ ρ= −
ℏt

H
d
d

i
[ , ]

(7)

In what follows, we focus on the wide-band limit (WBL) where
the Vnq

β (t) and the leads’ density of states η = ∑qδ(ε − εβq) are
assumed to be energy independent. In this case, the Γn,β(ε,t) is
also energy independent and given byΓn,β(t) = 2πη|Vn

β(t)|2. Note,
however, that the method described below can in principle
operate beyond the WBL provided the molecule−lead couplings
in eq 4 are known. These couplings can be calculated, for
example, by determining the eigenstates of the composite system
in site representation and then employing site-to-state unitary
transformations as exemplified in ref 25.
Generally, if one attempted to integrate eq 7 directly, an

infinite number of states would be required to describe the
continuum electronic structure of the macroscopic leads. In
principle, as shown in Figure 1, that continuum can be

numerically discretized into a finite Nq number of states in the
[Emin, Emax] energy range equidistantly spaced at Δεq intervals.
However, the resulting structure will not, in general, behave like a
continuum. To make the finite set of levels behave like a
continuum, as was done previously for steady-state trans-
port,22,23,25 the equations of motion are supplemented with a
fictitious damping term that effectively broadens the lead levels.
Specifically, eq 7 is now expressed as

Figure 1. Scheme of the model used to describe driven molecular
junctions. The molecule consists of a series of levels |n⟩ with energies
εn(t) that are coupled via Vnm(t). The molecule is coupled to the leads
through Γn,l(t) and Γn,r(t). The leads (with Fermi energies μl and μr) are
described by a finite number of states Nq equidistantly spaced everyΔεq
in the [Emin, Emax] energy range. The damping term in eq 8 introduces
Lorentzian broadening to the leads’ levels with full width at half-
maximum of 2γ. For 2γ ≥ Δεq, the set of levels representing the leads
effectively behave like a continuum.
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Here, the single-particle density matrix has been split into a
molecular part ρM, a lead part ρL, and the molecule−lead
coherences ρML (where ρML = ρLM* ). In general, ρL contains
coherences between the two leads. The second term on the right-
hand side (RHS) of eq 8 dynamically forces the leads’ density
matrix to decay to a thermal distribution ρL

eq at a rate determined
by γ/ℏ. As pointed out in ref 25, the third term on the RHS of eq
8 where the molecule−lead coherences are damped at a rate of γ/
2ℏ is necessary to preserve Pauli’s exclusion principle and the
positivity of the diagonal of the density matrix. In thermal
equilibrium there are no coherences between leads, and the
density matrix of each lead is described by the Fermi−Dirac
distribution with matrix elements

ρ δ
ε μ

ε=
+ −

=β

β β
β β′ ′ k T

f
1

1 exp[( )/ ]
( )qq qq

q B
q

eq,

(9)

where μβ is the chemical potential for lead β and T the
temperature. For each lead level, the net effect of γ is to introduce
Lorentzian broadening with full width at half-maximum (fwhm)
of 2γ. This is consistent with previous developments37 that fit the
leads’ self-energy as a sum of discrete Lorentzian functions. As
shown in Section 3.3, the discretized lead states essentially
behave like a continuum when 2γ ≥ Δεq.
Last, the current entering lead β is given by
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(10)

where e is the elementary charge of an electron. The net current
passing through the nanojunction is calculated as the average
current flowing into the two leads

= −I t I t I t( ) ( ( ) ( ))/2.l r (11)

In the steady state or for nontransient processes, Il + Ir = 0.
A scheme of the resulting model proposed to describe the

junction is shown in Figure 1. The accompanying equations of
motion, eqs 8 and 10, constitute a set of coupled linear
differential equations that are straightforward to integrate using,
for example, a Runge−Kutta method of order 4; this is the
strategy that we adopt. These and closely related equations have
numerically been shown to reproduce the steady-state Landauer
transport.22−25 Below, we numerically demonstrate that they can
also quantitatively capture time-dependent phenomena in
junctions and isolate a well-defined range where results are
independent of fictitious model parameters [Emin, Emax], γ and
Δεq. This is done by comparing results obtained using eqs 8 and
10 with those generated by an essentially exact state-of-the-art
finite temperature NEGF method15 that uses the WBL and a
Pade ́ expansion38 for the Fermi−Dirac distribution. Importantly,
via explicit derivation of the equations of motion, we also provide
a connection with NEGF transport theory and isolate the
approximations underlying the method.

3. RESULTS AND DISCUSSION
For definitiveness, to test the theoretical ansatz in eq 8 we focus
on laser-driven transport in which the time dependence in the
Hamiltonian arises because of laser−matter interactions. As a
specific model, we consider a two-site tight-binding molecule
interacting with a laser field E(t) in dipole approximation with
Hamiltonian

∑ ε= − Δ + + −
=

† † † † †H t c c c c c c
eaE t

c c c c( ) ( )
( )

2
( )

n
n n nM

1

2

1 2 2 1 1 1 2 2

(12)

where cn
† (cn) creates (annihilates) an electron at site nwith onsite

energy εn and a is the length between sites. Both sites are coupled
via a tight-binding parameterΔ. For ε1 = ε2, the eigenlevels of the
isolated molecule are separated by an energy gap 2Δ. The
molecule−lead interaction term HML is taken to be

∑= + +† †H t V t c c V t c c( ) ( ( ) ( ) ) H.c.
q

q q q qML l l 1 r r 2
(13)

such that site 1 couples to the left lead and site 2 to the right lead.
Throughout we suppose the coupling to either lead to be
identical and given by Γ = Γβ = 2πη|Vβ(t)|

2.
We focus on the description of two well-known laser-driven

phenomena in junctions: the coherent destruction of tunnel-
ing9,33−36 (in which a properly designed continuous wave laser
field can drive coherent tunneling to an almost complete
standstill) and laser-induced symmetry breaking27−32 (in which
laser fields with frequency components ω and 2ω induce phase
controllable currents in spatially symmetric systems). Such
phenomena can operate under perturbative and nonpertubative
driving conditions and are sensitive to the continuum structure of
the leads, providing a useful testing ground for the methodology.

3.1. Asymptotic Currents. Consider first the ability of eq 8
to accurately describe asymptotic time-dependent currents
across a junction. Figure 2 shows the time-averaged current I ̅
induced by a bias voltage under the influence of a nonresonant
continuous wave laser field of the form E(t) = A cos(ωt) of
varying amplitude. This type of laser-modulation of transport has
been described in detail elsewhere (see, e.g., ref 39). As shown,
the laser modulates the tunneling current and for specific laser

Figure 2. Coherent destruction of tunneling as described by eq 8 and a
NEGF method. The plot shows the asymptotic time-averaged current I ̅
induced by a bias voltage andmodulated by a laser field E(t) =A cos(ωt)
as a function of the laser driving amplitude A for a two-level molecular
junction with energy gap 2Δ. Here, ℏω = 5Δ, ε1 = ε2 = 0,−μl = μr = 24Δ,
Γ = 0.5Δ, and kBT = 0.1Δ. In solving eq 8 we used γ = 0.3Δ, Nq = 500
and Δεq = 0.2Δ. Note the agreement between the two methods even
under extreme driving conditions.
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parameters (eaA/ℏω = 2.405, 5.520, 8.654, and so on39)
essentially quenches the transport. This is the so-called coherent
destruction of tunneling. For the present purposes what is
important to note is that in the absence of a laser field and for
weak and strong driving conditions the results obtained using eq
8 accurately reproduce those generated by the exact NEGF
transport formalism. Furthermore, the observed asymptotic
currents were found to be independent of how fast the
molecule−lead coupling in eq 13 is turned on.
As a second test, we consider the case in which there is no bias

voltage, the junction is spatially symmetric, and a laser field E(t) =
Aω sin(ωt) + A2ω sin(2ωt + ϕ) with ω and 2ω frequency
components is used to break the spatial symmetry of the system
and generate a current. To third order in the field, such lasers are
known to generate net phase controllable currents of the form I
∝Aω

2A2ω cos(ϕ + α) whereϕ is the relative phase between theω
and 2ω components and α is the molecular phase.27 The
molecular phase is sensitive to the continuum structure of the
junction and is a quantum signature of the particular bound-to-
continuum transitions exploited for the generation of trans-
port.27,40,41 Figure 3 shows the asymptotic time-averaged

photoinduced current when the 2ω component is chosen to be
at resonance (laser and junction parameters are specified in the

figure) as a function of the relative phase ϕ for two different
molecule−lead coupling strengths Γ = 0.01Δ and 0.10Δ. The
figure shows the usual sinusoidal control map for this coherent
control scenario under conditions previously detailed in ref 31.
As in the previous example, the results obtained with eq 8
accurately reproduce the NEGF results, including the magnitude
of the current and its dependence on the relative laser phase.
Note that, quite importantly, eq 8 also correctly captures the
molecular phase determining the phase lag of the control map.
Such molecular phase is known to sensitively depend on the
continuum structure;40,41 hence, this is a strong indication that
the broadening procedure in eq 8 reproduces such structure
correctly.42

We have also performed computations using a longer 10-site
molecule as an example (not shown) which exhibited equally
good agreement between results obtained using eq 8 and those
obtained using the NEGF method in ref 15.

3.2. Transient Behavior. As an additional important test we
now show that eq 8 can also correctly describe transient junction
behavior. To do so we investigate how a 400 fs Gaussian pulse
modulates the steady-state transport induced by a bias voltage. As
in ref 35, the laser parameters are chosen such that the laser is
expected to suppress transport via coherent destruction of
tunneling. Specifically, at maximum laser intensity eaA/ℏω is
2.405, which corresponds to the first current dip in Figure 2. The
evolution of the transient current is shown in Figure 4. The
system begins in a steady-state situation where a bias voltage
induces a current across the junction. As the laser field develops,
the average current (blue lines) decays, with tunneling transport
essentially being suppressed at the center of the pulse. As the
laser field fades, the average current increases gradually. Finally, it
is reestablished completely. Note that results obtained using eq 8
coincide with those of the NEGF method, indicating that the
simple method accurately describes transient behavior too.
Nevertheless, because in this method the leads are considered
explicitly, it is computationally less efficient than the NEGF
method where the leads are considered implicitly. For instance,
the results in Figure 4 require 5 CPU hours on an Intel Xeon 2.7
GHz processor, whereas Lodestar requires 0.2 h in the same
processor.

3.3. Applicable Range of Parameters.Having exemplified
the versatility and accuracy of the method, it is now important to
discuss the parameter range in which the method is applicable.
The parameters to be considered (recall Figure 1) are (1) the

Figure 3. Laser-induced symmetry breaking as described by eq 8 and a
NEGF method. The plot shows the asymptotic time-averaged current I ̅
induced by a laser field E(t) = Aω sin(ωt) + A2ω sin(2ωt + ϕ) as a
function of the relative phase ϕ for a two-level molecular junction with
the Hamiltonian in eqs 12 and 13. Here, eaAω = 2eaA2ω =Δ, ℏω =Δ, ε1
= ε2 = 0, μl = μr = 0, and kBT = 0.25Δ. Equation 8 correctly captures the
magnitude and phase dependence of the control.

Figure 4. Transient modulation of a steady-state current by a 400 fs Gaussian laser pulse as computed with eq 8 and a NEGF method for a two-level
molecular junction defined by theHamiltonian in eqs 12 and 13. Here, ε1 = ε2 = 5Δ, μl = 10Δ, μr = 0,Γ = 0.4Δ, and kBT = 0.25Δ. The laser pulse E(t) =A
exp[−(t − T0)

2/(2σ2)] sin(ωt) is centered at T0 = 1600 fs, with a width σ = 400 fs and central frequency ℏω = 10Δ. The quantity eaA/ℏω = 2.405 is
chosen such that the laser suppresses transport through coherent destruction of tunneling. Blue lines indicate the time-dependent averaged current over
three periods of the laser field. Note that eq 8 accurately captures the transient and asymptotic transport characteristics of the time-dependent junction.
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energy range [Emin, Emax] for the leads (we use−Emin = Emax = E),
(2) the number of states in the leads Nq, and (3) the damping
parameter γ in eq 8. Note that the parameters used to describe
the leads (E,Nq,Δεq ,and η) are related throughΔεq = 1/η = 2E/
Nq.
To test parameter dependence, we focus on the laser-induced

currents described in Figure 3 with Γ = 0.10Δ and ϕ = 0.65π,
which corresponds to a maximum in the control map. The
asymptotic time-averaged current resulting from eq 8 using
different values for E, Nq and γ (with other parameters kept
constant) are shown in Figure 5. Figure 5a shows the dependence
of the asymptotic current on the energy bandwidth of the leads.
For bandwidths smaller or comparable to the spread in energy of
molecular levels (in this case 2Δ) the method gives inaccurate
results. However, once all molecular levels are contained within

the leads’ energy bandwidth, the current quickly converges with
increasing E. In what follows we choose E = 5Δ because it
provides well-converged results for the model considered.
Figure 5b shows the dependence of the current on the number

of lead levels Nq (or, equivalently, on the level spacing between
lead levelsΔεq) for fixed E. As shown, beyond a certain threshold
value for Nq (or Δεq) the current is essentially unchanged by
increasingNq (or decreasingΔεq). The origin of such a threshold
is best revealed by studying the dependence of the currents on
the decay parameter γ. This is shown in Figure 5c for E = 5Δ and
Nq = 200 (or Δεq = 0.05Δ). From a spectral perspective, the
effect of γ is to dynamically broaden the lead levels into
Lorentzians with fwhm of 2γ. Thus, for 2γ < Δεq the set of lead
levels are spectrally isolated and the finiteness of the Hilbert
space of the model of the leads manifests as a reduction in the net
observed current. By contrast, for 2γ ≥Δεq the lead levels are no
longer spectrally isolated and for all practical purposes represent
a continuum. Nevertheless, if γ is too large the current drops
dramatically and goes almost to 0. In fact, when γ ≫ Γ the
dynamics cannot capture processes to all orders in the physical Γ
before excitations are quenched by the γ-induced population
decay in the leads. As shown in the inset of Figure 5c, γ is best
chosen such that Γ > γ ≥ Δεq/2. In this range, the results are
largely insensitive to the fictitious model parameters and coincide
with the NEGF results in the WBL. A similar applicable range of
model parameters was observed in the steady-state case when
employing equations of motion reminiscent of eq 8 but that do
not take into account the decay of molecule−lead coherences.23

3.4. Derivation within the Framework of NEGF. To
understand why the simple eq 8 is successful in capturing time-
dependent transport, we now derive it using the formalism of
NEGF. In essence, we seek an equation of motion of the form

ρ ρ γ ρ γ ρ ρ̇ = −
ℏ

−
ℏ

− −
ℏ

+H Q Q Z Q P P Q
i

[ , ] ( )
2

( )

(14)

where Z is a positive semidefinite matrix and H is the
noninteracting Hamiltonian for the junction as in eq 1; P and
Q are operators that project onto the molecule and explicit lead
subspaces, respectively. Throughout, we refer to the junction as
the molecule plus the segment of the leads that is considered
explicitly in the simulations. To capture the damping terms in the
equations of motion, the explicit lead levels in the junction are
connected to an even larger Fermionic reservoir with
Hamiltonian B and reservoir-lead couplings . The total
Hamiltonian of the reservoir-junction-reservoir tripartite system
is

= + +H t( ) B (15)

Because is assumed to be a single-particle Hamiltonian, the
dynamics of the single-particle reduced density matrix is given by

ρ ρ̃ = −
ℏ

̃
t

d
d

i
[ , ]

(16)

where ρ̃ is the density matrix for the tripartite system.
We now show that the simple equations of motion arise

naturally for the tripartite system in eq 15 provided that (1) only
the explicit lead levels couple to the Fermionic reservoir, (2) all
explicit lead levels are damped identically and are not coupled
among each other via the reservoir, (3) the bandwidth of the
Fermionic reservoir is the largest energy scale in the problem
such that the WBL applies, (4) the relaxation dynamics of the
explicit lead levels is independent of the presence of the

Figure 5. Dependence of the results obtained with eq 8 on the fictitious
parameters employed to describe the leads. The plots show the time-
averaged asymptotic current induced by a laser field as described in
Figure 3 with Γ = 0.10Δ and ϕ = 0.65π as a function of (a) half
bandwidth E of the leads withΔεq = 0.05Δ and γ = 0.08Δ, (b) number of
lead states Nq with E = 5Δ and γ = 0.08Δ, and (c) damping parameter γ
with E = 5Δ and Nq = 200. The black dotted line indicates the NEGF
result.
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molecule, and (5) any time-dependence in the leads (for
instance, a time-dependent bias voltage) can be considered
adiabatically. The validity of the approximations has been
exemplified in Sections 3.1 and 3.2.
The desired equation of motion for ρ = (P + Q)ρ̃(P + Q) is

obtained by projecting eq 16 onto the Hilbert space used in the
simulations:

ρ ρ ρ

ρ

ρ

ρ ρ ρ

= −
ℏ

+ ̃ − ̃ +

= −
ℏ

+ + + + + ̃

− ̃ + + + + +

= −
ℏ

−
ℏ

̃ + − + ̃

t
P Q P Q

P Q P Q B P Q B

P Q B P Q B P Q

H B P Q P Q B

d
d

i
( )( )( )

i
( )( ( )( )

( )( ) )( )

i
[ , ]

i
( ( ) ( ) )

(17)

where the operator B projects onto reservoir states; (P +Q + B) is
the identity and = (P + Q) B + B (P + Q) = Q B +
B Q, where we have supposed that only the explicit lead levels
are coupled to the reservoir via .We also used the fact thatH =
(P + Q) (P + Q) and the orthogonality between the different
projection operators, i.e., PQ = PB = QB = 0. Such orthogonality
between the projection operators requires using basis states for
the molecular and lead regions that are orthogonal among each
other. The first part of eq 17 corresponds to the unitary dynamics
of the junction, while the second part captures electron injection
and decay processes.
The density matrix elements of Bρ̃(P + Q) and (P + Q)ρ̃B all

have one index in the reservoir and one in the junction. To obtain
a closed equation within the junction we must break these terms
apart. To this end, we employ the NEGF formulation and apply
the Dyson equation on the Keldysh contour to the second part of
eq 17.
First, we identify the lesser Green’s function in terms of the

single-particle reduced density matrix of the tripartite system as

ρ ̃ = − = ⟨ ⟩< †t G t t c t c t( ) i ( , ) ( ) ( )ji ji i j (18)

In terms of Gji
<(t,t) the junction-reservoir coupling terms in the

dynamics are given by

∑

ρ ρ−
ℏ

̃ + − + ̃

= −
ℏ
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= −
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< <
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i
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1
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1
( ( , ) ( , ) )

b
qb bk kb bq

(19)

In writing the last term in eq 19, explicit indexes have been used
to highlight the terms that contribute to the dynamics of the
density matrix. Here, and throughout, the b index runs over the
reservoir levels, q over the explicit lead levels, and k over junction
levels. Note, however, that tensor notation has been adopted and
that the two contributing terms enter into different submatrices
in the dynamics of the density matrix. Next we write the
Hamiltonian as = + +H t( ( ) )B , where is
considered as a perturbation to the uncoupled junction plus
reservoir system, apply the Dyson equation to the Green’s
function ordered on the Keldysh contour, and use the Langreth
rules to obtain the lesser Green’s function:

∫
∫

τ τ τ

τ τ τ

=

+

< <

<

G t t G t G t

G t G t

( , ) d ( , ) ( , )

d ( , ) ( , )

bk bb bq qk

bb bq qk

(0),ret

(0), adv
(20)

∫
∫

τ τ τ

τ τ τ

=

+

< <

<

G t t G t G t

G t G t

( , ) d ( , ) ( , )

d ( , ) ( , )

kb kq qb bb

kq qb bb

ret (0),

(0),adv
(21)

Here the (0) superscript denotes the uncoupled Green’s
functions of the junction plus reservoir. In general, eqs 20 and
21 require a sum over q. We assume, however, that the reservoir
does not mix the lead levels. Effectively, this requires supposing
that the specific q label in the bq couplings in eq 19 is the same
as the one in eqs 20 and 21. Inserting eqs 20 and 21 into eq 19, we
shall obtain a closed equation for ρ. The resulting equation is
reminiscent of eq 16.9 in ref 43 without the final term, which
handles the initial state. Note, however, that the partition used in
ref 43 does not consider an explicit segment of the lead as part of
the system; hence, the spirit and range of validity of the equations
is fundamentally different. Further note that we do not consider
the vertical contour piece attached to the Keldysh contour that
leads to initial time dependence in order to keep the equations
local in time.
The terms containing a coupled lesser Green’s function in eqs

20 and 21 comprise the decay terms. We can write them as

∫ ∫τ τ τ τ τ τΣ − Σ< <G t t t G td ( , ) ( , ) d ( , ) ( , )kq qq qq qk
(0),adv (0),ret

(22)

w h e r e e x p r e s s i o n s o f t h e f o r m
Σqq
(0),adv(τ, t) = Σb qbGbb

(0),adv(τ, t) bq are self-energies. Applying
the WBL to the junction−reservoir coupling, and assuming that
all lead states are damped equally, we have

τ γδ τΣ = −t
i

t( , )
2

( )qq
(0),adv

(23)

τ γδ τΣ = − −t t( , )
i
2

( )qq
(0),ret

(24)

where γ γ ω π δ ε ω≃ = ∑ − ℏ( ) 2 ( )qq b qb b bq.
43 Performing

the time integrations, we have

γ γ γ ρ ρ+ = − +< <G t t G t t
i
2

( , )
i
2

( , )
1
2

( )kq qk kq qk (25)

where the index k runs over the entire junction. When restricted
to the explicit leads, the two terms are identical and we obtain
−γQρQ. When k runs over the molecular states, we have two
hermitian conjugate terms, −1/2γ(QρP + PρQ). Note that, in
essence, in the WBL the decay terms introduced by the
Fermionic reservoir can be captured by an imaginary potential.
This is consistent with previous observations in semi-infinite
tight-binding chains29 and provides the physical basis to the
introduction of imaginary potentials in ref 25. When the
Fermionic reservoir cannot be described in the WBL, non-
Markovian effects can play an important role in the
dynamics.44,45

The terms in eqs 20 and 21 containing an uncoupled lesser
Green’s function comprise the injection term.We can write them
as
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∫ ∫γ τ τ τ τ τ τ= Σ − Σ< <Z G t t t G td ( , ) ( , ) d ( , ) ( , )kq qq qq qk
ret (0), (0), adv

(26)

Assuming that the junction-reservoir couplings and the reservoir
Hamiltonian are time-independent, applying the WBL to the
junction-reservoir coupling, and assuming that all lead states are
damped equally, we can evaluate the self-energies

∫

∑τ τ

ω
π

ω γ

Σ =

= ω τ

< <

− −

t G t

f

( , ) ( , ) (27)

d
2

e i ( ) (28)

qq
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qb bb bq

t

(0), (0),

i ( )

where f(ω) is the Fermi distribution of the leads.43 Inserting
above, we have
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where the last line defines the auxiliary function

∫ω τ τ τ̃ = −ω τ ω τ− − − −A t G t Q QG t( , ) i d [e ( , ) e ( , )]t ti ( ) ret i ( ) adv

(32)

The term γZ represents the relaxation of charges in the explicit
leads. To lowest order, this dynamics is expected to be
independent of the presence of the molecule. Thus, in the
following we shall consider the Green’s functions to lowest-
zeroth order in the molecule−lead coupling. Under this
assumption, the Green’s functions commute with Q, and we
have Ã(ω,t) = QÃ(ω,t)Q. Considering the explicit lead
Hamiltonian HL in eq 1 to be independent of time, the Green’s
functions become dependent only on the time difference and we
can introduce the Fourier components. As a consequence, the
dependence on time t drops out, and Ã(ω,t) equals the spectral
function.

ω ω ω ω̃ = − =A G G A( ) i( ( ) ( )) ( )ret adv
(33)

In conclusion, we have

∫γ γ ω
π

ω ω γρ= =Z f A
d
2

( ) ( ) eq
(34)

A time-dependent bias can be introduced via a time-dependent
chemical potential in the Fermi function. This relies on the
adiabatic assumption that the leads remain in equilibrium at all
times. That is

∫γ γ ω
π

ω ω γρ= =Z t f t A t( )
d
2

( , ) ( ) ( )eq
(35)

Collecting terms, we arrive at

ρ ρ γ ρ ρ γ ρ ρ̇ = −
ℏ

−
ℏ

− −
ℏ

+H Q Q Q P P Q
i

[ , ] ( )
2

( )eq

(36)

which is exactly the same as eq 8.

The dynamics of the single-particle reduced density matrix for
the full junction−bath system, ρ̃(t), preserves positivity because
it is governed by the Liouville equation. The reduced density
matrix of the junction, ρ(t), obtained by projection constitutes a
principal submatrix of a hermitian, positive semidefinite matrix
and is thus also positive semidefinite. Consequently, the exact
reduced dynamics, using eq 31 as the injections term, preserves
positivity. Explicit proof, as to whether the final perturbative
approximation, Ã(ω,t) ≃ QA(ω,t)Q, conserves positivity exactly
or only asymptotically remains outstanding.

4. CONCLUSIONS

We have introduced a simple method to model time-dependent
transport along metal−molecule−metal junctions in which the
metallic contacts are modeled explicitly as a discrete set of levels
that are dynamically broadened via damping terms in the
equations of motion. Through an explicit derivation of the
underlying equations of motion eq 8 in the context of NEGFs,
the method is shown to apply to junctions that can be described
by an effective independent particle Hamiltonian (such as those
generated by TDDFT) with arbitrary time-dependent driving
forces acting on the molecule. The method further allows for
arbitrary temperature and molecule−lead coupling strengths and
time-dependent changes in the applied voltage that do not
generate excitations in the leads. The resulting set of equations
are intuitively clear and trivial to computationally implement and
parallelize.
The damping terms in the dynamics arise because of coupling

of the explicit lead levels to a larger Fermionic reservoir. The
simple form in eq 8 emerges in the limiting case where it is
assumed that (i) the Fermionic reservoir couples identically and
independently with each explicit lead level, (ii) the WBL applies
to the Fermionic reservoir, and (iii) the relaxation dynamics of
the explicit lead levels is independent of the presence of the
molecule.
By contrasting with a state-of-the-art NEGF method, the

simple method was shown to have a well-defined range where
results are independent of artificial modeling parameters and to
quantitatively reproduce asymptotic and transient transport
results for model molecular junctions driven by applied voltages
and laser fields. Specifically, it was shown that accurate results
emerge when the damping term induced by γ in eq 8 and the level
spacing Δεq between the explicit lead levels are chosen such that
Γ > γ ≥ Δεq/2, where Γ is the effective molecule−lead coupling
defined in eq 5. Under these conditions, the discrete set of levels
in the leads effectively behave as a continuum structure and the
dynamics captures all relevant Γ-induced processes before the γ-
induced relaxation is dominant. Furthermore, the method was
shown to correctly capture the molecular phase determining the
phase lag of a coherent control map. Such molecular phase is
known to sensitively depend on the continuum structure; hence,
this is a strong indication that the broadening procedure in eq 8
reproduces such structure correctly. The method is also expected
to be adaptable to situations beyond the wide band limit where
the energy structure of the leads and the energy dependence of
the molecule−lead couplings are of relevance.
Nevertheless, the method is expected to be less computation-

ally efficient than NEGF methods where the effects of the leads
are captured implicitly. This is particularly true in the weak-
coupling limit where a fine energy grid is required to achieve a
range where the results are independent of the fictitious
modeling parameters.
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