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Single-molecule pulling techniques have emerged as versatile tools for probing the nonco-

valent forces holding together the secondary and tertiary structure of macromolecules. They

also constitute a way to study at the single-molecule level processes that are familiar from

our macroscopic thermodynamic experience. In this Chapter, we summarize the essential

phenomenology that is typically observed during single-molecule pulling, provide a general

statistical mechanical framework for the interpretation of the equilibrium force spectroscopy

and illustrate how to simulate single-molecule pulling experiments using molecular dynamics.
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I. INTRODUCTION

In recent years a number of techniques have been developed that allow us to access the properties

of single molecules (see, e.g., Refs. [1–8]). These windows into the single-molecule world are teach-

ing us with unprecedented detail how molecules behave, including how they move, their mechanical

behavior, their conductivity, reactivity, optical properties, and other properties. While measure-

ments made on bulk matter are averages over a whole ensemble of molecules, single-molecule

measurements highlight the contributions of the constituent parts to the ensemble. A key feature

of the properties of single molecules is that fluctuations in the observables are comparable with

the average values. This contrasts with macroscopic behavior (where such fluctuations are usually

negligible) and indeed fluctuation-induced emergent phenomena can arise that, simply put, cannot

be observed in the macroscale.

In this Chapter we discuss basic aspects of single-molecule pulling experiments in which laser

optical tweezers or atomic force microscopes (AFMs) are employed to exert mechanical forces on

single molecules [2, 9–12], and the resulting stress/strain response is used as a probe of the molecular

potential energy surface. The focus will be on how to simulate single-molecule pulling experiments

using molecular dynamics, on what class of information can be extracted from the resulting force-

extension isotherms and on how to interpret the basic phenomena typically observed upon pulling.

Figure 1 shows a schematic of a single-molecule pulling experiment using AFMs (an equivalent

setup exists for experiments that employ laser optical tweezers). In it, one end of a molecule is

attached to a surface, while the other end is attached to an AFM tip coupled to a cantilever. The

distance between the surface and the cantilever L is controlled while the molecular end-to-end

distance ξ(t) is allowed to fluctuate. The pulling is performed by varying L(t) in some prescribed



3

FIG. 1: Schematic of a single-molecule pulling experiment using AFMs. One end of the molecular system

is attached to a surface and the other end to an AFM tip attached to a cantilever. During the pulling, the

distance between the surface and the cantilever L is controlled while the deflection of the cantilever from its

equilibrium position measures the instantaneous applied force F (t) = −k(ξ(t)−L), where k is the cantilever

spring constant and ξ(t) the fluctuating molecular end-to-end extension.

fashion. The force F exerted during the process is determined by measuring the deflection of the

cantilever from its equilibrium position F = −k(ξ − L), where k is the cantilever stiffness. For a

discussion of experimental aspects of single-molecule force spectroscopy see Ref. [13].

The experiments exert mechanical control over the molecular conformation while simultaneously

making thermodynamic measurements of any mechanically-induced unfolding events. The stress

maxima observed during pulling have been linked to the breaking [11, 14] of noncovalent interac-

tions, thus providing insight into the secondary and tertiary structures of macromolecules. From

the force-extension data it is possible to reconstruct the molecular free energy profile along the

extension coordinate, quantifying in this way thermodynamic changes undergone by the molecule

during folding.

The structure of this Chapter is as follows: Section II introduces the basic phenomenology

observed during single molecule pulling through a discussion of representative experiments. Sec-

tion III establishes the statistical mechanical theory behind single-molecule pulling experiments

and describes a method for reconstructing the molecular free energy profile along the extension

coordinate from the force-extension data. Section IV, in turn, introduces direct and indirect meth-

ods that can be used to model single-molecule pulling experiments using molecular dynamics.

Section V focuses on the interpretation of single-molecule pulling experiments through an analysis

of the basic structure of the molecular free energy profile. Section VI summarizes the main topics

discussed in this Chapter.



4

II. FORCE-EXTENSION BEHAVIOR OF SINGLE MOLECULES

In this section, we consider a series of examples of single-molecule pulling experiments that

illustrate the basic phenomenology that can be observed. Consider first the mechanically induced

unfolding of a RNA hairpin [9]. The hairpin is attached to polystyrene beads via RNA/DNA

hybrid handles and the pulling is performed in an optical tweezers arrangement. Figure 2 shows

the experimentally determined force-extension behavior and the details of the hairpin structure.

For fast pulling speeds hysteresis in the force-extension traces is evidenced by the fact that the

traces observed upon pulling and subsequent contraction do not coincide. However, upon reduction

of the pulling speed the traces obtained during extension and contraction do coincide, indicating

that for all practical purposes the process occurs under reversible conditions. During pulling the

force initially increases monotonically, then at ∼ 14 pN it shows a drop, and then it increases again.

In the process, the RNA hairpin undergoes a conformational transition from the hairpin structure

to an extended coil. The drop in the force corresponds to the molecular unfolding event where the

hydrogen bonding network holding the RNA hairpin together is broken. The local maximum in

the force-extension isotherm is interpreted as the force required to break the secondary structure

of the molecule.

FIG. 2: Force-extension behavior of a RNA hairpin obtained in an optical tweezer setup. The left panel shows

the sequence and secondary structure of the main structural motif of the pulled RNA hairpin. The right

plots detail the force-extension curves during stretching (blue) and contraction (green) when pulling under

equilibrium (left) and nonequilibrium (right) conditions. Note that the x-axis is the molecular end-to-end

distance ξ and not the distance between the surface and the cantilever L. Figure adapted from [9].
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The force-extension behavior of the RNA hairpin illustrates two basic phenomena that are

commonly observed during single-molecule pulling. During pulling there is a region of mechanical

instability where the average force decreases with the extension ∂〈F 〉L
∂L

< 0. This region occurs

when the pulled molecule undergoes a conformational transition from a stable folded structure to

an extended system. Note that around the unfolding region the molecule hops between the folded

and the unfolded state. That is, around the region of mechanical instability the molecule plus

cantilever system exhibits dynamical bistability where the molecule unfolds and refolds, leading

to blinking in the force measurement between a stronger force when the molecule is folded and a

weaker force regime when extended. In Sec. V we discuss the origin of these two phenomena.

FIG. 3: In this experiment the 6838 base pair long DNA hairpin schematically shown in (A) is pulled in

the optical tweezer arrangement in (B). The pulling is done by moving the optical trap relative to the

pipette at low pulling speeds (10 nm/s). Panel (C) shows the force-extension profile during unfolding (in

red) and refolding (in green). The inset shows the raw data obtained while the smooth curves are time-

averaged. Except for some hysteresis in the last rip, the curves obtained during pulling and relaxing are

almost identical. Figure adapted from [15].

Figure 3 shows the force-extension characteristics of a related system, a 6838 base-pair long

DNA hairpin, also obtained in a optical tweezers arrangement [15]. Even for this complex system

it is possible to find experimentally accessible pulling speeds (10 nm/s) where reversible behavior is

recovered in the mechanically induced melting process. Melting in this case refers to dehybridization

of the base pairs, and we see that unlike Fig. 2, there is an extended unfolding region where the

average force is in the 15-19 pN range while the length L increases. This corresponds to sequential

dehybridization (believed to occur a few base pairs at a time) rather than a concerted breaking of

all the base pairs at the same time. The inset in the figure shows the raw data obtained in the

experiment while the smooth curves shown are after further temporal averaging. The averaged data

evidences the changes in the pulling force required to mechanically induce melting. It quantifies
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the strength of the type of hydrogen bonds encountered as the elongation proceeds.

The raw data evidences yet another fundamental aspect of this class of experiments: the sub-

stantial thermal fluctuations in the force measurements that are typically observed during pulling

indicating that the system is not in the thermodynamic limit. This observation has the important

consequence of leading to a non-equivalence between different statistical ensembles. In particular, it

leads to a non-equivalence between the isometric ensemble (where L is controlled and F fluctuates)

and the isotensional ensemble (where F is controlled and L fluctuates). Throughout we will focus

on the isometric ensemble since is the most common way to perform these experiments. For recent

discussions of the nonequivalence between ensembles see [16, 17]. See [18] for an interpretation of

the pulling phenomenology in the isotensional ensemble.

FIG. 4: Reversible pulling of individual polystyrene chains in toluene (top panel) and water (bottom panel)

obtained using an AFM setup. Figure adapted from [19].

As a third example, consider the reversible force-extension behavior of a synthetic polymer

pulled in poor and good solvent conditions using an AFM [19]. Figure 4 shows the force-extension

isotherm of an individual polystyrene (PS) chain pulled in toluene (good solvent) and water (poor
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solvent). In toluene (Fig. 4a), the deformation of PS exhibits a worm-like chain [20] behavior with

a persistence length of (0.25 ± 0.05) nm. In water (Fig. 4b) the behavior is qualitatively different.

In this case, the force initially rises linearly up to ∼ 13 pN, then exhibits a plateau force at ∼ 13

pN, followed by a third regime where the force rises again. This behavior is well predicted by a

model [21] in which the initial linear restoring force is due to deformation of a collapsed spherical

globule to an ellipsoid during which the polymer’s surface energy increases. In this model, the

plateau is associated with a conformational transition involving the coexistence of the globule and

a stretched chain of polymer or polymer globules. For large stretching, where coexistence is no

longer possible, the force extension behavior of a Gaussian chain [20] is recovered. Note that

large-scale fluctuations in the force measurements are also evident in this system.

FIG. 5: Top panel: schematic of the protein attached to the AFM tip. Bottom panel: force-extension

behavior of the polyprotein composed of eight repeat of the Ig27 domain. Figure taken from [22].

Consider last the forced unfolding of a recombinant polyprotein composed of eight repeats of

the Ig27 domain of human titin obtained in an AFM setup [22]. Figure 5 shows the force-extension

profile when pulling at a constant speed under nonequilibrium conditions. As the polyprotein is

extended the force exerted on the molecule increases until one of the Ig27 domains suddenly unfolds.

Unfolding of a domain reduces the overall force, but with increasing extension another local subunit

unfolds. This occurs until all the domains are unfolded and the protein-tip interaction is broken.
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This results in the sawtooth pattern shown in Fig. 5 where each peak in the force-extension profile

marks the unfolding of one subunit in the polyprotein and the last peak signals the detachment of

the protein from the tip.

III. SINGLE-MOLECULE THERMODYNAMICS

In what follows we specify what we mean about thermodynamics in the context of single-

molecule pulling experiments [12] and the class of thermodynamic information that is accessible

from the force-extension isotherms. The thermodynamic system consists of the molecule plus

cantilever coupled to a thermal bath, typically the surrounding solvent. As such, the equilibrium

state of the system is well described by the canonical ensemble with configurational partition

function

Z(L) =

∫

dr exp[−βUL(r)], (1)

where r denotes the coordinates of the N atoms of the molecule, β = 1/kBT is the inverse tem-

perature, and

UL(r) = U0(r) + VL[ξ(r)] (2)

is the potential energy function of the molecule plus restraints. Here U0(r) is the molecular potential

energy plus potential restraints not varied during the experiment, and VL[ξ(r)] is the potential due

to the cantilever at extension L. To a good approximation, the quantity VL[ξ(r)] is given by a

harmonic function

VL[ξ(r)] =
k

2
[ξ(r)− L]2 (3)

of stiffness k. The instantaneous force exerted by the cantilever on the molecule is determined by

measuring the deflection of the cantilever from its equilibrium position and it is given by

F = −∇VL =
∂VL

∂L
= −k [ξ(r)− L] , (4)

where the gradient ∇ is with respect to the [ξ(r)− L] coordinate. In writing Eqs. (3) and (4) the

vector nature of L, ξ(r) and F has been obviated since these quantities are typically collinear in the

single-molecule pulling setup. For notational simplicity, in Eq. (1) and throughout this manuscript

we ignore the constant multiplicative factor that makes partition functions dimensionless since they

are irrelevant for determining relative free energy changes.
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A. Free energy profile of the molecule plus cantilever

Because the state of the molecule plus cantilever under equilibrium conditions is well described

by a canonical ensemble, the force exerted during the pulling yields the associated change in the

Helmholtz free energy

∆A = A(L)−A(L0) = −
1

β
ln

Z(L)

Z(L0)
(5)

for the composite molecule plus cantilever system. To see this, note that in the canonical ensemble

the average force at a given extension L is given by

〈F 〉L =
1

Z(L)

∫

dr

(

∂VL

∂L

)

exp{−βUL(r)} = −
1

β

1

Z(L)

∂Z(L)

∂L
=

∂A

∂L
. (6)

Therefore, if the pulling is done under reversible conditions, such that the state of the system is

well described by a canonical ensemble at each step of the pulling, the change in A when pulling

from L0 to L is determined by the reversible work exerted in the process

∆A =

∫ L

L0

∂A

∂L′
dL′ =

∫ L

L0

〈F 〉L′dL′ = Wrev. (7)

Remarkably, even when the pulling is performed under nonequilibrium conditions it is still possible

to determine the free energy changes during pulling by means of the Jarzynski non-equilibrium

work fluctuation relation [23–25]

exp[−β∆A] = 〈exp[−βW ]〉non-eq (8)

where the average in this expression is over nonequilibrium realizations of a given pulling protocol

starting from a system initially prepared in the canonical ensemble. Eq. (8) relates the nonequilib-

rium work with the equilibrium free energy changes of the system and holds arbitrarily far away

from equilibrium. Note that by using Jensen’s inequality (e〈x〉 ≤ 〈ex〉), Eq. (8) implies that the

average nonequilibrium work is greater than or equal to the free energy change

〈W 〉non-eq ≥ ∆A, (9)

which is the usual statement of the second law of thermodynamics

The above analysis associates a free energy change to the pulling process although the system

is not in the thermodynamic limit. This association relies on the assumption that the equilibrium

state of the system is well described by a classical canonical ensemble. This feature has been

experimentally tested: In [26] the authors experimentally demonstrated the validity of the Jarzynski
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equality [Eq. (8)]. The Jarzynski equality supposes that the initial equilibrium state of the system

is given by a classical canonical partition function and hence the test of the Jarzynski equality also

tests whether this is a good description of the equilibrium state of the system.

B. Extracting the molecular potential of mean force φ(ξ)

The properties that are measured during the pulling are those of the molecule plus cantilever.

Thus, direct integration of the force-extension isotherms yields the free energy profile of the com-

posite system [see Eq. (7)]. However, what one is really interested in are the properties of the

molecule itself. Specifically, one is interested in the molecular Helmholtz free energy profile (also

known as the potential of mean force PMF [27]) along the extension coordinate ξ. The PMF suc-

cinctly captures thermodynamic changes undergone by the molecule during folding and determines

the basic phenomenology that is observed upon pulling [18, 28].

A useful method to extract the molecular PMF φ(ξ) from the force versus extension mea-

surements is the Weighted Histogram Analysis Method (WHAM) [29–33]. The WHAM analysis

combines all the force-extension data collected during the pulling to properly remove the bias due

to the cantilever and extract the PMF. In fact, one can view the single-molecule pulling process as

an experimental realization of the WHAM methodology using harmonic potential restraints. We

now describe how to extract the PMF from equilibrium force-extension data using the WHAM. A

schematic of the process is shown in Fig. 6.

The PMF is defined by [31]

φ(ξ) = φ(ξ⋆)−
1

β
ln

[

p0(ξ)

p0(ξ⋆)

]

, (10)

where ξ⋆ and φ(ξ⋆) are arbitrary constants and

p0(ξ) =

∫

dr δ[ξ − ξ(r)] exp[−βU0(r)]
∫

dr exp[−βU0(r)]
=

Z0(ξ)

Z0
= 〈δ[ξ − ξ(r)]〉. (11)

Here,

Z0 =

∫

dr exp[−βU0(r)] (12)

is the configurational partition function of the molecule, and

Z0(ξ) =

∫

dr δ[ξ − ξ(r)] exp[−βU0(r)]. (13)

In the context of the pulling experiments p0(ξ) is the probability density that the molecular end-

to-end distance function ξ(r) adopts the value ξ in the unbiased (cantilever-free) ensemble. The
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FIG. 6: Scheme of the free energy reconstruction from single-molecule pulling. The potential of mean

force φ(ξ) along the extension coordinate ξ is determined by the probability density distribution p0(ξ)

[Eq. (10)]. Sampling p0(ξ) directly is challenging because there are regions along ξ that have vanishingly

small probability of being observed. In a single-molecule pulling experiments the molecule is forced to

adopt those improbable extensions ξ by subjecting it to the bias due to the cantilever. For each L visited

(L1, L2, · · · , LN) during pulling the experiments measure the probability density distribution along ξ in the

presence of the cantilever bias, pL(ξ). The pL(ξ) contain information about the unbiased probability density

distribution p0(ξ) [Eq. (16)]. The WHAM combines all sampled pL(ξ) to properly remove the cantilever

bias and extract p0(ξ) with minimal variance in the estimate.

quantity p0(ξ) determines the PMF up to a constant and can be estimated from the force mea-

surements, as we now describe.

At this point it is convenient to discretize the pulling process and suppose that M extensions

L1, . . . , Li, . . . , LM are visited during pulling. The potential of the system plus cantilever at exten-

sion Li is Ui = U0 + Vi, where Vi =
k
2 [ξ(r)−Li]

2 is the potential bias due to the cantilever. In the

i-th biased measurement knowledge of the force Fi and length Li gives the molecular end-to-end

distance. The probability density of observing the value ξ at this given extension is given by

pi(ξ) =

∫

dr δ[ξ − ξ(r)] exp[−βUi(r)]
∫

dr exp[−βUi(r)]
=

Zi(ξ)

Zi

= 〈δ[ξ − ξ(r)]〉i, (14)

where Zi =
∫

dr exp[−βUi(r)] is the configurational partition function for the system plus can-
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tilever at the i-th extension, and

Zi(ξ) =

∫

drδ[ξ − ξ(r)] exp[−βUi(r)]. (15)

In principle, the unbiased probability density p0(ξ) can be reconstructed from each pi(ξ) since, by

virtue of Eqs. (11) and (14), these two quantities are related by

p0(ξ) = exp[+βVi(ξ)]
Zi

Z0
pi(ξ), (16)

where we have exploited the fact that Z0(ξ) = exp[+βVi(ξ)]Zi(ξ). In practice this approach will

not work because the range of ξ values where p0(ξ) and pi(ξ) differ significantly from zero need to

overlap [32]. Nevertheless, the experiments do provide measurements at a wealth of values of Li

that can be combined to estimate p0(ξ):

p0(ξ) =

M
∑

i=1

wi exp[+βVi(ξ)]
Zi

Z0
pi(ξ), (17)

where the wi are some normalized (
∑

iwi = 1) set of weights. In the limit of perfect sampling

any set of weights should yield the same p0(ξ). In practice, for finite sampling it is convenient

to employ a set that minimizes the variance in the p0(ξ) estimate from the series of independent

estimates of biased distributions. Such a set of weights is precisely provided by the WHAM

prescription [29, 30, 32]

wi =

exp[−βVi(ξ)]
Z0

Zigi
∑M

i=1 exp[−βVi(ξ)]
Z0

Zigi

, (18)

where gi = 1+ 2τi is the statistical inefficiency [34] and τi the integrated autocorrelation time [29,

34]. The difficulty in estimating the τi for each measurement generally leads to further supposing

that the gi’s are approximately constant and factor out of Eq. (18), so that

p0(ξ) =

∑M
i=1 pi(ξ)

∑M
i=1 exp[−βVi(ξ)]Z0/Zi

. (19)

Neglecting the gi’s from Eq. (19) does not imply that the resulting estimate of p0(ξ) is incorrect; but

simply that the weights selected do not precisely minimize the variance in the estimate. Experience

with this method indicates that if the gi’s do not differ by more than an order of magnitude their

effect on φ(ξ) is small [30, 35].

The computation of the PMF then proceeds as follows. Suppose that Ni force measurements are

done for each extension i. Knowledge of the force F j
i (j = 1, . . . , Ni) and of Li gives the molecular
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end-to-end distance ξji in each of these measurements. The numerator in Eq. (19) is then estimated

by constructing a histogram with all the available data,

M
∑

i=1

pi(ξ) ≈
M
∑

i=1

Ni
∑

j=1

Cj
i (ξ)

Ni∆ξ
, (20)

where ∆ξ is the bin size, and Cj
i (ξ) = 1 if ξji ∈ [ξ−∆ξ/2, ξ+∆ξ/2) and zero otherwise. Estimating

the denominator in Eq. (19) requires knowledge of the Zi’s, the configurational partition functions

of the system plus cantilever at all extensions {Li} considered. There are two ways to obtain these

quantities. If reversible force-extension data is available, the most direct one is to employ the

Helmholtz free energies for the system plus cantilever obtained through the thermodynamic inte-

gration in Eq. (7), as they determine the Zi’s up to a constant multiplicative factor. Alternatively,

it is also possible to determine the ratio of the configurational partition functions between the i-th

biased system and its unbiased counterpart using p0(ξ):

Zi

Z0
=

∫

dξ exp[−βVi(ξ)]p0(ξ). (21)

Equations (19) and (21) can be solved iteratively. Starting from a guess for the Zi/Z0, p0(ξ) is

estimated using Eq. (19) and normalized. The resulting p0(ξ) is then used to obtain a new set of

Zi/Z0 through Eq. (21), and the process is repeated until self-consistency. This latter approach

is the usual procedure to solve the WHAM equations. For computational implementations of the

WHAM methodology see Refs. [35–38].

C. Estimating force-extension behavior from φ(ξ)

The PMF is central to the interpretation of the phenomena observed upon pulling and in the

estimation of the force-extension behavior when pulling with cantilevers of arbitrary stiffness [28].

Its utility relies on the fact that the configurational partition function of the molecule plus cantilever

at extension L [Eq. (1)] can be expressed as

Z(L) =

∫

dξ exp{−β[φ(ξ) + VL(ξ)]}, (22)

where we have neglected the constant and L-independent multiplicative factor that arises in the

transformation since it is irrelevant for the present purposes. The above relation implies that the

extension process can be viewed as thermal motion along a one-dimensional effective potential

determined by the PMF φ(ξ) and the bias due to the cantilever VL(ξ):

UL(ξ) = φ(ξ) + VL(ξ). (23)
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Further, by means of the PMF it is possible to estimate the force vs. extension characteristics

for the composite system for any value of the force constant k. This is because the average force

exerted on the system at extension L can be expressed as:

〈F 〉L = −
1

β

∂ ln[Z(L)/Z0]

∂L
=

∫

dξ ∂VL(ξ)
∂L

exp{−β[φ(ξ) + VL(ξ)]}
∫

dξ exp{−β[φ(ξ) + VL(ξ)]}
, (24)

where, for convenience, we have introduced Z0 in the logarithm just to make the argument dimen-

sionless. Since φ(ξ) is a property of the isolated molecule it is independent of k. Hence, Eq. (24)

can be employed to estimate the F -L isotherms for arbitrary k. Another quantity of interest is the

probability density in the force measurements as a function of the extension L, given by

pL(F ) = 〈δ[F − F (ξ)]〉L =

∫

dξ δ[F − F (ξ)] exp{−β[φ(ξ) + VL(ξ)]}
∫

dξ exp{−β[φ(ξ) + VL(ξ)]}
, (25)

as this quantity highlights the fluctuations in the force measurements during pulling.

IV. MODELING SINGLE-MOLECULE PULLING USING MOLECULAR DYNAMICS

A. Basic computational setup

FIG. 7: Setup of a MD pulling simulation. In it, one end of the molecule is fixed while the opposite end is

attached to a dummy atom via a virtual harmonic spring. The position of the dummy atom is the simulation

analogue of the cantilever position and is controlled throughout. The pulling is performed by moving the

dummy atom away from the molecule at a constant speed. The fluctuating deflection of the harmonic spring

measures the force exerted during the pulling and is the simulation analog of the cantilever deflection in the

AFM pulling experiment.

Computationally, the forced unfolding of single molecules can be studied using “pulling” or

“steered” molecular dynamics (MD) simulations [39–41]. The general setup of this type of simu-
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lations is schematically described in Fig. 7. The stretching computation begins by attaching one

end of the molecule to a rigid isotropic harmonic potential that mimics the molecular attachment

to the surface. Simultaneously, the opposite molecular end is connected to a dummy atom via

a virtual harmonic spring. The position of the dummy atom is the simulation analogue of the

cantilever position L, and is controlled throughout. In turn, the varying deflection of the virtual

harmonic spring measures the force exerted during the pulling. The stretching is caused by moving

the dummy atom away from the molecule at a constant speed. The pulling direction is defined by

the vector connecting the two terminal atoms of the complex. Since cantilever potentials are typi-

cally stiff in the direction perpendicular to the pulling, in the simulations the terminal atom that

is being pulled is typically forced to move along the pulling direction by introducing appropriate

additional restraining potentials.

In the simulations, the molecule plus any surrounding solvent are assumed to be weakly coupled

to a heat bath and the effect of the heat bath is modeled through a thermostat. Thermostats

that are useful in simulating the force spectroscopy include the Nosé-Hoover chain [32, 42–44]

and the Langevin thermostat [45]. In turn, velocity rescaling thermostats, like the Berendsen

thermostat [46], can be problematic because they can lead to a spurious violation of the second

law during the pulling because the ensemble generated by them does not satisfy the equipartition

theorem [47]. The thermal dynamics of the molecule, cantilever and any surrounding solvent

are then followed in a NVT or NPT ensemble using MD. Freely available MD codes such as

NAMD [48] and GROMACS [49] have pulling routines implemented in them. We have, in addition,

developed [28] a pulling routine for TINKER [50] and created a graphical interface for it called

MOLpull [36]. MOLpull is accessible through the NanoHub (http://nanohub.org/) and can be

used to perform the pulling and reconstruct the PMF along the extension coordinate of arbitrary

molecules.

B. Modeling strategies

One of the challenges in simulating pulling experiments using MD is to bridge the large disparity

between the pulling speeds v that are employed experimentally and those that can be accessed

computationally. While typical experiments often use v ∼ 1 − 10−3 µm/s, current computational

capabilities require pulling speeds that are several (∼5 to 8) orders of magnitude faster.

One possible strategy that can be used to overcome this difficulty is to strive for pulling speeds

that are slow enough that reversible behavior is recovered. Under such conditions the results

http://nanohub.org/
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become independent of v, and the simulations comparable to experimental findings. The way to

determine if the pulling is done under quasistatic conditions is by making sure that the force-

extension curves during extension and subsequent contraction essentially coincide, such that the

net work exerted during a pulling/retraction cycle is negligible. The advantage of this approach

is that there is a systematic way to test if quasistatic behavior is recovered by estimating the

amount of work dissipated in a pulling/retraction cycle. Its limitation is that the pulling speeds

that are required to obtain reversible behavior may be computationally unfeasible for pulling large

macromolecules. In fact, the examples that exist in the literature where reversible behavior has

been computationally recovered are for relatively small molecular systems [28, 51, 52] using pulling

speeds between 10−4 − 10−7 nm/ps. When pulling large macromolecules, present computational

limitations require using pulling speeds of ∼ 10−3 nm/ps [53] which is far too fast for recovering

reversible behavior even in simple systems.

A second possible strategy is to pull under irreversible conditions. A single nonequilibrium

trajectory can recover some qualitative structural features encountered during the pulling [41,

53], but it is not sufficient to reconstruct the molecular potential of mean force. In order to

reconstruct the PMF it is necessary to pull many times and use a nonequilibrium work fluctuation

theorem [23–25, 54] to reconstruct the free energy profile [22, 55–61]. The advantage of this

strategy is that it can be used when equilibrium data is difficult to obtain, for example during

the forced unfolding of a complex protein like the one in Fig. 5. Note, however, that this strategy

requires adequately estimating the average of an exponential quantity (Eq. (8)) that often has

poor convergence properties [60, 62]. For a computational implementation of some nonequilibrium

methods to reconstruct the PMF see [38].

As a third indirect alternative it is possible to reconstruct the molecular potential of mean force

without pulling continuously but rather by sampling the fluctuating force at selected points along

the extension coordinate. For each L the system is allowed to thermally equilibrate and the force is

measured for a given amount of simulation time. The data obtained is used to reconstruct the PMF

usingWHAM as described in Sec. III, and then the PMF is employed to estimate the force-extension

behavior of the molecule plus cantilever. While the free energy reconstruction using continuous

equilibrium force-extension data uses a data set with a large (essentially continuous) set of L values

with very few data points for the force at each L, this strategy works in a different limit where one

has few extensions L but extensive sampling of the force at each extension. The advantage of this

procedure is that it can be used to reconstruct the PMF of molecules that are computationally

challenging to pull under equilibrium or near equilibrium conditions. The limitation is that there is
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no entirely satisfactory way to judge when the system has achieved a state of thermal equilibrium

in the MD trajectory. This contrasts with the direct strategy involving explicit pulling in which it is

easy to judge when quasistatic behavior has been recovered by measuring the amount of dissipative

work in extension/contraction cycles. As in the direct equilibrium pulling, the sampling for each L

has to be sufficient to capture all relevant molecular events that are consistent with the extension.

Another important aspect that has to be taken into consideration when modeling single-molecule

pulling is the cantilever stiffness employed. Experimentally accessible AFM cantilevers stiffnesses

are in the 10−1 − 104 pN/Å range [13]. While experiments tend to favor soft cantilever potentials

because they provide high resolution in the force measurements, in the simulations stiff cantilevers

are preferable. This is because when employing stiffer cantilever potentials: (i) a shorter range of L

values is required to explore all the molecular extension coordinates thus reducing the simulation

time; (ii) the possible values of ξ that are accessible for the molecule for a given L are further

restricted making it faster to sample all accessible conformational space. As a consequence of (ii),

the amount of dissipative work in a pulling/retraction cycle decreases with increasing cantilever

stiffness for fixed pulling speed [63]. In our experience with molecular pulling, a rule of thumb that

we frequently use is that a cantilever stiffness of ∼ 1 pN/Å can be regarded as soft and one with

stiffness of ∼ 102 pN/Å as stiff. These numbers, however, will clearly depend on the particular

system that is being pulled.

C. Examples

1. Direct modeling: Oligorotaxanes

As an example of an explicit simulation of a single-molecule pulling experiment consider the

forced unfolding of a [3]rotaxane [28, 64, 65]. Figure 8 shows the force-extension curves dur-

ing the extension (blue) and subsequent contraction (red) for two different pulling speeds and a

schematic of the structure of the molecule that is being pulled. The oligorotaxane[71] consists

of two cyclobis(paraquat-p-phenylene) tetracationic cyclophanes (the blue boxes) threaded onto a

linear chain (in red) composed of three naphthalene units linked by oligoethers with oligoether caps

at each end. As the system is stretched the oligorotaxane undergoes a conformational transition

from a folded globular state to an extended coil. In the process, the force initially increases approx-

imately linearly with L, then drops, and subsequently increases again. For the faster pulling speed

hysteresis in the force-extension cycle is evident while for v = 10−4 nm/ps the F -L curves obtained
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during extension and contraction essentially coincide and, for all practical purposes, the pulling

occurs under equilibrium conditions. Note that thermal fluctuations in the force measurements are

roughly comparable to the average values indicating that the system is far from the thermodynamic

limit.

The force-extension behavior predicted by the MD simulations for the oligorotaxane is qualita-

tively similar to that experimentally observed for the RNA hairpin (recall Fig. 2). Specifically, there

is a region of mechanical instability where the force drops with increasing extension (∂〈F 〉L
∂L

< 0).

Further, if one fixes L around the region of mechanical instability (L = 70.0 Å in this case) and

allows the system to evolve, the molecule undergoes conformational transitions between a folded

globular state and an extended coil, see Fig. 9. The right panel in Fig. 9 shows the probability

density of the distribution of ξ values obtained from a 20 ns trajectory. The system exhibits a

clear dynamical bistability along the ξ coordinate. As in the RNA case, the bistability along the

end-to-end distance leads to blinking in the force measurements from a high force to a low force

regime during the pulling.

1 2 3

FIG. 8: Simulated force-extension behavior of a [3]rotaxane immersed in a high dielectric medium at 300K

obtained using MD and the MM3 [66] force field. The plots show the force-extension curves during stretching

(blue) and retraction (red) using a pulling speed v of 10−3 and 10−4 nm/ps. The cantilever employed has a

soft spring constant of k = 1.1 pN/Å. Snapshots of structures (labels 1, 2 and 3) encountered during pulling

are shown in the far right.

The molecular PMF of the [3]rotaxane reconstructed from the force-extension data is shown

in Fig. 10. The thermodynamic native state of the oligorotaxane, i.e. the minimum in φ(ξ),

corresponds to a globular folded structure with an average end-to-end distance of 7 Å. The PMF

consists of a convex region (a region of positive curvature) for ξ < 44 Å when the molecule is

folded, another convex region for ξ > 52 Å when the molecule is extended and a region of concavity

(where ∂2φ
∂ξ2

< 0) for ξ = 44 − 52 Å where the conformational transition occurs. The region of

concavity along the PMF arises because the molecule is inherently bistable along some natural
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1a 2a

FIG. 9: Dynamical bistability when L is fixed around the region of mechanical instability. The figure shows

the time dependence and probability density distribution of the end-to-end molecular extension ξ when the

[3]rotaxane plus cantilever is constrained to reside in the unstable region of Fig. 8, with L = 70.0 Å. Typical

structures encountered in this regime (labels 1a-2a) are shown in the right.
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FIG. 10: Molecular potential of mean force for the [3]rotaxane along the end-to-end distance ξ. The solid

lines result from a spline interpolation of the available data points. Typical structures (labels 1-3) are shown

in Fig. 8.

unfolding pathway. As discussed in Sec. V, this characteristic structure of the PMF is responsible

for many of the interesting features observed during pulling.

2. Indirect modeling: DNA dimer

As an example of indirect modeling of the force spectroscopy, we now consider the forced exten-

sion of the DNA dimer shown in Fig. 11 along the O5’-O3’ coordinate in explicit water [67]. The

dimer is composed of two guanine-cytosine base pairs capped by a trans-azobenzene linker. Compu-

tationally, it is described by the CHARMM27 force field and the total system is composed of the 178

DNA hairpin atoms, 4 sodium ions, and 1731 TIP3P water molecules in a 27.1Å×34.7Å×56.3Å box
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FIG. 11: DNA dimer consisting of two guanine-cytosine base pairs connected by a trans-azobenzene linker.

in the NVT ensemble at 300K (see Ref. [67] for details). Even for this relatively simple system it is

challenging to computationally obtain equilibrium force-extension data by pulling directly because

the pulling has to be slower than any characteristic timescale of the system. An indirect approach

is thus more convenient.

The sampling along the extension coordinate required to reconstruct the potential of mean force

proceeded as follows: The distance, L, between the surface and the cantilever was fixed at several

different values along the extension coordinate. The system was first allowed to equilibrate for 4

ns. Subsequently, the dynamics was followed for 8 ns and the end-to-end distance ξ recorded every

1 ps. The cantilever was taken to have a stiffness of k0 = 110 pN/Å. In total, 155 extensions were

simulated. Values of L ranged from 6.75 Å to 44.75 Å while ξ ranged from 2.9 Å to 44.9 Å. Total

analyzed simulation time was 1.24 µs.
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FIG. 12: Probability density distribution of ξ when the cantilever bias is fixed at position L for the DNA

dimer. Each curve corresponds to a different L. The dotted lines mark the L chosen in each case.
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Figure 12 shows some of the sampled pL(ξ) [defined in Eq. (14)] that are used as input for the

PMF reconstruction. The resulting Helmholtz free energy profile is shown in Fig. 13. It consists of

a convex region for ξ < 17 Å representing the folded state, a mostly concave region for 17 Å< ξ <

40 Å where the molecule unfolds, followed by another region of convexity that corresponds to the

unfolded state. The unfolding region exhibits some convex intervals signaling marginally stable

intermediates encountered during the unfolding.

Using the PMF one can then estimate the force-extension characteristics of the system when

pulling with cantilevers of arbitrary stiffness as described in Sec. IIIC. Figure 14 shows the predicted

average and probability density in the force measurements when the DNA dimer is pulled using

a cantilever stiffness of 1.1 pN/Å. Note the degree of detail of the pulling process revealed by the

probability density.
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FIG. 13: Potential of mean force along the end-to-end distance coordinate for the azobenzene capped DNA

hairpin. Snapshots of structures adopted during the unfolding are shown in the top panel. The error bars

correspond to twice the standard deviation obtained from a bootstrapping analysis.



22

L (A)

F
 (

pN
)

 

 

10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70

0

0.05

0.1

0.15

0.2

0.25
p(F) (pN−1)

k =1.1 pN/A

FIG. 14: Force-extension profile of the DNA dimer when pulled with a cantilever of stiffness 1.1 pN/Å esti-

mated from the PMF in Fig. 13. The solid line represents the average force-extension profile, the color plot

the probability density distribution of the force measurements pL(F ) [Eq. (25)].

V. INTERPRETATION OF PULLING PHENOMENOLOGY

A striking feature of single-molecule pulling is that the elastic behaviors of vastly different

molecules often have qualitatively similar features. In Secs. II and IV we discussed two of these

features: (i) mechanically unstable regions where ∂〈F 〉L
∂L

< 0 and (ii) regions of dynamical bistability

where blinking in the force measurements for fixed L is observed. In this section, we discuss the

origin of both of these effects. Emphasis will be placed on the basic requirements on the molecule

and the pulling device for the emergence of the phenomena.

A. Basic structure of the molecular potential of mean force

Recall the basic structure of the PMF for the oligorotaxanes (Fig. 10): It consists of a convex

region (∂
2φ(ξ)
∂ξ2

> 0) where the molecule is folded, another region of convexity when the molecule is

extended and a region of concavity (∂
2φ(ξ)
∂ξ2

< 0) where the molecule unfolds. This basic structure

in the PMF is not unique to the rotaxanes but it is actually a common feature of the extension

behavior of single molecules of sufficient structural complexity. Regions of convexity mark me-
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chanically stable conformations while regions of concavity mark molecular unfolding events. We

had already encountered this very same basic structure when studying the elastic properties of the

DNA dimer shown in Fig. 13. Perhaps a more spectacular example of this structure is provided by

the polyprotein composed of eight repeats of the Ig27 domain of human titin that we introduced

in Fig. 5. The PMF reconstructed from experimental force-extension data is shown in Fig. 15. In

this case also, mechanically stable conformations are described by regions of convexity in the PMF,

while regions of concavity mark unfolding events. The reason why in this case there are 8 regions

of concavity along the extension pathway is that there are 8 unfolding events, each marking the

unfolding of one of the Ig27 domains in the polyprotein. Below we discuss the implications of these

regions of concavity along the PMF.

FIG. 15: Molecular potential of mean force for a polyprotein composed of eight repeats of the Ig27 domain

of human titin. The free energy profile was reconstructed using a nonequilibrium method and pulling at

different pulling speeds of 200 (black curve), 400 (red dotted curve) and 2000 (blue dashed curve) nm/s.

The number of nonequilibrium unfolding trajectories used in the estimate was 66, 35 and 29, respectively.

The force-extension profile of this molecule is shown in Fig. 5. Figure taken from [22]

B. Mechanical instability

A first consequence of the regions of concavity along the molecular PMF is that they lead

to mechanically unstable regions in the F -L isotherms. To see this consider the configurational

partition function of the molecule plus cantilever at extension L [Eq. (22)] for large k. In this

regime, most contributions to the integral will come from the region where ξ = L. Consequently,
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exp[−βφ(ξ)] can be expanded around this point to give:

exp[−βφ(ξ)] = exp[−βφ(L)]

[

1− βA1(L)(ξ − L)−
β

2
A2(L)(ξ − L)2 + · · ·

]

, (26)

where A1(L) = ∂φ(L)
∂L

and A2(L) = ∂2φ(L)
∂L2 − β

(

∂φ(L)
∂L

)2
. Here, the notation is such that

∂φ(L)
∂L

= ∂φ(ξ)
∂ξ

∣

∣

∣

ξ=L
. Introducing Eq. (26) into Eq. (22), integrating explicitly the different terms,

and performing an expansion around 1/k = 0 one obtains:

Z(L) =

√

2π

kβ
exp[−βφ(L)]

[

1−
1

2k
A2(L) +O(1/k2)

]

. (27)

Using Eq. (24), the derivative of the force can be obtained from this approximation to the partition

function. To zeroth order in 1/k it is given by:

∂〈F 〉L
∂L

=
∂2φ(L)

∂L2
+O(1/k). (28)

That is, an unstable region in the force vs. extension where ∂〈F 〉L
∂L

< 0 requires a region of concavity

in the PMF.

Note, however, that since the properties that are measured during pulling are those of the

molecule plus cantilever, the observed mechanical stability properties will depend on the cantilever

stiffness employed. In fact, when employing very soft cantilevers no mechanically unstable region

can be observed independent of the molecule that is being pulled, provided that no bond-breaking

occurs during the pulling. To see this, consider the soft-spring approximation of the configurational

partition function of the system plus cantilever [Eq. (22)]:

Z(L)

Z0
≈

exp(−βkL2/2)

Z0

∫

dξ exp[−βφ(ξ)] exp(βkLξ) = exp(−βkL2/2)〈exp(βkLξ)〉, (29)

where the notation 〈f〉 stands for the unbiased (cantilever-free) average of f . In writing Eq. (29)

we have supposed that in the region of relevant ξ (in which the integrand is non-negligible)

kξ2/VL(ξ) ≪ 1 and, hence, that the cantilever potential is well approximated by VL(ξ) ≈
kL2

2 −kLξ.

This approximation is valid provided that that no bond breaking is induced during pulling and

permits the introduction of a cumulant expansion [68] in the configurational partition function.

Specifically, the average 〈exp(βkLξ)〉 can be expressed as:

〈exp(βkLξ)〉 =

∞
∑

n=0

(βkL)n

n!
〈ξn〉 = exp

{

∞
∑

n=1

(βkL)n

n!
κn(ξ)

}

(30)

where κn(ξ) is the n-th order cumulant. In view of Eqs. (24), (29) and (30) the slope of the F -L

curves can be expressed as:

∂〈F 〉L
∂L

= k − βk2
∞
∑

n=0

(βkL)n

n!
κn+2(ξ). (31)



25

It then follows that to lowest order in k,

∂〈F 〉L
∂L

≈ k > 0. (32)

That is, no unstable region in the F -L curve can arise in the soft-spring limit, irrespective of the

specific form of φ(ξ).

Figure 16 illustrates the dependence of the region of mechanical instability on the cantilever

stiffness using the [3]rotaxane case discussed in Sec. IVC1 as an example. The figure shows the

k-dependence of the local maximum F+ and minimum F− in the average force measurements that

enclose the region of mechanical instability. The critical forces F+ and F− show a smooth and

strong dependence on the cantilever spring constant. For large k the system persistently shows a

region of instability in the isotherms. However, as the cantilever spring is made softer, F+ and F−

approach each other and for small k the mechanical instability in the F -L isotherms is no longer

present.

FIG. 16: Dependence of the mechanical instability on the cantilever stiffness. Left panel: force-extension

isotherm for a [3]rotaxane when pulled with a cantilever of stiffness k = 1.1 pN/Å. Here, F+ and F−

correspond to the values of the force when the F -L curves exhibit a maximum and minimum, and enclose

the region of mechanical instability. Right panel: dependence of F+ and F− on k. Note the decay of the

region of mechanical instability for soft cantilevers.

Another interesting aspect of single-molecule pulling is that there is a close relationship between

the mechanical stability properties and the fluctuations in the force measurements. To see this,

note that the average slope of the F -L curves can be expressed in terms of the fluctuations in the

force:

∂〈F 〉L
∂L

=

〈

∂2VL(ξ)

∂L2

〉

L

− β[〈F 2〉L − 〈F 〉2L] = k − β[〈F 2〉L − 〈F 〉2L], (33)
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where we have employed Eq. (24). The sign of ∂〈F 〉L
∂L

determines the mechanical stability during

the extension and hence Eq. (33) relates the thermal fluctuations in the force measurements with

the stability properties of the F -L curves. Specifically, for the stable regions for which ∂〈F 〉L
∂L

> 0

the force fluctuations satisfy

〈F 2〉L − 〈F 〉2L <
k

β
. (34a)

In turn, in the unstable regions the force fluctuations are larger than in the stable regions and

satisfy the inequality

〈F 2〉L − 〈F 〉2L >
k

β
. (34b)

The fact that the fluctuations are larger around the region of mechanical bistability is noticeable

in some of the force-extension curves that we have discussed here (see Figs. 8 and 14). Figure 17

illustrates these general observations in the specific case of the pulling of [3]rotaxane. As shown,

for k = k0 and k = 2k0 (where k0 = 1.1 pN/Å) there is a region where the force fluctuations

become larger than k/β and, consequently, unstable behavior in F -L develops. For k = 0.4k0 or

less the fluctuations in the force are never large enough to satisfy Eq. (34b) and no critical points

in the average F -L curve develop, as can be confirmed in Fig. 16.

C. Dynamical bistability

The observation of force measurements that blink between a high-force and a low force regime

for selected extensions requires the composite molecule plus cantilever system to be bistable along

the end-to-end distance for some L. That is, the effective potential UL(ξ) [Eq. (23)] must have a

double minimum. Since the molecular PMF is not usually bistable along ξ the bistability must

be introduced by the cantilever potential. To see how this bistability arises, consider the effective

potential for the [3]rotaxane for selected L shown in Figure 18. For L in the mechanically stable

regions of the force-extension isotherms (L = 40 Å and L = 90 Å) the effective potential exhibits

a single minimum along the ξ coordinate. However, when L = 70 Å a bistability in the potential

develops. At this extension the cantilever potential turns the region of concavity in φ(ξ) into a

barrier between two minimum. The secondary minimum is the cause for the blinking in the force

measurements observed at this L (cf. Fig. 9).

What are the minimum requirements for the emergence of bistability along ξ? A necessary
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FIG. 17: Standard deviation in the force measurements σF =
√

〈F 2〉L − 〈F 〉2
L
as a function of L for three

different cantilever spring constants k during the pulling of the [3]rotaxane. In each case, the dotted line

indicates the value of
√

k/β which sets the limit between the stable and unstable branches in the extension,

see Eq. (34). Here, k0 = 1.1 pN/Å. Figure taken from [28].

FIG. 18: Effective potential UL(ξ) = φ(ξ) + VL(ξ) for the molecule plus cantilever for different values of the

extension L. In the panels, the blue circles correspond to UL(ξ), the black circles to the PMF φ(ξ), and the

solid line to the cantilever potential VL(ξ) with k = 1.1 pN/Å. Note the bistability in the effective potential

for L = 70 Å.

condition is that the effective potential UL(ξ) is concave for some region along ξ, that is:

∂2UL(ξ)

∂ξ2
=

∂2φ(ξ)

∂ξ2
+ k < 0. (35)

For Eq. (35) to be satisfied it is required that both: (i) the PMF of the isolated molecule has a
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region of concavity where ∂2φ(ξ)
∂ξ2

< 0, and (ii) the cantilever employed is sufficiently soft such that

k < −min

(

∂2φ(ξ)

∂ξ2

)

, (36)

for some ξ. Equation (36) imposes an upper bound on k > 0 for bistability to be observable. If k

is very stiff the inequality would be violated for all ξ and bistability would not be manifest. Note,

however, that there is no lower bound for k that prevents bistability along ξ.

Since the region of concavity in the PMF is a common feature of molecules that have stable

folded conformations, this bistability for selected extensions is a common feature of the pulling.

We have already encountered this phenomenon during the pulling of the oligorotaxane and the

RNA hairpin (Fig. 2). The DNA dimer (Fig. 14) and the polyprotein in Fig. 5 are also expected

to show this behavior since their PMF has regions of concavity along ξ. The bistability has also

been predicted to be measurable when pulling π-stacked molecules [51, 69]. For a discussion of the

bistability in the isotensional ensemble, see Ref. [18]. Figure 19 shows a striking recent experimental

demonstration of the bistability obtained during the pulling of a leucine zipper [70].

VI. SUMMARY

The power of single-molecule pulling techniques is that they allow for mechanical control over

the molecular conformation while simultaneously making thermodynamic measurements of any

mechanically induced unfolding events. The force-extension data often exhibits mechanically un-

stable regions where the force decreases with increasing extension and bistable regions where, for

fixed extension, blinks between a high-force and a low-force regime are observed.

From the force-extension isotherms it is possible to reconstruct the PMF along the extension

coordinate using the WHAM. In fact, the pulling process can be seen as an experimental realization

of the WHAM methodology. The PMF summarizes the changes in the free energy during folding

and determines the elastic properties of the molecule. Quite remarkably, the PMF’s of widely

different molecules often shares the same basic structure. It consists of regions of convexity that

represent mechanically stable molecular conformations interspersed by regions of concavity that

signal molecular unfolding events.

The starting point in the interpretation of single-molecule pulling experiments is Eq. (22) which

shows that the pulling process can be viewed as thermal motion along a one-dimensional potential

UL(ξ) = φ(ξ) + VL(ξ) that is determined by the PMF φ(ξ) and the cantilever potential VL(ξ).

Several important conclusions follow from this simple observation. The first and most obvious one
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FIG. 19: Bistability during the pulling of a leucine zipper measured in an optical lattice arrangement. (A)

Schematic of the experimental setup; (B) Sample force-extension traces; (C) Force vs time record for fixed

L in the region of dynamical bistability. Figure taken from [70].

is that the properties that are measured during pulling are those of the molecule plus cantilever

and hence that the basic phenomenon observed during pulling depend on the cantilever stiffness

used. It also follows that in order for the mechanical instability and dynamical bistability to be

observable, the molecular PMF has to have a region of concavity. However, while the dynamical

bistability survives for soft cantilever and decays for rigid cantilevers [see Eq. (36)], the opposite

is true for the mechanical instability [recall Eq. (32)]. The mechanical stability properties during

pulling were also shown to be intimately related to the fluctuations in the force measurements [see

Eq. (34)].

One basic challenge in modeling the force spectroscopy using MD is to bridge the several orders

of magnitude gap that exists between the pulling speeds used experimentally and those that are

computationally feasible. We detailed two possible strategies that can be employed to overcome

this difficulty: either strive for pulling speeds that are slow enough such that reversible behavior
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is recovered or use an indirect approach in which the PMF is first reconstructed and the force-

extension behavior is then estimated from the PMF. Other strategies based on nonequilibrium

pulling are also possible. From the simulation of the pulling one can gain insights into the confor-

mations encountered during molecular unfolding and into structure-function relations responsible

for the elastic behavior of single molecules.

Currently, the accurate reconstruction of the PMF of molecular systems using equilibrium

sampling is a serious computational challenge except for relatively modest systems. The recent

discovery of nonequilibrium work fluctuation relations has led to a surge of activity in seeking

nonequilibrium methods to reconstruct the PMF that can be used in situations where proper

equilibrium sampling is unfeasible. The full consequences of this venue of research is still to be

determined.
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