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Electronic coherence dynamics in trans-polyacetylene oligomers are considered by explicitly com-
puting the time dependent molecular polarization from the coupled dynamics of electronic and vi-
brational degrees of freedom in a mean-field mixed quantum-classical approximation. The oligomers
are described by the Su-Schrieffer-Heeger Hamiltonian and the effect of decoherence is incorporated
by propagating an ensemble of quantum-classical trajectories with initial conditions obtained by
sampling the Wigner distribution of the nuclear degrees of freedom. The electronic coherence of
superpositions between the ground and excited and between pairs of excited states is examined for
chains of different length, and the dynamics is discussed in terms of the nuclear overlap function that
appears in the off-diagonal elements of the electronic reduced density matrix. For long oligomers
the loss of coherence occurs in tens of femtoseconds. This time scale is determined by the decay of
population into other electronic states through vibronic interactions, and is relatively insensitive to
the type and class of superposition considered. By contrast, for smaller oligomers the decoherence
time scale depends strongly on the initially selected superposition, with superpositions that can decay
as fast as 50 fs and as slow as 250 fs. The long-lived superpositions are such that little population
is transferred to other electronic states and for which the vibronic dynamics is relatively harmonic.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3700445]

I. INTRODUCTION

Electronic decoherence (the decay of the off-diagonal el-
ements of the electronic reduced density matrix) in molecules
is a basic feature of the electron-vibrational evolution
that accompanies photoexcitation,1 passage through conical
intersections,2 energy transfer,3 or any other dynamical pro-
cess that creates electronic superposition states. In the deco-
herence language,4 the electrons are the system of interest,
the nuclei act as the bath, and it is the system-bath interaction
what leads to the decoherence. Establishing mechanisms for
electronic decoherence is central to our understanding of the
dynamics underlying fundamental processes such as photo-
synthesis, vision or electron transport.2, 3, 5 It is also vital in the
development of approximation schemes to the full vibronic
evolution of molecules,6, 7 and it is the starting point for the
design of methods to preserve the coherence of electronic su-
perpositions in molecules that can be subsequently exploited
in intriguing and potentially useful ways via quantum control8

or quantum information9 schemes.
Time scales for electronic decoherence in polyatomic

molecules are often exceedingly fast, on the order of tens of
femtoseconds.1, 10–12 This time scale is normally determined
by the vibrational degrees of freedom of the nuclear dynam-
ics, with slower torsional, rotational, or possible solvent dy-
namics (if present) playing a secondary role.10 However, chal-
lenges in understanding electronic decoherence have arisen
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from recent spectroscopic observations that have demon-
strated that in some photosynthetic systems electronic coher-
ences can be long-lived,13–15 with lifetimes exceeding 400–
600 fs. These results have lead to discussions of the role of
quantum coherences in biological processes and reconsidera-
tion of our understanding of decoherence dynamics in single
molecules and molecular aggregates.3, 13–24 Many of the asso-
ciated computations utilize phenomenological models or mas-
ter equations25 that approximate the dynamical effects of the
bath on the system coordinates without explicitly following
the bath dynamics. In these approaches, the effect of the bath
on the dynamics is typically determined by adjustable param-
eters that can be chosen to reproduce experimental findings,
when available. When possible, however, explicitly following
the dynamics of the nuclei is much preferred.26, 27 This is be-
cause electronic decoherence in molecules can be understood
as arising from nuclear dynamics on several electronic po-
tential energy surfaces.1, 10–12 For example, for an entangled
vibronic state of two levels, of the form

|�(t)〉 = |φi〉|χi(t)〉 + |φj 〉|χj (t)〉 (i �= j ), (1)

where the |φn〉 are orthonormal electronic states and |χn(t)〉
denotes the nuclear state in the nth electronic surface, the elec-
tronic reduced density matrix ρe is given by

ρe(t) = TrN{|�(t)〉〈�(t)|}
= |φi〉〈φi |〈χi(t)|χi(t)〉 + |φj 〉〈φj |〈χj (t)|χj (t)〉

+[|φi〉〈φj |〈χj (t)|χi(t)〉 + H.c.]. (2)

Here the trace is over the nuclear states and H.c. denotes the
Hermitian conjugate. Hence, the decay of the off-diagonal
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FIG. 1. Evolution and decay of the overlap of the nuclear wavefunctions in
two electronic potential energy surfaces Sij(t) = 〈χ j(t)|χ i(t)〉 upon instanta-
neous excitation from state |φi〉 to state |φj〉. Both anharmonicities and pop-
ulation transfer to other electronic states (dotted lines) can lead to a decay of
Sij(t) and thus to decoherences between |φi〉 and |φj〉. In the scheme, E is the
energy and q denotes the general nuclear conformational space.

matrix elements in ρe(t), i.e., electronic decoherence, is gov-
erned by the degree of overlap of the nuclear wavepackets
Sij(t) = 〈χ j(t)|χ i(t)〉 associated with the electronic states in
the superposition. Thus, by understanding the events that lead
to a decay of the overlaps Sij(t) one obtains direct insights into
the mechanism of electronic decoherence between states i and
j. A schematic representation of such evolution and decay for
a particular pair of states is shown in Fig. 1.

In this paper, we present a study of the electronic co-
herence dynamics in trans-polyacetylene (PA) oligomers in
which the dynamics of both electronic and vibrational degrees
of freedom are explicitly taken into account. We do so in an
approximate scheme where the nuclei are considered classi-
cally and the electrons quantum mechanically. The oligomers
are described using the well-known Su-Schrieffer-Heeger
(SSH) Hamiltonian.28 The SSH model treats the molecule as
a tight-binding chain in which the electrons are coupled to
distortions in the polymer backbone by electron-vibrational
interactions. In spite of its simplicity, the SSH Hamiltonian is
remarkably successful in capturing the electronic structure of
PA, its photoinduced vibronic dynamics and the rich photo-
physics of polarons, breathers and kinks.1, 29–31 This model is
often used to study the dynamical features caused by strong
electron-ion couplings.1, 32, 33

The coupled dynamics of nuclear and electronic de-
grees of freedom of the molecule is followed in a mean-
field (Ehrenfest) mixed quantum-classical approximation34–36

and decoherence effects are incorporated by propagating
an ensemble of quantum-classical trajectories with initial
conditions selected from the nuclear Wigner distribution
function1, 37–39 of the chain. In this way the dynamics reflects
the initial nuclear quantum distribution and is subject to the
level broadening and internal relaxation mechanism induced
by the vibronic couplings. Using this model we study the pos-
sible effect of system size, nuclear initial conditions, and type

of electronic superposition states on the dynamics of elec-
tronic coherence.

II. MODEL AND METHODS

A. The SSH Hamiltonian

The SSH Hamiltonian28 models PA oligomers as one-
dimensional tight-binding chains, each site representing a CH
unit. The Hamiltonian for an N-membered oligomer is given
by

HSSH = Helec + Hph, (3)

where

Helec =
N−1∑

n=1

∑

s=±1

[−t0 + α(un+1 − un)]

× (c†n+1,scn,s + c†n,scn+1,s) and,

Hph =
N∑

n=1

p2
n

2M
+ K

2

N−1∑

n=1

(un+1 − un)2, (4)

are, respectively, the electronic and nuclear parts of the
Hamiltonian. Here, un denotes the displacement of the nth CH
site from the perfectly periodic position x = na with a as the
lattice constant, M is the mass of the CH group, pn is the mo-
mentum conjugate to un and K is an effective spring constant.
The operator c

†
n,s (or cn, s) creates (or annihilates) a fermion on

site n with spin s and satisfies the usual fermionic anticommu-
tation relations. The electronic component of the Hamiltonian
consists of a term describing the hopping of π electrons along
the chain with hopping integral t0 and an electron-ion interac-
tion term with coupling constant α. The quantity α couples
the electronic states to the molecular geometry and consti-
tutes a first-order correction to the lowest order hopping inte-
gral t0. Throughout this work, we use the standard set of SSH
parameters for PA: t0 = 2.5 eV, α = 4.1 eV/Å, K = 21 eV/Å2,
M = 1349.14 eV fs2/Å2, and a = 1.22 Å.

B. Ehrenfest electron-vibrational dynamics

The electron-vibrational dynamics of the chain is fol-
lowed in the mean-field Ehrenfest mixed quantum-classical
approximation.1, 35–38 In this approximation, the nuclei move
classically on a mean-field potential energy surface with
forces given by

ṗn = −〈ϕ(t)|∂HSSH

∂un

|ϕ(t)〉. (5)

In turn, the antisymmetrized N electron wavefunction |ϕ(t)〉
satisfies the time-dependent Schrödinger equation

i¯
∂

∂t
|ϕ(t)〉 = HSSH[u(t)]|ϕ(t)〉, (6)

where u ≡ (u1, u2, . . . , uN ). Since HSSH is a single-particle
operator, the electronic properties of the system are
completely characterized by the single-particle electronic
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density matrix

ρn,m(t) =
∑

s

〈ϕ(t)|c†n,scm,s |ϕ(t)〉. (7)

From Eq. (6) it follows that the dynamics of ρn, m satisfies

i¯
d

dt
ρn,m(t) =

∑

s

〈ϕ(t)|[c†n,scm,s, Helec]|ϕ(t)〉

=
∑

m′
(hm,m′ρn,m′ (t) − hm′,nρm′,m(t)), (8)

where hn,m = 〈n, s|Helec|m, s〉 are the single-particle matrix
elements of Helec and |n, s〉 = c

†
n,s |0〉 where |0〉 is the vacuum

state.
Equation (8) is integrated by decomposing ρn, m(t)

into orbitals. For this, let |ε,s〉 be the eigenorbitals of
spin s and energy ε of the system at preparation time
(Helec(t = 0)|ε, s〉 = ε|ε, s〉). Using this basis, the initial elec-
tronic reduced density matrix can be expressed as

ρn,m(0) =
N∑

ε,ε′=1

∑

s

〈ε, s|n, s〉〈m, s|ε′, s〉〈ϕ(0)|c†ε,scε′,s |ϕ(0)〉,

(9)
where 〈ϕ(0)|c†ε,scε′,s |ϕ(0)〉 characterizes the initial electronic
distribution among the single particle states, and |ε, s〉
= c

†
ε,s |0〉. In writing Eq. (9) we have employed the basis trans-

formation function c
†
n,s = ∑N

ε=1〈ε, s|n, s〉c†ε,s . We adopt the
ansatz that upon time evolution ρn, m(t) maintains the form in
Eq. (9). That is,

ρn,m(t) =
N∑

ε,ε′=1

∑

s

〈ε(t), s|n, s〉〈m, s|ε′(t), s〉

×〈ϕ(0)|c†ε,scε′,s |ϕ(0)〉. (10)

The utility of this ansatz is that if the time-dependent orbitals
|ε(t), s〉 satisfy the single-particle Schrödinger equation

i¯
d

dt
|ε(t), s〉 = Helec(t)|ε(t), s〉, (11)

with initial conditions |ε(t = 0), s〉 = |ε, s〉, the reduced den-
sity matrix automatically satisfies the correct equation of mo-
tion [Eq. (8)].

Within this framework, the equations for the nuclear tra-
jectories are

u̇n(t) = pn(t)

M
;

ṗn(t) = −K(2un(t) − un+1(t) − un−1(t))

+ 2αRe{ρn,n+1(t) − ρn,n−1(t)}. (12)

The chain is taken to be clamped so that u1(t) = uN(t) = 0
and p1(t) = pN(t) = 0 for all time, and Eq. (12) is valid for n
= 2, . . . , N − 1. In turn, the orbitals that form ρnm(t) satisfy
Eq. (11), so that

i¯
d

dt
〈n|ε(t)〉 = [−t0 + α(un+1(t) − un(t))]〈n + 1|ε(t)〉

+ [−t0 + α(un(t) − un−1(t))]〈n− 1|ε(t)〉 (13)

for n, ε = 1, . . . , N. Since the electrons are confined within the
chain, 〈n|ε(t)〉 = 0 for n�∈{1, . . . , N}. Equations (12) and (13)
constitute a closed set of N(N + 2) coupled first-order dif-
ferential equations that are integrated using an eighth-order
Runge-Kutta method.

C. Nuclear initial conditions

For the purpose of determining the nuclear initial condi-
tions, the electronic state |ϕ(0)〉 = |E0〉 (Helec|E0〉 = E0|E0〉)
is assumed to be well described by a single Slater determinant
for which [recall Eq. (9)]

〈ϕ(0)|c†ε,scε′,s |ϕ(0)〉 = δε,ε′f (ε, s), (14)

where f(ε, s) is the initial electronic distribution (ground or
excited) that takes values 0 or 1 depending on the initial oc-
cupation of each level with energy ε and spin s. The starting
optimal (minimum energy) geometry is obtained by minimiz-
ing the total energy of the chain by an iterative self-consistent
procedure. Specifically, the energy gradient of the oligomer is
given by

∂E(u)

∂um

= 〈ϕ(0)| ∂H

∂um

|ϕ(0)〉 = 2αRe{ρm,m−1 − ρm,m+1}

+K(2um − um−1 − um+1). (15)

At the optimal geometry, for which the gradient equals zero,
the m = 2, . . . , N − 1 displacement satisfies

um = 1

2
(um+1 + um−1) − α

K
Re{ρm,m−1 − ρm,m+1}. (16)

Equation (16) is solved iteratively with the additional con-
straint that the boundaries of the chain are clamped (u1 = uN

= 0).
Subsequently, a harmonic approximation to the nuclear

ground-state wavefunction is obtained by performing a nor-
mal mode analysis around the equilibrium minimum energy
geometry u0 = (u0

1, . . . , u
0
N ) in the (ground or excited) initial

electronic state |E0〉. For this, the Hamiltonian is expressed as
a sum of the static equilibrium configuration H0 and a dynam-
ical part due to deviations from equilibrium

H = H0 + H ′
π−ph + H ′

ph, (17)

where

H ′
π−ph = α

N−1∑

n=1,s

(ηn+1 − ηn)
(
c
†
n+1,scn,s + c†n,scn+1,s

)

H ′
ph =

N∑

n=1

p2
n

2M

+ K

2

N−1∑

n=1

[
2
(
u0

n+1 − u0
n

)
(ηn+1 − ηn) + (ηn+1 − ηn)2

]
,

with ηn being the displacement of the nth monomer from its
equilibrium position ηn = un − u0

n. In order to get the po-
tential energy of the chain around the equilibrium geometry,
the quantity H ′

π−ph is considered as a perturbation to H0
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(Refs. 40 and 41) and we have to second order that,

E(η) = E0 + 〈E0|H ′
π−ph|E0〉 +

∑

i �=0

|〈ϕi |H ′
π−ph|E0〉|2

E0 − Ei

+K

2

N−1∑

n=1

[
2
(
u0

n+1 − u0
n

)
(ηn+1 − ηn) + (ηn+1 − ηn)2],

(18)

where we have traced over the electronic coordinates and as-
sumed that the system is initially prepared in the electronic
state |E0〉 with energy E0. Here {|ϕi〉, Ei} are the eigenstates
and eigenvalues of the N -particle electronic Hamiltonian in
the optimal geometry H0.

A harmonic version of Eq. (18) is obtained by making a
Taylor expansion of the potential around the equilibrium po-
sition and keeping terms up to second order in the nuclear dis-
placements. We note that second-order perturbation in Hπ−ph

is consistent with the harmonic approximation. The effective
harmonic phonon potential energy thus obtained is

Eharm(η) = E0 + 1

2

N−1∑

n,m=2

ηnfn,mηm. (19a)

Here fn, m is the Hessian of the potential energy given by

fn,m = ∂2E

∂ηn ∂ηm

∣∣∣∣
η=0

= Vnm + K(2δn,m − δn,m+1 − δn,m−1),

(19b)
where

Vnm = 2α2
∑

ε,ε′,s

f (ε′, s)(1 − f (ε, s))

ε′ − ε
V m(ε, ε′)V n(ε, ε′),

V n(ε, ε′) = 〈ε|n〉(〈n − 1|ε′〉 − 〈n + 1|ε′〉)

+〈n|ε′〉(〈ε|n − 1〉 − 〈ε|n + 1〉). (19c)

In deriving Eq. (19), we have imposed clamped ends on the
polymer chain (η1 = ηN = 0). The orbitals |ε〉 and their asso-
ciated energies ε are obtained by diagonalizing the electronic
Hamiltonian at the equilibrium geometry. The normal mode
coordinates and frequencies are then computed by the stan-
dard analysis.42 The eigenvectors of fnm provide the normal
mode coordinates Qj (η) and the associated eigenvalues λj the
normal mode frequencies ωj = √

λj/M .

A phase-space like description of the resulting nuclear
quantum state is obtained by constructing the associated
nuclear Wigner phase-space distribution function ρW(u, p).
In the normal mode coordinates, ρW(u, p) is just the product
of the Wigner distributions associated with each vibrational
mode

ρW(u, p) =
N−2∏

j=1

ρj (Qj (u), Pj ( p)), (20)

where Qj (u) is the normal mode coordinate of the jth mode
and Pj ( p) is its conjugate momentum. We take the chain to
be initially prepared in its ground vibrational state so that39

ρj (Qj, Pj ) = 1

π¯
exp

(−MωjQ
2
j /¯

)
exp

(−P 2
j /¯ωjM

)
(21)

for j = 1, . . . , N − 2. The 2N − 4 dimensional phase-space
distribution in Eq. (20) completely characterizes the initial
quantum state of the nuclei.

The ensemble of lattice initial conditions, {ui(0), pi(0)},
for the quantum-classical dynamics is obtained from a Monte
Carlo sampling of the nuclear Wigner phase-space distribu-
tion of Eq. (20). The average classical energy of the resulting
ensemble coincides numerically with the zero-point energy
of the lattice. The associated initial values for the orbitals
{|εi〉} are obtained by diagonalizing Helec in the initial lattice
geometries {ui}. Each initial condition i, together with the
equations of motion, defines a quantum-classical trajectory
(ui(0), pi(0), |ϕi(0)〉) → (ui(t), pi(t), |ϕi(t)〉) and the set is
employed to obtain ensemble averages. Results shown here
are averages over 10000 trajectories.

III. RESULTS AND DISCUSSION

Throughout, we study neutral oligomers with an even
number N of CH units. In the ground state, the geometry of the
chain consists of a centrosymmetric structure with perfect al-
ternation of double and single bonds. The single-particle spec-
trum of chains of different length is shown in Fig. 2. It has a
total width of 4t0 = 10 eV and consists of N/2 fully occu-
pied valence states and N/2 initially empty conduction states.
Note how the single-particle spectrum gets more dense as the
number of CH units is increased.

As a measure of electronic coherence and decoherence
we follow the dynamics of the molecular polarization, defined
by 〈μ̂(t)〉 = 〈�(t)|μ̂|�(t)〉, where |�〉 denotes the vibronic
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FIG. 2. Orbital energies for optimized PA chains of varying length. The valence (conduction) orbital energies are plotted in blue (red).
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wavefunction and where the dipole operator μ̂ = μ̂e + μ̂N

has both an electronic μ̂e and a nuclear μ̂N component. Doing
so provides a measure of electronic coherence that is directly
related to measurables.

It is advantageous to connect this discussion of decoher-
ence based on the polarization to standard measurements of
decoherence.8, 43 The density matrix associated with a gen-
eral entangled vibronic Born-Oppenheimer state of the form
|�(t)〉 = ∑

n e−iEnt/¯|ϕn〉|χn(t)〉 is given by

|�(t)〉〈�(t)| =
∑

nm

e−iωnmt |ϕn〉|χn(t)〉〈ϕm|〈χm(t)|, (22)

where |ϕn〉 are the electronic eigenstates [Helec|ϕn〉
= En|ϕn〉], |χn(t)〉 the nuclear wavepacket associated
with each electronic level and ωnm = (En − Em)/¯. If our
interest is in the electronic degrees of freedom only, then
the vibrations are regarded as the environment. Since we
have no interest in the behavior of the environment we trace
over these modes to give the density matrix of the electronic
subsystem,

ρe(t) =
∑

nm

e−iωnmt 〈χm(t)|χn(t)〉|ϕn〉〈ϕm|. (23)

Note that the off-diagonal elements of ρe(t) are determined
by the nuclear overlaps Snm(t) = 〈χm(t)|χn(t)〉 and the loss
of such coherences in ρe(t) is a result of the evolution of the
Snm(t) due to the vibronic dynamics. Standard measures of
decoherence capture precisely this. For example, the purity of
such entangled vibronic state is given by

Tr(ρ2
e (t)) =

∑

nm

|〈χm(t)|χn(t)〉|2 (24)

and decays with the overlaps of the nuclear wavepackets in
the different electronic surfaces.

The polarization is also a useful measure of decoherence
because its magnitude also depends on the Snm(t). To see this
consider the expression for the polarization for the entangled
state in Eq. (22),

〈μ̂(t)〉 =
∑

n

〈χn(t)|μN |χn(t)〉+
∑

n,m

e−iωnmtμmn
e 〈χm(t)|χn(t)〉,

(25)
where μmn

e = 〈ϕm|μ̂e|ϕn〉. Suppose that the PA chain is pre-
pared in a spatially symmetric state where the initial nu-
clear state is invariant under reflection, i.e., ρW(−u,− p)
= ρW(u, p). Since there is no symmetry breaking term in the
Hamiltonian, this initial symmetry is maintained throughout
the dynamics44 and 〈χn|μN |χn〉 = μnn

e = 0 for all n. Under
such conditions, the polarization

〈μ̂(t)〉 =
∑

n,m�=n

e−iωnmtμmn
e 〈χm(t)|χn(t)〉 (26)

is a direct measure of the off-diagonal matrix elements of the
electronic reduced density matrix [cf. Eq. (23)]. Its evolution
and decay directly offers information about the decoherence
dynamics.

Note that in writing Eq. (26) we have adopted the Franck-
Condon approximation where the electronic transition dipole
surfaces μmn

e (u) are assumed to depend weakly on the nu-
clear displacements. However even when this approximation

is not valid, a decay in 〈μ̂(t)〉 will still signal a decay in the
nuclear overlaps, albeit modulated by the dependence of the
electronic transition dipoles on the nuclear coordinates.

Thus, both Tr(ρ2
e (t)) and 〈μ̂(t)〉 are useful measures of

decoherence and both decay with the overlaps of the nuclear
wavepackets in different electronic states. The advantage of
the polarization over the purity is that it is a physically acces-
sible observable. Its limitation, however, is that 〈μ̂(t)〉 only
signals coherences for which μmn

e �= 0. So, for instance, co-
herences between eigenstates of the same parity are absent
in the polarization even when they would contribute to the
purity.

In the quantum-classical picture of the dynamics, the
polarization is computed as an average of the polarizations
recorded for each of the M individual trajectories in the en-
semble,

〈μ̂(t)〉 = |e|
M

M∑

i=1

N∑

n=1

xi
n(t)

(
1 − ρi

n,n

)
, (27)

where xi
n(t) = (na + ui

n(t)) is the position of site n at time t
in the ith trajectory and e is the electron charge. The first term
in Eq. (27) comes from the dipole due to the nuclei, while the
second one quantifies the electronic contributions.

There are two possible effects that can lead to a decay
of the electronic coherences (recall Fig. 1): anharmonicities
in the potential and population transfer into other electronic
states. More precisely, if there is no population transfer into
other states, and the electronic potential energy surfaces are
bounded, then anharmonicities in the electronic potential en-
ergy surfaces can lead to a spread of the nuclear wavepackets
during evolution and thus to a decay of the nuclear overlap
integral Sij = 〈χ j(t)|χ i(t)〉 (wavepacket evolution in purely
harmonic potentials lead to periodic recurrences in Sij and
thus cannot lead to decoherence). Alternatively, population
transfer into other electronic states can lead to decoherence
by transferring population to states for which only poor
overlaps of the nuclear wavepackets are possible with the
states already involved in the superposition. This poor overlap
arises because different electronic potential energy surfaces
typically have substantially different gradients and position
of their minima in conformational space, leading to diverging
evolution of the nuclear wavepackets in the excited state
manifold.

It should be noted that, traditionally, studies of the deco-
herence of a superposition state would not typically include
loss of population from the state, which would be regarded
as a relaxation, rather than decoherence, process. However,
this distinction is meaningful when energy transfer and deco-
herence time scales are substantially different, the latter oc-
curring on much shorter time scales than the former. Here,
however, as shown below, population transfer between states
occur rather quickly, making this subdivision less meaningful,
and making such contributions quite significant in the time
evolution of 〈μ̂(t)〉 and the purity. Here then, we use the term
“decoherence” to relate to any process that causes loss of the
coherence of 〈μ̂(t)〉.

Below we discuss several examples of decoherence dy-
namics in PA chains. The interpretation of the results will
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be done in a wavepacket language and with the wavepacket
picture of Fig. 1 in mind, even though the computations
are performed in a mixed quantum-classical setting. Such
wavepacket evolution is captured by the quantum-classical
dynamics through the time dependence of the orbital energies
and populations in the ensemble of trajectories.

A. Decoherence between the ground and first excited
state for chains of different lengths

Consider first the decoherence dynamics of PA chains
initially in a separable superposition state of the form,

|�(0)〉 = 1√
2

(|ϕ0〉 + |ϕ1〉) ⊗ |χ00〉, (28)

where |ϕ0〉 is the ground electronic state, |ϕ1〉 is the first
excited state (obtained by promoting an electron from the
HOMO to the LUMO) and |χ00〉 is the ground state nuclear
wavefunction in the ground electronic surface. Physically,
such a superposition can be created by instantaneous (delta
pulse) excitation of the relaxed ground state chain. Figure 3
shows 〈μ̂(t)〉 for chains with varying number of CH units (N).
The high frequency oscillations in 〈μ̂(t)〉 are due to the differ-
ence in energy between the two states involved in the super-
position (in this case the energy gap). The remaining time de-
pendence arises from the wavepacket evolution in the excited
state potential energy surface. For the four site chain, the po-
larization displays a fast initial decay with recurrences every
∼30 fs. These recurrences arise from the time dependence of
the overlap of the nuclear wavefunctions in the ground and
excited electronic states [see Eq. (26)], and signal the oscil-
latory motion of the nuclear wavepacket in the excited state
potential. Between consecutive recurrences the amplitude of
the polarization diminishes and eventually dies out, yielding a
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FIG. 3. Electronic decoherence dynamics in chains of different lengths N.
The figure shows the evolution and decay of the chain polarization when the
system is initially prepared in a superposition between the ground and first
excited state of the form in Eq. (28).
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FIG. 4. Population of the LUMO orbital during the decoherence dynamics
of a N-site SSH chain with the initial conditions of Eq. (28).

decoherence time scale of ∼250 fs for N = 4. For N = 20 we
observe only two of these recurrences, occurring every ∼46 fs
to yield a decoherence time of ∼100 fs. For longer oligomers
(N = 50 and N = 100) no recurrences are observed and the
decoherence occurs in less than 10 fs.

Additional insights into the decoherence dynamics can be
extracted by considering the evolution of the population of the
LUMO of the chain (Fig. 4). If the main decoherence mech-
anism is the anharmonic evolution of the nuclear wavepacket
in the first excited state potential energy surface, then one
should expect little population exchange with other levels of
the chain. As shown in Fig. 4 for N = 4 and N = 20 an al-
most negligible amount of population is transferred to other
electronic states, suggesting that anharmonicities are the main
source of decoherence. By contrast, for long chains (N = 50
and N = 100) the electronic spectrum is so dense that a sub-
stantial amount of population is transferred from the initially
populated LUMO to other electronic states. This suggests that
both anharmonicities and population decay to other electronic
states contribute to the decoherence, leading to an evolution
with no apparent recurrences.

B. Decoherence of superpositions between
excited states

We now investigate how the decoherence dynamics
changes when the initial superposition is between two excited
states rather than between an excited and ground electronic
state. For this we consider the two classes of model initial su-
perpositions schematically represented in Fig. 5. In the first
class, the initial state is of the form

|�(0)〉 = 1√
2

(|φi〉 + |φi+1〉) ⊗ |χ00〉, (29)

where |φi〉 = c
†
i,scN/2,s |ϕ0〉 (i ∈ {N/2 + 1, . . . , N}) is an elec-

tronically excited state obtained by promoting an electron
from the HOMO to the ith orbital level of the ground state
|ϕ0〉. In this superposition the initial nuclear state is taken to
be the ground vibrational state in the ground electronic sur-
face, |χ00〉. Physically, such a superposition will arise via
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FIG. 5. Schematic of the process used to create the superpositions in Eq. (29)
(left panel) and Eq. (30) (right panel).

instantaneous excitation of the ground vibronic state into
states |φi〉 and |φi + 1〉, as depicted in the left panel of Fig. 5.
By contrast, in the second class of superpositions the nuclei
are taken to be initially prepared in the ground state distribu-
tion of the excited electronic state |φi〉, so that

|�(0)〉 = 1√
2

(|φi〉 + |φi+1〉) ⊗ |χ0i〉. (30)

The wavefunction |χ0i〉 is obtained by finding the optimal ge-
ometry of the electronically excited state and then performing
a normal mode analysis around this geometry, as discussed in
Sec. II C. Physically such a superposition will arise from in-
stantaneous excitation of a chain vibrationally relaxed in state
|φi〉 to state |φi + 1〉, as represented in the right panel of Fig. 5.

1. The case of a 20-site chain

Consider first the case of a chain with 20 CH units. The
left panels in Fig. 6 show the time dependence of the polariza-
tion when the system is initially prepared in the superposition

in Eq. (29) for different i’s. The figure shows that the deco-
herence dynamics can change substantially depending on the
pair of states that are selected to form the superposition. It
is even possible to find superpositions for which the coher-
ences are unusually long lived. For example, for i = 15 the
electronic coherences survive for ∼200 fs, a time scale that is
comparable to the coherence lifetime observed in photosyn-
thetic systems.

Additional insights into the decoherence mechanisms are
provided by the shape of 〈μ̂(t)〉 and by the dynamics of pop-
ulation in the excited orbitals (Fig. 7). The polarization indi-
cates that for i = 11 there is vibronic evolution in the excited
states that leads to a decay and to the recurrence of the nuclear
overlap integrals determining 〈μ̂(t)〉. By contrast, for i = 19
this motion is not apparent in 〈μ̂(t)〉 which shows a decay in
∼60 fs with no apparent additional structure. The population
dynamics (Fig. 7, upper panel) complements this picture by
showing that for i = 11 a negligible amount of population
decays to other levels, while for i = 19 the transfer of popula-
tion to other levels is substantial. These observations suggest
that for i = 11 the main mechanism for decoherence is due to
anharmonicities in the excited state potential energy surfaces,
while for i = 19 the main decoherence mechanism is due to
population transfer to other electronically excited states for
which only poor nuclear overlaps are possible. The case of i
= 15 is discussed below.

As an additional test of these observations consider the
dynamics of superpositions between the same set of lev-
els but starting from Eq. (30), that uses a different initial
nuclear state. The results are shown in the right panel of
Fig. 6. As can be seen, for i = 11 changing the initial nuclear
state triples the coherence lifetime of the superposition, with
three visible recurrences instead of one. Since for this super-
position there is negligible amount of population being trans-
ferred to other electronic states (see Fig. 7), the data confirm
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FIG. 6. Electronic decoherence dynamics in a 20 site chain for different initial superposition between excited states. The panels show the dynamics and decay
of the chain polarization starting from a superposition of the form in Eq. (29) (left panels) or Eq. (30) (right panels).
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decoherence dynamics of a 20-site SSH chain starting from the initial super-
positions depicted in Fig. 5.

that anharmonicities in the potential energy surfaces of the
excited states are the main source of the decoherence in this
case. By contrast, for i = 19 changing the nature of the initial
nuclear state has little effect on the decoherence dynamics,
suggesting that the main decoherence mechanism in this case
is due to population transfer to other electronic states, as seen
in Fig. 7.

The case for i = 15 where long coherences are observed
is different. For this superposition, little population is trans-
ferred to other electronic states and a change in the initial
nuclear state has little effect on the decoherence dynamics.
This suggests that this superposition is protected from deco-
herence both by the fact that the density of states is such that
the two states involved in the superpositions are weakly cou-
pled to other electronic states, and because the sampled po-
tential energy surfaces are less anharmonic than in the other
cases considered.

2. The case of a 100-site chain

For larger systems the situation is qualitatively different.
Figure 8 shows the dynamics of the polarization for chains ini-
tially in a superposition state of the form in Eqs. (29) and (30)
for different i. Figure 9 shows the associated change in pop-
ulation of the ith and (i + 1)th orbitals. The electronic spec-
trum is so dense that upon evolution significant population is
transferred to other electronic states. Irrespective of the type
of superpositions considered or the initial nuclear state co-
herence decay in this chain is extremely fast, of the order of
50 fs. The electronic spectrum in this system is simply too
dense to maintain electronic coherence. In 〈μ(t)〉, however,
for i = 51 population loss is less than in the other two cases,
consistent with the fact that some oscillatory character is
visible for i = 51 in Fig. 8.
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IV. CONCLUSIONS

In this paper, we have presented numerical simulations
of the electronic coherence dynamics of PA oligomers of
varying length in which the evolution of both electrons and
nuclei are followed explicitly in a mixed quantum-classical
approximation. We investigated the decoherence of super-
positions, as manifest in the dynamics of the polarization,
between the ground and excited and between pairs of excited
states. Decoherence is caused by the decay of the overlap of
the nuclear wavepackets associated with all electronic states
involved in the superposition. Two basic mechanisms for
such decay were identified: population transfer into other
electronic states where only poor overlaps are possible, and
vibronic evolution in anharmonic potential energy surfaces
that lead to wavepacket spread.

The simulations indicate that for long chains (e.g.,
N = 100) the electronic spectrum is so dense that decoher-
ence is dominated by population decay into other states. In
this case, no recurrences are observed in the polarization and
the decoherence occurs in tens of femtoseconds. Further, the
decoherence dynamics was found to be largely independent
of the type of initial superposition that is subject to the de-
coherence. By contrast, for shorter chains (e.g., N = 20) the
simulations indicate that the decoherence dynamics depends
strongly on the initial vibronic state. We identified superpo-
sitions for which anharmonicities were the main source of
decoherence and superpositions for which population trans-
fer to other electronic states was determinant. Interestingly,
we also observed a superposition state between excited states
with coherence properties that are long lived, for ∼200 fs.
Such a superposition was found to be long lived because it

is spectrally isolated from other electronic states and because
the vibronic dynamics leads to a relatively slow spread of the
nuclear wavepackets.
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