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The analogy between Young’s double-slit experiment with matter and laser driven coherent control
schemes is investigated, and shown to be limited. To do so, a general decomposition of observables in
the Heisenberg picture into direct terms and interference contributions is introduced, and formal quan-
tum-classical correspondence arguments in the Heisenberg picture are employed to define classical ana-
logs of quantum interference terms. While the classical interference contributions in the double-slit
experiment are shown to be zero, they can be nonzero in laser driven coherent control schemes and lead
to laser control in the classical limit. This classical limit is interpreted in terms of nonlinear response
theory arguments.
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1. Introduction

Identifying physical phenomena as quantum, as distinct from
classical, has become of increasing interest due to modern develop-
ments in ‘‘quantum technologies”, such as quantum information
and computation, and quantum control [1,2]. Significantly, a
variety of new results are emerging which enlighten as to what
constitutes an inherently quantum feature. For example, several
attributes often regarded as quantum in nature, such as the no-
cloning theorem, the Born rule for probabilities and a Hilbert space
structure for the dynamics, have been found to be features of clas-
sical mechanics as well [3–6].

Here we focus upon the role of quantum effects in the laser dri-
ven coherent control of atomic and molecular processes. Many of
these processes have long been understood in terms of quantum
interference effects exactly analogous to the ones in the double-slit
experiment with matter. That is, the current view on coherent con-
trol phenomena is that the property that makes possible the active
control of molecular dynamics is quantum interference, which
arises from the fact that the behavior of material particles at
molecular scales can be described in terms of waves [2,7–9]. The
tool that permits practical exploitation of quantum interference
for control of molecular dynamics is the laser, as it imparts a quan-
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tum phase on the system. Hence, by varying the laser phases one
can vary the magnitude and sign of quantum interference
contributions.

In this paper we examine the accuracy and generality of this
analogy, with the goal of understanding whether laser driven
coherent control is an explicitly quantum phenomenon or whether
the same physical process is manifest classically as well. We do so
using a framework, developed below, based upon the Heisenberg
representation in quantum mechanics, an approach particularly
well suited to examine the analogy between quantum mechanical
and classical processes because it deals with dynamical variables
directly instead of superposition states and probability amplitudes
[10–12].

The question posed herein is somewhat subtle and requires
clarification. Specifically, our focus is on whether various coherent
control scenarios qualitatively require a quantum description, or
whether they can qualitatively be described by classical mechanics.
If the former is the case, then we will call the phenomenon inher-
ently quantal in nature. This is in contrast to the circumstance
where classical mechanics provides a qualitative description but
fails to quantitatively describe observed results. For example, with-
in this definition, tunnelling is a quantum process, but light
absorption by molecules is not [13,14].

In addition to shedding light on the nature of laser control, the
question posed is also of relevance practically. Specifically, if a phe-
nomenon is indeed describable classically, then it is sensible to
consider modelling the process in the classical limit using classical
dynamics. This is not the case if it is a pure quantum phenomenon.
Nonetheless, there is no implication that if a process can indeed be
defined classically that a classical computation will provide an ade-
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quate quantitative result. Further, the resulting classical analogues,
if they exist, offer alternative perspectives on well established
coherent control schemes. Lastly, decoherence effects on laser con-
trol could be analyzed from a completely classical perspective [15]
and may well offer insight into novel ways to combat it.

This problem may be regarded as ill-posed since, after all, nat-
ure is quantum and even the stability of matter requires a quantum
description. Further, coherent control schemes often employ man-
ifestly quantum phenomenon such as electronic transitions. Again,
we do not question whether a quantitative account of laser control
scenarios requires a quantum treatment. However, from a qualita-
tive perspective the question still remains: is the wave character of
matter necessary for the appearance of laser-induced interferences
that can be used to control molecular dynamics?

This manuscript is organized as follows: In Section 2 we discuss
the formal analogy between the double-slit experiment and laser
driven coherent control schemes. For this we present a general
decomposition of observables in the Heisenberg picture into direct
terms and interference contributions, as well as a procedure to
isolate the contributing terms. Then, in Section 3 we study such
a decomposition in the classical limit and use it to define classical
analogues of interference terms. With it, we extract interference
contributions in a classical double-slit experiment and a classical
laser control scenario. It is shown that the classical interference
contributions in laser control can be nonzero and give origin to
classical laser control. Our main results as well as a qualitative
discussion of the nature of the ‘‘interference in the classical limit”
are provided in Section 4.
2. Quantum interference

2.1. The double-slit experiment

The usual example used to explore quantum interference phe-
nomena is Young’s double-slit experiment with matter. In it, parti-
cles drawn, e.g., from a thermal distribution, are directed, at low
intensity, at a barrier with two slits. A detector is placed at some
distance behind the slits and the position of those particles that
pass through the slits and arrive at the detection screen are re-
corded. In the classical case each particle can pass either through
the upper or lower slit and there is no correlation between the
two possibilities. The resulting probability distribution at the
detection screen PðyÞ is therefore the sum of the probability distri-
butions PnðyÞ that would have been obtained if the experiment had
been carried out with only slit n ¼ 1 or slit n ¼ 2, open,

PðyÞ ¼ P1ðyÞ þ P2ðyÞ: ð1Þ

By contrast, in quantum mechanics there is an additional contribut-
ing term to PðyÞ; P12ðyÞ, to give

PðyÞ ¼ P1ðyÞ þ P2ðyÞ þ P12ðyÞ: ð2Þ

The term P12 arises from quantum interference effects, may be po-
sitive or negative, and is responsible for the appearance of fringes in
the detection screen that cannot be accounted for through classical
considerations.

Several compelling accounts of the double-slit experiment exist
(see, for example, Refs. [16–19]). Below, we choose to describe it by
considering the actual dynamics of the underlying scattering pro-
cess in the Heisenberg picture. As will become evident, this per-
spective is particularly suitable to draw a parallel with coherent
control phenomena and to study quantum interferences in the
classical limit.

Suppose then that the particles to be diffracted are initially pre-
pared in some state j/0i. For times t < 0 we imagine that the bar-
rier has no slits and that at time t ¼ 0 two slits are opened. The
system is described by the HamiltonianbHðtÞ ¼ bH0 þ bV ðtÞ; ð3Þ

where bH0 is the Hamiltonian of the system plus barrier andbV ðtÞ ¼ bV 1ðtÞ þ bV 2ðtÞ ð4Þ

describes the opening of the two slits, where bV n describes opening
slit n. Under the influence of bHðtÞ the system evolves into a super-
position state

jWðtÞi ¼ bUðtÞj/0i; ð5Þ

determined by the evolution operator bUðtÞ. Any interference effects
that may arise during the experiment are completely characterized
by bUðtÞ and by the initial state.

At this point it is convenient to express the evolution operator
asbUðtÞ ¼ bU0ðtÞbU IðtÞ; ð6Þ

where bU0ðtÞ ¼ expð�ibH0t=�hÞ characterizes the slit-free evolution of
the system while bU IðtÞ quantifies the influence of the slits on the
dynamics. Since bUðtÞ satisfies the Schrödinger equation i�h d

dt
bUðtÞh

¼ bHðtÞbUðtÞ�, the dynamics of bU I is governed by

i�h
d
dt
bU IðtÞ ¼ bV IðtÞbU IðtÞ; ð7Þ

wherebV IðtÞ ¼ bU y0 bV ðtÞbU0 ¼ bU y0 bV 1ðtÞU0 þ bU y0V2ðtÞU0 � bV I
1ðtÞ þ bV I

2ðtÞ ð8Þ

is the slit-opening component of the Hamiltonian in Interaction
picture. Eq. (7) can be solved iteratively, yielding the well-known
series [20]

bU IðtÞ ¼
X1
m¼0

bU ðmÞI ðtÞ; ð9Þ

where bU ð0ÞI ðtÞ ¼ 1̂ is a zeroth-order term and where

bU ðmÞI ðtÞ ¼ �
i
�h

Z t

0
dt0 bV Iðt0ÞbU ðm�1Þ

I ðt0Þ ðm > 0Þ ð10Þ

describes the mth order contribution to bU I, induced by bV ðtÞ.
The above equations suggest an exact partition of the evolution

operator that exposes the interference phenomenon. Specifically,
the evolution operator can be written asbUðtÞ ¼ bU0ðtÞ þ bU1ðtÞ þ bU2ðtÞ þ bU12ðtÞ; ð11Þ

where bU0ðtÞ is the slit-free evolution operator, the term

bUnðtÞ ¼ bU0ðtÞ
X1
m¼1

bU ðmÞI;n ðtÞ ðn ¼ 1;2Þ

with bU ðmÞI;n ¼ �
i
�h

Z t

0
dt0 bV I

nðt0ÞbU ðm�1Þ
I;n ðt0Þ ðm > 0Þ;

ð12Þ

is the additional contribution that would have been obtained if only
slit n was open (i.e. if bV ðtÞ ¼ bV nðtÞ), whilebU12ðtÞ ¼ bUðtÞ � ðbU0ðtÞ þ bU1ðtÞ þ bU2ðtÞÞ ð13Þ

represents all contributions to the evolution operator that explicitly
depend on the existence of both bV 1 and bV 2. When bUðtÞ is applied to
the initial state it produces a superposition state of the form

jWðtÞi ¼ ðbU0ðtÞ þ bU1ðtÞ þ bU2ðtÞ þ bU12ðtÞÞj/0i
¼ jw0ðtÞi þ jw1ðtÞi þ jw2ðtÞi þ jw12ðtÞi: ð14Þ

Here jw0ðtÞi represents that part of the wavefunction that gets
reflected by the barrier, jwnðtÞi describes the part that passes
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through slit n, and jw12ðtÞi contains any additional contributions
that involve the two slits.

In light of Eq. (11) it follows that the evolution of any observablebOHðtÞ ¼ bU yðtÞbO bUðtÞ in the Heisenberg picture admits the
decomposition

bOHðtÞ ¼ bOH
0 ðtÞ þ bOH

1 ðtÞ þ bOH
2 ðtÞ þ bO H

12 ðtÞ: ð15Þ

Here

bOH
0 ðtÞ ¼ bU y0 bO bU0 ð16Þ

describes the dynamics of the observable in the absence of slits, the
term

bOH
n ðtÞ ¼ bU y0 bO bUn þ bU yn bO bU0 þ bU yn bO bUn ð17Þ

quantifies the additional contribution to the observable if only slit n
is open, while

bOH
12ðtÞ ¼ bU y1 bO bU2 þ bU y2 bO bU1 þ ðbU y0 þ bU y1 þ bU y2ÞbO bU12

þ bU y12
bOðbU0 þ bU1 þ bU2Þ þ bU y12

bO bU12 ð18Þ

describes the interference contributions.
The structure of Eq. (15) is characteristic of situations that

involve interference. It contains two direct terms bOH
n and an inter-

ference contribution bOH
12. Note that Eq. (2) is a particular case of Eq.

(15) obtained by demanding that the relevant operator measures
the position y of the particles on a detector located at x ¼ L > 0,
i.e. bO ¼ bP ¼ jx ¼ Lijyihyjhx ¼ Lj. If the particles are initially pre-
pared to the left of the barrier x < 0 then hbPH

0 i ¼ 0 as particles can-
not cross the barrier when the two slits are closed. Hence, from Eq.
(15) it follows that

Pðy; tÞ ¼ P1ðy; tÞ þ P2ðy; tÞ þ P12ðy; tÞ; ð19Þ

where Pnðy; tÞ ¼ hbPH
n i is the probability that the particle crossed the

barrier through slit n and arrived at the screen at position y and
time t, while P12ðy; tÞ quantifies the interference between the two
possibilities. The angle brackets here and below denote an average
over the initial wavefunction. In the actual experiment only an inte-
grated signal is recorded and Eq. (2) is recovered by integrating Eq.
(19) over time.

An important aspect of the partitioning in Eq. (15) is that by using
it one can design an experimental procedure to isolate interference
contributions. In a first experiment, the two slits are closed and the
observable of interest is measured, giving hbOH

0 ðtÞi. Subsequently,
two additional experiments are performed in which only slit n is
opened and hbOHðtÞi measured, giving hbOH

n ðtÞi ¼ hbOHðtÞi � hbOH
0 ðtÞi.

In a final experiment the dynamics of the observable is followed
with both slits open. The contributions due to interference are then
given by hbOH

12ðtÞi ¼ hbOHðtÞi � ðhbOH
0 ðtÞi þ hbOH

1 ðtÞi þ hbOH
2 ðtÞiÞ.
2.2. Laser control

The above analysis is general and can be used to study interfer-
ences induced by any perturbing potential bV ðtÞ with two or more
components. Through the set of experiments described above, or
slight variations of them, correlations between competing dynam-
ical processes embedded within bV ðtÞ can be quantified. Consider
then these ideas applied to laser control scenarios in which bV ðtÞ,
instead of opening slits on a barrier, describes the interaction of
the system with components of a laser field. The procedure is com-
pletely parallel to the one presented above. Nevertheless, we re-
peat aspects of it in order to stress the analogy between the two
physical situations.
2.2.1. N vs. M control
Consider then a molecular system with Hamiltonian bH0 inter-

acting with a radiation field EðtÞ in the dipole approximation.
The total Hamiltonian of the system is bHðtÞ ¼ bH0 þ bV ðtÞ, wherebV ðtÞ ¼ �l̂ � EðtÞ ð20Þ

is the radiation-matter interaction term and l̂ is the system’s dipole
operator. For simplicity we focus on the case where each competing
dynamical process is determined by a different frequency compo-
nent of the radiation field. This physical situation encompasses,
for example, the 1 vs. 2 and the 1 vs. 3 coherent control schemes
in which xþ 2x and xþ 3x fields are used to photoexcite the sys-
tem, respectively. These control scenarios are two important exam-
ples of the general class of N vs. M control schemes [2].

When a two-color laser EðtÞ ¼ �1E1ðtÞ þ �2E2ðtÞ is incident on
the system the radiation-matter interaction term can be written
as bV ðtÞ ¼ bV 1ðtÞ þ bV 2ðtÞ, wherebV nðtÞ ¼ �l̂ � �nEnðtÞ ðn ¼ 1;2Þ ð21Þ

describes the interaction of the system with the nth component of
the field. As before, the evolution operator admits the decompositionbUðtÞ ¼ bU0ðtÞ þ bU1ðtÞ þ bU2ðtÞ þ bU12ðtÞ; ð22Þ

where bU0 ¼ expð�ibH0t=�hÞ is the field-free evolution operator, bUn is
the correction term that would have been obtained if the system
evolved solely under bV nðtÞ, while bU12 represents contributions that
appear when both colors are present. In analogy with Eq. (14), whenbUðtÞ acts on the initial state it produces a superposition state of the
form

jWðtÞi ¼ ðbU0ðtÞ þ bU1ðtÞ þ bU2ðtÞ þ bU12ðtÞÞj/0i
¼ jw0ðtÞi þ jw1ðtÞi þ jw2ðtÞi þ jw12ðtÞi: ð23Þ

Here jw0ðtÞi represents the field-free evolution of the system, jwnðtÞi
the excitation produced by the nth component of the field, while
jw12ðtÞi contains any additional corrections that explicitly involve
both bV 1 and bV 2.

As in the double-slit experiment, the Heisenberg dynamics of
any observable bO admits the decomposition

bOHðtÞ ¼ bOH
0 ðtÞ þ bOH

1 ðtÞ þ bOH
2 ðtÞ þ bOH

12ðtÞ: ð24Þ

Here bOH
0 describes the field-free dynamics, the direct terms bOH

n

quantify contributions that arise when only the nth color of the field
is turned on, while bOH

12 represents the interference contributions
that are at the heart of laser control phenomena. Further, using
Eq. (24) one can design a set of experiments to isolate the interfer-
ence contributions. In a first experiment the system is allowed to
evolve in the absence of lasers, giving hbOH

0 ðtÞi. Then two additional
experiments with either laser, n = 1 or 2, on are performed from
which hbOH

n ðtÞi can be extracted. Last, by subjecting the system to
both laser fields and measuring hbOHðtÞi one has sufficient informa-
tion to isolate the interference contributions.
2.2.2. Bichromatic control
The bichromatic control scenario [2,7] represents yet another

class of control schemes, with formal equivalence to pump–dump
schemes and to the 2 vs. 2 control scenario [2]. In this scenario the
system is first prepared in a superposition of two Hamiltonian
eigenstates. This initial superposition is subsequently photodisso-
ciated to a given energy in the continuum using a two-color laser
field with frequency components x2 and x3. The frequencies of
the dissociating pulse are selected such that jx3 �x2j matches
exactly the Bohr transition frequency between the states involved
in the initial superposition.
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Consider this scenario in the Heisenberg picture. For this we
suppose that the preparation and dissociation stages occur at
two different times, so thatbUðt; t0Þ ¼ bUdissðt; t1ÞbUprepðt1; t0Þ ðt > t1 > t0Þ: ð25Þ

Here bUprepðt1; t0Þ and bUdissðt; t1Þ are the evolution operators during
preparation and dissociation, respectively. The initial superposition
state is achieved by exciting the system between times t0 and t1

with a laser (field 1) resonantly coupling the two desired levels.
The dynamics during the process is characterized bybUprepðt1; t0Þ ¼ bU0ðt1; t0Þ þ bU1ðt1; t0Þ; ð26Þ

where bU0ðt1; t0Þ is the field-free evolution operator, while bU1ðt1; t0Þ
describes the excitation process induced by field 1. During dissoci-
ation (for times t > t1) the evolution operator is given bybUdissðt; t1Þ ¼ bU0ðt; t1Þ þ bU2ðt; t1Þ þ bU3ðt; t1Þ þ bU23ðt; t1Þ: ð27Þ

Here bUnðt; t1Þwith n = 2 or 3 represents the influence of the nth dis-
sociating field on the dynamics, while bU23ðt; t1Þ quantifies any addi-
tional corrections to the evolution that depend on the presence of
both fields. Using this partitioning, one can decompose the Heisen-
berg evolution of any observable as:bOHðtÞ ¼ bOH

0 ðtÞ þ bOH
1 ðtÞ þ bOH

2 ðtÞ þ bOH
3 ðtÞ þ bOH

12ðtÞ þ bOH
13ðtÞ

þ bOH
23ðtÞ þ bOH

123ðtÞ: ð28Þ
Here bOH

0 ðtÞ is the field-free evolution, bOH
n ðtÞ with n ¼ 1;2;3 is the

term that would have been obtained if only field n was turned on,bOH
nmðtÞ represents the interferences between pairs of competing

dynamical processes onset by pulses n and m ðn – mÞ, whilebOH
123ðtÞ is the interference contributions that depend on the three

fields. As this scenario involves three fields, eight experiments are
required to isolate all contributing terms to hbOHðtÞi.

3. Interferences in the classical limit

A crucial property of the partitions introduced in Section 2 is
that each of the contributing terms entering into bOHðtÞ has a
well-defined classical ð�h ¼ 0Þ limit. In this section we exploit this
property to define classical analogues of quantum interference
terms. Central to this analysis is the quantum-classical correspon-
dence principle in the Heisenberg picture. We thus begin by study-
ing the classical limit of the Heisenberg dynamics [10,11], as it
permits identifying the �h ¼ 0 limit of quantum observables in the
Heisenberg picture with the phase-space flow of the corresponding
classical observable.

3.1. Heisenberg dynamics in the classical limit

Consider an observable bO in the Schrodinger picture with no
explicit time dependence. The dynamics of bO in the Heisenberg
picture is governed by the Heisenberg equations of motion

d
dt
bOHðtÞ ¼ 1

i�h
½bOHðtÞ; bHHðtÞ�: ð29Þ

The interest here is to study bOHðtÞ, and the above differential equa-
tion for operators, in the classical limit. For this it is convenient to
represent bOHðtÞ and Eq. (29) in the phase space of c-number posi-
tion x and momentum p variables, and then take the classical
(�h ¼ 0) limit. A phase space picture of bOHðtÞ can be obtained using
the Wigner transform [21,22], defined as

OWðx; pÞ ¼
Z

dv e�ipv=�h xþ 1
2

v jbOjx� 1
2

v
� �

: ð30Þ

Through this transformation each quantum operator bO is repre-
sented by a unique phase space function OWðx;pÞ and, conversely,
each symbol OWðx;pÞ defines an operator in Hilbert space. Using
Groenewold’s identity [23] for the Wigner transform of a product
of operators:

ðbAbBÞW ¼ AWðx;pÞ exp
i�h
2

@

@x

 
@

@p

!

� @

@p

 
@

@x

!0@ 1A24 35BWðx; pÞ; ð31Þ

where the arrows indicate the direction in which the derivatives
act, Eq. (29) becomes

d
dt
ðbOHÞW ¼ ðbOHÞW

2
�h

sin
�h
2

@

@x

 
@

@p

!

� @

@p

 
@

@x

!0@ 1A8<:
9=;ðbHHÞW; ð32Þ

which provides a phase space description of the Heisenberg
dynamics.

Eq. (32) has a well-defined classical ð�h ¼ 0Þ limit provided that
ðbOHÞW and ðbHHÞW are semiclassically admissible [10]. That is, that
one can express these functions in a series

ðOHÞWðx;p; tÞ ¼ Ocðx; p; tÞ þ
X1
n¼1

�hn

n!
onðx; p; tÞ ð33Þ

that is asymptotically regular at �h ¼ 0 for finite times. If this is the
case, by letting �h ¼ 0 in Eq. (32) one recovers Hamilton’s equations
of motion

d
dt

Ocðx;p; tÞ ¼ fOcðx;p; tÞ;Hcðx;p; tÞg; ð34Þ

where ff ;Hcg ¼ @f
@x

@Hc

@p �
@f
@p

@Hc

@x is the Poisson bracket and Ocðx; p; tÞ
and Hcðx; p; tÞ are regarded as the classical counterparts of bOH andbHH, respectively.

Now, for ðbOHÞW and ðbHHÞW to satisfy Eq. (33) only requires that
ðx̂HÞW and ðp̂HÞW are semiclassically admissible. This property is an
important consequence of Eq. (31) which shows that the product of
two semiclassically admissible operators is also semiclassically
admissible, and holds provided that bO and bH are expressible in
terms of products of the position x̂ and momentum p̂ operators.

At the initial time common observables such as position,
momentum, angular momentum and the Hamiltonian are semi-
classically admissible. Further, the leading term in the �h-expansion
coincides with the familiar quantities of classical mechanics.
Hence, the main assumption in this quantum-classical correspon-
dence principle is that semiclassical admissibility is stable under
time evolution for the position and momentum operators. If this
is the case, then one can identify the �h ¼ 0 limit of an observable
in the Heisenberg picture with the phase-space flow of the corre-
sponding classical observable. Recent work by Osborn [24] has
established conditions for the stability of Eq. (33) under time
evolution.

Note that this formal correspondence between quantum and
classical observables does not apply to the density matrix by itself.
The Wigner representation for pure state density matrices is singu-
lar [10] at �h ¼ 0 and hence it is not semiclassically admissible even
at the initial time.

3.2. Classical partitions of observables

Insofar as the above correspondence rule holds, one can apply
the analysis in Section 2 to study correlations between competing
dynamical processes in classical systems. Consider, for example,
the general partitioning of observables in Eq. (15):bOHðtÞ ¼ bOH

0 ðtÞ þ bO H
1 ðtÞ þ bOH

2 ðtÞ þ bOH
12ðtÞ: ð15Þ

If bO is semiclassically admissible and the four Hamiltonians deter-
mining the different contributions to the dynamics (bH0; bH0þbV 1; bH0 þ bV 2 and bH0 þ bV 1 þ bV 2) are also semiclassically admissible
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Fig. 2. Probability density distribution at the detection screen of the double-slit
experiment schematically shown in Fig. 1 after launching 300,000 particles. The �’s
correspond to the case in which the two slits are open. The �’s and �’s to the one in
which only the lower or upper slit is open, respectively. The broken line represents
the classical interferences in the observable Pc

12ðyÞ.
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with nonzero classical counterpart then each term in the above
equation has a well defined classical limit of the form

OcðtÞ ¼ Oc
0ðtÞ þ Oc

1ðtÞ þ Oc
2ðtÞ þ Oc

12ðtÞ; ð35Þ

where the different contributions to OcðtÞ are the classical counter-
parts of the corresponding terms in Eq. (15). Using the example of
the double-slit experiment, Oc

0 describes the classical flow of the
observable in the absence of slits, Oc

n quantifies the additional con-
tributions to the observable if only slit n is open, while Oc

12 quanti-
fies any classical correlations between the two possibilities. The
latter term is the classical limit of the quantum interference contri-
butions to the observable. By analogy with the quantum language
we will refer to it as the classical interference term.

It is important to note that this connection between quantum
and classical mechanics makes no reference to the initial state. In
a quantitative comparison, quantum contributions arising from
the dynamics of observables and from the quantum nature of the
initial state need to be taken into account. However, from a quali-
tative perspective this aspect is immaterial; for if matter interfer-
ence effects are in principle the origin of laser control then under
completely classical conditions no laser control should be possible,
i.e. Oc

12ðtÞ should be zero.
Hence, in this analysis classical averages are obtained by

weighting OcðtÞ by an ensemble of classical initial conditions
qcðx; pÞ:

hOcðtÞic ¼ TrfOcðtÞqcðx; pÞg: ð36Þ

The classical interference contributions to the observable hOc
12ðtÞic

can be isolated and quantified by repeating the set of experiments
described above for the quantum case but by using a classical initial
distribution that evolves according to the classical equations of
motion. We now consider two examples: the double-slit experi-
ment and the 1 vs. 2 laser control scenario. If the analogy between
these two physical situations is faithful, one would expect the inter-
ference contributions in both cases to be zero.

3.2.1. Example: the double-slit experiment
Fig. 1 shows the setup of the classical double-slit numerical

experiment. The observable of interest is the distribution of parti-
cles at the detection screen PcðyÞ. In this example, Pc

0ðyÞ ¼ 0 since
the particles cannot cross the barrier when the two slits are closed.
Fig. 1. Scheme of the double-slit experiment. Particles are directed at the barrier
starting from a Gaussian distribution centered at the black dot in the figure
ðx0; y0Þ ¼ ð0; 0Þ with spatial width Dx ¼ Dy ¼ 20 lm. The mean velocities of the
initial state are v0

x ¼ 200 m s�1 and v0
y ¼ 0 m s�1 with a spread of Dv0

x ¼
Dv0

y ¼ 7:5 m s�1. The barrier is 0.2 m in width. The slits are 0.15 m long and
0.35 m apart.
Fig. 2 shows the results for the remaining three experiments and
the resulting classical interference terms in the observable Pc

12ðyÞ
(broken line). We observe that within statistical errors the classical
particles do not exhibit any kind of correlations between the two
classical possibilities. That is, as expected, the probability density
observed at the screen is merely the sum of the probabilities of
particles going through each of the slits. The observed classical
behavior is a consequence of the fact that classical particles do
not have a wave character.

3.2.2. Example: 1 vs. 2 control
In this scenario a spatially symmetric system is driven with an

xþ 2x field. In quantum mechanics the interference between the
one-photon absorption induced by the 2x-component and the
two-photon absorption process induced by the x-component
results in phase-controllable transport. We now study this scenario
from a completely classical perspective.

As a system we choose an ensemble of noninteracting particles
of mass m and charge q initially confined in the one-dimensional
−8 −6 −4 −2 0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

Fig. 3. Bounding potential VðxÞ ¼ �E0= coshðxÞ for the one-dimensional model
system. The initial state is an ensemble of initial conditions with constant energy
E ¼ �0:95E0. Here x0 is some characteristic length.
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potential schematically shown in Fig. 3. As an initial distribution
we choose a microcanonical ensemble with energy E ¼ �0:95E0,
where �E0 is the minimum of the potential. At time t ¼ 0 the sys-
tem is allowed to interact with an xþ 2x Gaussian laser pulse, so
that the components ðn ¼ 1;2Þ of the radiation-matter interaction
term are given by

VnðtÞ ¼ �qx�nx cosðnxt þ /nx þ naÞ exp � t � Tc

Tw

� �2
" #

: ð37Þ

The pulse has width Tw ¼ 100t0 and is centered at time Tc ¼ 3Tw

where t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx0=E0

p
is a characteristic time and x0 a characteristic

length. We choose �x ¼ 0:66E0=ðqx0Þ; �2x ¼ 0:33E0=ðqx0Þ and
xt0 ¼ 0:45. Interest is in isolating effects that depend solely on
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Fig. 4. Velocity probability density PcðvÞ for particles dissociated by the
x-component Pc

1ðvÞ (black line) and the 2x component Pc
2ðvÞ (gray line) of the

laser field. Here v0 ¼ x0=t0 is a characteristic velocity.
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Fig. 5. Velocity probability density PcðvÞ for particles dissociated by an xþ 2x field (bla
each experiment are plotted in gray.
the relative phase 2/x � /2x between the two laser components,
i.e., one of the control variables. Hence the calculations presented
here are averaged over the carrier envelope phase a 2 ½0;2pÞ of
the laser field, done by randomly selecting an a for each member
of the ensemble.

As an observable we choose the velocity distribution PcðvÞ of
the photoejected particles after the laser field is turned off. Any
rectification effects should manifest as anisotropy in PcðvÞ. Using
the decomposition in Eq. (35),

PcðvÞ ¼ Pc
0ðvÞ þ Pc

1ðvÞ þ Pc
2ðvÞ þ Pc

12ðvÞ; ð38Þ

where Pc
0ðvÞ is the field-free ensemble average of the observable,

Pc
nðvÞ the additional contributions induced by the nx-component

of the field, and Pc
12ðvÞ the classical interferences. In this case,

Pc
0ðvÞ ¼ 0 as no photodissociation can occur in the absence of the

field. Fig. 4 shows the results of the experiment when only one of
the field’s components is used. The resulting probability density
Pc

nðvÞ exhibits a right/left symmetry and no net currents are gener-
ated. The situation is completely different when both the x and the
2x components are applied (Fig. 5). The xþ 2x field generates
anisotropy in PcðvÞ. Further, the degree and magnitude of the effect
can be manipulated by varying the relative phase between the two
frequency components of the beam. The resulting classical interfer-
ence terms are shown in gray. In stark contrast to the double-slit
experiment, the interference between the two laser-induced
dynamical processes is nonzero and is the origin of the rectification
effect. Moreover, Pc

12ðvÞ can take positive or negative values and is
phase-controllable, just as its quantum counterpart.

Supplementary analyses and additional work on this control
scenario are worth noting. Ref. [11] provides an analytical treat-
ment of the 1 vs. 2 photon case for a quartic oscillator, and a
detailed analysis of the classical limit. Ref. [25] shows how the la-
ser-induced symmetry breaking effect can be accounted for in both
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ck lines) for different relative laser phases. The interference contributions Pc
12ðvÞ in
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quantum and classical mechanics through a single symmetry anal-
ysis of the equations of motion. Recent further studies [26] propose
and analyze a specific optical lattice realization of this control
scenario, where the approach to the classical limit is expected to
be observable experimentally.
4. Summary and discussion

Our discussion has focused on coherent control scenarios
involving multiple laser-induced dynamical pathways. In doing
so we have considered the analogy between the double-slit exper-
iment and laser driven multiple-path control scenarios. In both
cases the system is subject to two or more competing dynamical
processes and the quantum evolution results in a superposition
state with exactly analogous analytical structure [recall Eqs. (14)
and (23)]. Further, the interference contributions that arise from
such superpositions are the origin of the characteristic fringes in
the double-slit experiment and of the laser control scenarios. How-
ever, we have also shown that these two examples are fundamen-
tally different: in the classical limit the interference contributions
in the double-slit experiment are zero, while the interferences in
laser control scenarios may survive and are the origins of classical
laser control. What then is the difference between them? We pro-
vide several perspectives, below.

First, consider the issue from the viewpoint of the nature of the
interference term. For example, consider the case of the excitation
of a state of even parity to a given state in the continuum of energy
E by a weak xþ 2x field of the form

EðtÞ ¼ �x cosðxt þ /xÞ þ �2x cosð2xt þ /2xÞ: ð39Þ

The 2x component is chosen to be exactly at resonance with the
desired transition, and transfers population from the bound to the
continuum state through one-photon absorption. In turn, the x
component couples bound and continuum states through a two-
photon resonant excitation. Using second order perturbation theory
we have that the field creates a superposition of the form:

jwi ¼ c1jE;oddi þ c2jE; eveni; ð40Þ

where the first term is due to the one-photon excitation by the 2x
field, and the second term is due to two-photon excitation by the x
field (a similar results holds even in the nonresonant case [27]). As a
consequence note specifically that the coefficients c1 and c2 are
proportional to �2x and �2

x, respectively. The interference term, ob-
tained from the cross product of the two terms, is then proportional
to the amplitudes of the two fields as �2x�2

x. That is, the interference
term is driven by the external field, a feature that is distinctly
different from the traditional double-slit experiment where the
interference term is field-free. It is this significant difference that
manifests in the classical limit where the external driving field pro-
vides a classical contribution to the interference as well.

We emphasize that the interference term arising from Eq. (40),
both quantum mechanically and in the classical limit, is then the
collective effect of the two excitation routes. This is quite different
from the double-slit experiment in the classical limit. Specifically,
as long as the two slits are separated in space the quantum inter-
ference contributions will measure spatial coherences of the wave-
function that do not have a classical manifestation. This is so
because classically passing through the upper or lower slit and
arriving at the detection screen constitute two independent and
mutually exclusive possibilities. By contrast, the response of a clas-
sical system to components of a radiation field do not constitute
independent and mutually exclusive events.

These distinctions between the double-slit and the multiple-
field induced dynamics are best seen in the response theory treat-
ment [28] of the field induced dynamics. Consider again the case of
excitation with an xþ 2x pulse. During the interaction of the sys-
tem with a radiation field the photoinduced dipoles hli are

hli ¼ vð1ÞEðtÞ þ vð2ÞE2ðtÞ þ vð3ÞE3ðtÞ þ � � � ð41Þ

Here, for simplicity, the response has been expressed in the adia-
batic limit [28], where hli depends only on the instantaneous val-
ues of the field amplitudes. Symmetry breaking in the response is
characterized by terms in the polarization that survive time-averag-
ing. The time-average of Eq. (41) is given by

hli ¼ vð1ÞEðtÞ þ vð3ÞE3ðtÞ þ � � � ; ð42Þ

where vð2Þ ¼ 0 for symmetric systems, and where the overbar
denotes time-averaging. For xþ 2x fields, or any other AC field,
EðtÞ ¼ 0, and the first term vanishes. However, the third-order term
in the response is not necessarily zero. Rather, for the xþ 2x field
in Eq. (39), it is given by

hli ¼ vð3Þ 3
4
�2
x�2x cosð2/x � /2xÞ: ð43Þ

That is, the nonlinear response of the system to an xþ 2x field
mixes the frequencies and harmonics of the incident radiation
and leads to the generation of a phase-controllable zero-harmonic
(dc) component in the response, i.e. the controlled symmetry break-
ing. This term arises because the net response of the system to the
incident radiation is not just the sum of the responses to the indi-
vidual components of the field [11]. The phenomenon requires a
nonlinear response of the system to the laser field, and hence it
applies to both quantum or classical systems with anharmonic
potentials.

It is worth reemphazing that the matter interference effects and
other entirely quantum contributions can have an important quan-
titative effect on the response [29,30]. However, the qualitative
nonlinear response to the laser field that gives rise to laser control-
lable interference contributions does not necessarily rely upon
them.

At this point the close connection between multiple-field in-
duced based scenarios in Coherent Control and Nonlinear Optics
is evident. Here, the crucial physics is the nonlinear response of
matter to incident radiation. The difference between them relies
on the focus. In Coherent Control the interest is on what happens
with matter after the nonlinear interaction, whereas in Nonlinear
Optics the concern is on what happens to the light after such an
interaction.

One technical caveat is in order. The validity of the analysis in
this paper relies on the correctness of the quantum-classical corre-
spondence principle as developed in Section 3.1. It is through this
principle that we are able to establish a connection between the
quantum and classical subdivision of observables [Eqs. (15) and
(35)], and to define classical analogs of quantum interference con-
tributions. If this principle does not hold then it is possible that
quantum and classical interference terms do not correspond to
the same physical phenomenon. One case where this correspon-
dence was clearly demonstrated to hold was our study of the
xþ 2x control where the fields were incident on a quartic oscilla-
tor [11]. Specifically, we obtained an expression for the net dipole
induced by xþ 2x fields in the Heisenberg picture and set �h ¼ 0 to
explicitly recover the classical limit of the interference contribu-
tions. In the quantum case, the net dipole induced by the field is
of the form

x̂HðtÞ ¼ �2
x�2xĈ½x; �h; x̂; p̂� cosð2/x � /2xÞ; ð44Þ

where Ĉ½x; �h; x̂; p̂�, the operator defining the quantum response, is a
function of the laser frequency, the oscillator anharmonicity, and
the position and momentum operators in Schrödinger picture. The
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classical solution extracted from the quantum solution is of the
form:

xcðtÞ ¼ �2
x�2xCc½x; xcð0Þ;pcð0Þ� cosð2/x � /2xÞ; ð45Þ

where Cc½x; xcð0Þ;pcð0Þ� is the classical limit of Ĉ½x; �h; x̂; p̂�, and
xcð0Þ and pcð0Þ are the initial conditions for the classical position
and momentum variables. A comparison of the classical behavior
extracted in this way from the quantum solution with an indepen-
dent fully classical calculation showed excellent agreement, explic-
itly demonstrating that the quantum and classical versions of laser
control do qualitatively correspond to the same physical phenome-
non. A couple of additional points are worth noting: (i) The struc-
ture of the Heisenberg result is a linear combination of classical
and quantum contributions, with the latter vanishing in the classi-
cal limit. The quantum corrections arise due to the �h-dependence of
the resonance structure of the oscillator. (ii) The cosine factor in
Eqs. (44) and (45), showing the dependence of the symmetry break-
ing on the relative phase of the laser, does not contain an extra
phase dependent on molecular properties (the molecular phase).
This does not imply that the direction of the symmetry breaking
can be predicted solely by looking at the form of the field since
Ĉ½x; �h; x̂; p̂� and Cc½x; xcð0Þ;pcð0Þ� can be either positive or negative
depending on the initial state and the laser frequency.

As for other control schemes, like 1 photon vs. 3 photons or
bichromatic control – we would anticipate they and other schemes
that rely on multiple interfering optically induced pathways to a
have a qualitative classical limit, since these processes are common
to both anharmonic classical and quantum systems [13,14]. For
example, recent calculations [31] on the effect of an xþ 3x field
(the field used in 1 vs. 3 control) on a classical Morse oscillator
clearly show phase control on the photodissociation probability.

By contrast, other scenarios that are not based on the princi-
ple of interfering optically induced pathways may not have a
classical manifestation. For example, the coherent control of
bimolecular collisions at a fixed total energy, and for arbitrarily
large collisional volumes, relies on creating entanglement be-
tween the internal and center of mass states [2] and, for this rea-
son, is not expected to have a classical manifestation. However,
recently proposed scenarios [32,33] that use nonentangled wave
packets of translational motion to exert control of bimolecular
collisions do have intuitive underlying classical pictures. Further
studies are in order to ascertain when the classical limit, in cases
where it exists, provides a quantitative approximation to the
quantum control.
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