Agenda
The grand picture (Sustainability @ “Anthropocene”)
« Human habitat and resources.

« Sustainability of Human Activity & Life on Earth,
Limit to growth, Club of Rome,
Socio-economic/ecological network.

« Finite resources: arable land and water for food
production, materials for fabrication & construction,
fuels for machinery & transportation,

Human eco-footprint, choices, and dilemmas,

« Energy utilization and environment,
Energy consumption and human development
Direct & external costs of energy use,
Climate trend correlations with GHG pollution,
extreme weather events, greenhouse effect.

Energy External Cost & Climate

« Stated (aspirational) and actual public policies,
mitigation vs. adaptation to environmental &
resource challenges.

W. Udo Schraoder, 2024
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Climate Wars: Apocalypse Soon ?
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Extreme Weather Events: Hurricanes, Tornados, Heatwaves

A

Frequent extréme weather:
Hurricanes Katrinaylrene2011,
Sandy, ..., Francine2024
Atmespheric Rivers (PNW, CA),..

Worldwjde extreme, downpours~1L/cm?
5 ‘e -

Downtown Montpelier, VT
July 2023. More frequent

Europe:
sustained heavy
' downpours in
various

| countries.

Extreme droughts and heatwaves - wildfires,
significant loss of human life @ property (GDP), wildlife
Australia (bushfires 2019-20), England (7/2022),
Greece, Spain,..

2024 again hottest summer in years: WPost publishes

The Washington Post
Hottest cities today, by heat index

City Sat Sun, Mon,
Tulsa, Okla.

Fri

Oidahoma City, Okla,
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Wichita, Kan,

Fort Worth, Texas

lrving. Texas

Dallas, Texas

Arlington, Texas

Corpus Christ, Texas

Lincoln, Neb.

San Antonio, Texas

Plano, Texas

Omaha, Neb.

Tampa, Fla,

St. Petersburg, Fla.

Laredo, Texas

Austin, Texas




Extreme Climate Events: Heat Waves & Droughts

U.S. Drought Monitor
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September 10, 2024

{Released Thursday, Sep. 12, 2024)

Sept. 2024: U.S.D.A. (Agriculture
Department) about 2023 crops:
Corn for grain production record
high 15.3 B bushels =+10%.
Sorghum: Grain production at
318 M bushels +69% from 2022.
Rice: 2023 production at 218 M
cwt, up 36% from 2022.
Soybeans: 2023 production at
4.16 B bushels, down 2%. Cotton
production at 12.4 M (480-pound
bales) down 14%.
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Evidence for Large-Scale (Global) Changes

o B Global Land and Ocean Temperature Anomalies
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Impcmm Q_g Greenland surface ice

et e Yea e Moo layer melts 7/8-7/12,
Natural vs. man- 2011=within 4 days!

made ? NASA/NOAA satellite image. -




Evidence for Large-Scale (Global) Changes

Break-off of Global Land and Ocean Temperature Anomalies

West-Antarctic 20 Annual

Ice Sheet \<T>1986 2016 &

<T>1901-1960 +0.7° C

Anomaly (°F)

‘ Average At
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Year

Delaware-size iceberg to break off Antarctica’s immense Larsen C ice
shelf in the Southern Hemisphere winter of 2017.

Greenland surface ice
!ﬂ‘lp@l’hﬂt Q= layer melts 7/8-7/12,
Natural vs. man- 2011=within 4 days!
mad‘ ? NASA/NOAA satellite image.




Feedback Effects Find & Establish Equilibria

Important feedback forcing mechanisms considered in
climate models:

» Changing albedo: Sea water surface reflects less
POSITIVE radiation, increases T, more ice melting >

FEEDBACK
e process A » CO, runaway process: Increase [CO,] - increase
ol ouipet T > release additional CO, (+CH,) from frozen
output acts to reduce input Tundra and from dissolved seawater >

@ > H,0 greenhouse effect: More humidity raises

NEGATIVE atmospheric IR absorption, higher T, more
_ w humidity >
input output » Cloud effects (dynamical and thermal), complex

interaction between radiation, convection,
circulation, cloud cover. Similar: Dust/aerosols

> Albedo effect dominates.

H,O greenhouse effect loses importance if
troposphere is already opaque to IR. Then,
] @ it only affects heat convection.

output acts to enhance input

L

Combination of partially canceling positive and
negative feedbacks. However:

Complex (non-linear) systems have capacity of
sudden irregular (chaotic) response to small changes
of parameters.

Is Earth in a non-linear regime @ tipping points? #



Mean Temperature - GHG Inventory Correlation

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO, emissi
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Big Data: Weather & Climate information Sources

One of many
weather stations
(Albany) of US
Network.

& Systematic studies to establish global historic trends require:
188 Excellent weather/climate information provided by several

Examples:

M 1. U.S. Historical Climatology Network (USHCN): 1221 observing
stations in the 48 contiguous states (Europe equivalent).

RN composition, flows, ocean temperatures, etc., via many
S0 NOAA/NASA/ESA/EUMETSAT satellites.

§ 3. Check theoretical models against known history.

.I'ce'—'cdre rorediinithe: .
NEepie | eSS paleo-climate information: isotope ratios, air bubbles in Greenland
=2 O Antarctic ice cores, tree rings, coral reefs, historical records.

.
L F

,Natjonal¥ice Core Fac
Berliger, CO. NAS 2010) .



Context Paleo-Climate: Global Surface Temps

0 Anthropocene ?
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Different methods to determine temperatures (etc.) of paleoclimate, ice
cores (=3Ma), isotopic ratios, ocean sediments (100Ma) - direct satellite T

measurements (£0.19C)


https://commons.wikimedia.org/w/index.php?curid=31736468
https://en.wikipedia.org/wiki/Paleoclimatology#/media/File:All_palaeotemps.svg/

Paleo-Climate Correlated Trends: Global Surface Temps

Ice core data for past 800,000 years (x-axis values represent age before 1950)
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Thermal “Black Body” Radiation: Random Particle Motion

Any charged particles in random HEEEEE s
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Selective Absorption of Atmospheric GHG
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Radiation Escape Hole

Scattered radiation is
not fully available for
warming Earth surface.
> Tg < 255K

Absorption of radiation
in atmosphere 2>
equilibrates - radiates
back to space and to
Earth surface.

CO, absorbs efficiently
@ maximum of the Earth’
surface spectrum;

N,O and CH, absorb in
atmospheric escape hole
for radiation.

GHG concentrations on
the rise during the last
century.

Adapted fro F.W. Taylor, ECP.



Earth In Solar System

Energy transfer Sun - Planets via emission and absorption of electromagnetic radiation
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Earth is a spinning gyro with an (approximately) space-fixed orientation now towards North Star. Axis

precesses and wobbles with 10ka-100ka periods.

Now: Axis misalignment with normal to plane of orbit (ecliptic) about Sun (23.59).
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Climate Forcing Categories

Paleoclimatology achieved via study of Antarctic and Greenland ice cores, geological
sedimentation, tree rings, coral reefs, records, ...

Recent past via human records, oral history, temperature records

Now: various geophysical measurements on land and sea, e.g., remote satellite
sensing.

Climate forcing := change imposed on Earth’s surface energy balance/climate due to

1) External causes (solar radiation influx):
a) changes in Earth orbital eccentricity (Ae~(0.01-0.2)%, T... ~ 110,000 a),
b) orbital precession (T ~ 20,000 a)
c) obliquity (A6= £19, T_,, ~ 40,000 a) of rotational axis.
d) Solar activity, sunspots (T~ (9-14) a)
e) Impact of meteorites, asteroids.

2) Internal causes:
a) Volcanic eruptions producing aerosols.
b) Changes in oceanic currents.
c) Changes in ice and cloud coverage (albedo).
d) Human induced changes (emission of greenhouse gases,
tropospheric aerosols, CFCs and HCFCs producing “ozone hole”).

Correlate terrestrial observations with characteristic t-dependencies of potential causes |

=



Elimination of Extra-Terrestrial Effects

After Taylor, Elementary Climate Physics
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Modeling of influences of peculiarities of
Earth planetary orbit and orientation
(Milankovich cycles) on solar insolation
gives somewhat irregular long-time
pattern, approximately accurate (Ice
Ages). Predicts no 11-year cycle.
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The sun’s energy received at the top of Earth’s atmosphere has been measured by satellites since 1978, It has
followed its natural 11-year cycle of small ups and downs, but with no net increase (bottom). Over the same
period, global temperature has risen markedly (top).

Average temperature trend = superposition
of sunspot insolation variation (11-year
cycle) on steadily increasing temperature
function T(t) not seen in upper atmosphere.




“"Black Body” Radiations: Sun and Earth

North Pole |
Angle of the sun
Arctic Circle

Tropic of Cancer

5, 23.5*

&r o, 465°
&

Equator

Tropic of
Capricorn

)

-

-

90°*
Antarctic Circle 'b 66,5.
3

0°

South Pole

Solar radiation incidence during
summer on northern hemisphere

Earth is also an approximately a “black
body,” but with a low temperature
T=255 K (-189C).

Role of atmosphere - raises ambient

temperature (*good” greenhouse effect).

h=6.625-10"*J -s Planck's constant
k=1.3-10"J -s Boltzmann's constant
€=2.998-10°m/s speed of light
sr = steradians = unit of angular

acceptance AQ = Area/4 - distance’

Except for occasional flares (outbursts/mass
ejections), the Sun emits thermal radiation like
any “black body” at the same temperature T.

Planck's Radiation Law ’VVU
"Radiance" for light of wave length A
emitted in random directions:

2hc? 1 W
R(A.T)= PE |:ehc//1kT _1} (ms_srjm

Stephan — Boltzmann Radiation Law
Total power emitted

F=[R(A4T)-di=c-T* (W/m?)
SB —constant : o =5.670-10° (W/K*m?)
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Random Motion > Black Body Radiation
[

Charged particles in random
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Solar Insolation on Earth

Solar Constant
Earth area A, =5.1x10° km?

exposed to Sun =disk of area A, = 7RZ = %AE

_ 4 2 ARSE
S A =0T, -(4ﬂRS)-(4ER§E]
R2
S = 0'T4[ J 1.370kW /m?
RSE

Time averaged over spinningearth A; =4 A, _
S, euive = S/4=0.343kW /m?

Albedo « = reflectivity, o, = 0.3 (expt.)

— mean power absorbed by Earth's surface
St =(1-a)-S/4 =0.240kW /m’

T = 255K (=-18°C) T2 =288K(+15°C)
(More sophisticated models for Earth

energy balance are available)

2
AR

5
.
£

Solid Angle AQ., ., = Ay /RSZE

@ AglEdrrn —AnAR —

RSE=1.50'108km

Effect of solar irradiation on Earth
surface is non-cumulative, non-
linear, possibly unstable.

System of several negative and
positive feed-back effects.

Possible: Thermal equilibrium ?




Selective Filter Effect of Atmosphere

Absorption of solar radiation by the atmosphere is
determined using spectroscopic satellite, aircraft, and
surface data. See recent Atmospheric Radiation

Measurement Enhanced Shortwave Experiment (ARESE)
See, e.g., F. P. J. Valero et al., J. GEOPHYS. RES., 105, 4743 (2000)

U.S. weathier satellite

Radiation from Sun L v GOES g (gecom.)
100% | Introduction to Atmospheric Top of almosphere
Radiation, Academic Press, s Ee
San , 2002 Urtace (= 80)
2000 -
1 Dispersion by Rayleigh
Hgiiaciad:from ‘ & scattering (blue sky)
surface, clouds _
and atmosphere 1500 -
4% 0% 6°/o 1

Top of

I 1 ‘ atmosphere

Strong absorption
of solar radiation in
H:0 IR by atmosphere

A

Wavelength (um)

Scattered or absorbed radiation not available for
warming Earth surface. > Tz < 255K 11?7?77

1000 <

Solar irradiance (W m=2um=')

20% absorbed by
atmosphere

equm brated

500 -

50% absorbed by surface

35 4 45 5

Earth's surface




Near-Surface Energy Equilibration

Solar.BIackb o

11 km
(227mb)

Troposphere

Equilibration
of Energy @ T,

M%

Spectrui6000K I

1: Adiabatic lapse

rate in
Troposphere
10°C/km

v

Thermal
equilibrium
T, = T,

Earth Surface @ T,

In actual calculations, atmosphere divided into

layers, consider also clouds, dust, etc. Albedos of

clouds, ocean, ice can be taken from
measurement.

Greenhouse Effect

Absorption of solar radiation by the
atmosphere is not lost into space.

Relaxation into IR thermal kinetic
spectrum of atmospheric particles.
Most of the energy content is
radiated back to Earth surface.

In equilibrium influx = outflux

1) Earth surface + atmosphere
receive P=S(1-a)/4.

IR radiation from surface is
absorbed by atmosphere, heating
it up.

2) Atmosphere radiates P=S(1-
a)/4 at low T back into space and
at higher T toward surface, heating
the surface in addition to direct
insolation.

Solve numerically consistently in
iteration. > Tg = 283 K (+10°C)

See, e.g., F. P. J. Valero et al., J. GEOPHYS.
RES., 105, 4743 (2000)



Simple Greenhouse Model

Incoming Solar
Absorbed by Earth

(S/4)(1-a)

Outgoing Terrestrial
(1-f)o-T,

I

| T,

l G-T04
f.o TS t
T

0

Earth Surface T, = constant

LT :{(3/4)(1—05)

o-(1-/2)

T

Observed : T, =288K — f =0.77
— T, =2"*T, = 241K corresponds to z = 7km

Approximations: Atmosphere is
transparent to incoming solar
radiation. Earth surface absorbs part
(1 - o) of it. Emits absorbed energy
as thermal radiation at T,. Part f of
that is absorbed by atmosphere,
heating it to 7. part (1 - f) is
transmitted to space.

<+ Energy Content
fooT'=2-T.0T'>T,=2".T,
Absorbed = Radiated Energy (Power F)
(S/4)(1-a)=(1-f)-o-T} %.G.T;‘
F=(1-f/2)-0-T/
Improve model by accounting

for altitude dependent,
continuous absorption f(z).



Radiative Forcing

Perturbations in the atmosphere (different amounts of GHG) produce
changes in atmospheric absorption (f > f + Af) at a given (fixed) T,
- Forcing = AF = change in outgoing power flux

Additional consequences on H,O evap., clouds, etc. > “feed backs.”
Experience with model simulations: linear relation forcing and T,.

Check with simple GH model if: AT, =1-Af

For a fixed T,, perturbation Af changes the emitted power flux by

AT

AF =[1-f/2].0-Tg —[1-(f + Af/2)]- o -T§ = 5o Tg > AR« Af

Equilibration of the same absorbed solar flux : T, - T, =T, + AT,
F=(S/4)1-a)g(1-f/2)-0 T =[1-(f +Af)[2]- 0| Ty + ATOT

T + AT, | ~T4 . [1+ AT, /T, ' ~ T4 + 4T4 (AT, /T, for AT, /T, <1
0 0 0 0/°0 0 0 0/"0 0/"0

T 1
AT, ~ 0 N -AF =1 -AF N
AT g2 Y T A(1-f12)eT ) AT, ~Af

Increasing GHG concentration - increases absorption of surface radiation
=>» increases surface temperature T,




Radiative Forcing

Perturbations in the atmosphere (additions of GHG) change atmospheric
absorption (f > f + Af) of thermal spectrum for a given (fixed) T,

- Forcing = AF = change in outgoing flux

(Additional consequences on H,O evap., clouds, etc. > “feed backs.”)
Model simulations start with linear relation between forcing and T,.

AT, =A-AF  Scale parameter A

For a given T,, perturbation Af in absorbance changes emitted power flux F by

AF =[1-(F+Af)[2]-0-Tf -[1-f/2]- - T§ = -%f .o - Ty (T, = const. # equil.)

Equilibration of the same absorbed solar fluxwith Af : Ty >T, =T, + AT,
F=(S/4)(1-a)=(1-f/2) o T =[1-(f + Af)/2]- a-[TO +AT0]4
[Ty + AT, | ~Tg - [14 ATy T, | = T + 4TS (ATy/T,y)  for ATy/T, <1

AT, = To  af- 1 | AF =4 AF { first order in AF, AT,
8(1-£/2) 4(1-f/2)oT; Can do numerically exact.

Increasing GHG concentration - increases absorption of surface radiation
=>» increases surface temperature T,




Selective Absorption of Atmospheric GHG

Nitrous oxide (N,O)

N

Oxygen {O,) and
Ozone (Oy)

Carbon dioxide {CO,)

Absorption

Y
Water vapour (H,0) A/\[\/\JM L

N2
0,

CO;

Ar
Ne
He
Kr
Xe
H>

—
N O
o O O

Absorption (%)

N
6]

03

~2.0x 10~
;-5.{))\ 107\'
~4.0x10-°

CHa
N,O

Intensity —»

. —— . ———

5.0
Wavelength (jus

Radiation Escape Hole

Scattered radiation is not
fully available for warming
Earth surface. 2 Tg < 255K

Absorption of radiation in
atmosphere = equilibrates
- radiates back to space
and to Earth surface.

CO, absorbs efficiently
@ maximum of the Earth’
surface spectrum;

N,O and CH, absorb in
atmospheric escape hole
for radiation.

GHG concentrations on
the rise during the last
century.

Adapted fro F.W. Taylor, ECP.



Absorption of elm Radiation: Beer-Lambert Law

|“Cﬂm!"!] 6 Transmitted
Intensity Intensity
o 9@ 1.(x)
- ! %
lNluminated e
Area A 6 dx
Atom Area £ — X
=cross section Absorber

(Volume=A-x)

Incoming intensity I, = I(x = 0) blocked by ¢ per atom
Intensity absorbed along pathlength Ax : - Al =f-1-Ax
......... (— calculus)

Probability (fraction) f for absorptionof —dI

in the next slice of absorber dx : dP.,.(x) o« dx

abs( ) _dl

I(x)

ar _ —u-I(x) — DEq for power law
ax

abs

= u-dx (fraction of I abs.)

Transmitted : |I, = I(x) = I - €| ui= p,oricie - €

Can use base 10 instead
of base e=2.718....

Absorbed : |I, = I, - I(x) = I, (1 _ e-u.x) Customary: use log,,

instead of €n.

] : :
— Absorbance : Loglo( OJ p-x=e-x-¢ Units of 4 and & depend on unit of c.

[ |

Specific for absorber material, depends on internal structure, electric
dipole moment. Otherwise, u # 0 only for ionized ideal gas.
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Anthropogenic Influences: Global Climate

Many correlations exist between human caused pollution and global climate
parameters: To what extent are there causal relationships ?

- Quantitative agreement between observation and robust physical models
- Absence of plausible competing scenarios

Observed
2.0 Greenhouse Gases
1.5 4
\ i
1.0 il { . s \\\\:}\\‘\x
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Possible Climate Futures

Possible Future
without Gimate
Policy

| Fossil CO, Emissions

o
o

Emissions (GtCO fyr)

71 Global Warming Possible Future
without Climate
Probabi‘ity of exceeding 2°C Palicy

No climate policy 100%

6  Emission budget of 1000 GICO. unti 2050:25%

max +2°C —

Global Mean Surface Warming (°C)

Past observed Temperatures
v u

1900 1920 1940 1560 1980 2000 2020 2040 2060 2080 2100

Correlated with scenarios of constant,
decreased or increased emissions of
greenhouse gases.

Changing climate - changes in
frequency, intensity, spatial extent,
duration, timing of extreme weather and
climate events, even produces
unprecedented extreme weather and
climate events. (NAS report).

Examples: Extensive heat waves and
droughts, super-storms/hurricanes,
extreme downpours, flash flooding,
coastal flooding due to rising sea levels,
atmospheric rain channels, troughs,....
Global: stopping the Gulf Stream.

AT < 20C until 2050 are relatively well
manageable.

Larger temperature increases (4°2-6°) are
likely catastrophic.

By themselves, anecdotal (individual) weather events do not make a case for climate
change. > Need systematic statistics over extended period to discover abnormalities
and an understanding within a comprehensive overall picture (model of Earth).
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