Agenda

The grand picture (Sustainability @ “"Anthropocene”)

Planetary climate, greenhouse effect.

« Stated (aspirational) and actual public policies,
mitigation vs. adaptation to environmental &
resource challenges.




Anthropogenic Carbon Emissions 1880-2019
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http://cdiac.ornl.gov/trends/emis/tre_glob_2014.html
http://cdiac.ornl.gov/trends/emis/tre_glob_2014.html
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Cement production and emissions from 2010 to 2015. Source: Analysis of Olivier et al. (2016) by
Chatham House.



COy

Atmospheric-Aqueous CO, Equilibrium and Consequences

CO; Time Series in the North Pacific

8.30

+8.15

t8.10

i+ 8.05

8.00

425 : = T
«- Mauna Loa Atmospheric CO; (ppm)
ALOHA seawater pCO; insitu (patm)
« ALOHA seawater pH (insitu) ”w,’
) r8.25
400 160°W  158°W 156°W 3¢ ” 8
<
39 % -
375
350
325
t». ‘I
300 U S0ns
ot .
275- ‘ T
1958 1967 1976 1985, 1994 2003 2012 2021
Year

https://www.pmel.noaa.gov/co2/file/Hawaii+Carbon+Dioxide+Time-Series

Shells Dissolve in Acidified Ocean Water
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45 days

pH

CO,(g)+2H,0(f) ==H,CO,(aq) + H,0 ==H,0" (aq) + HCO;

Henry'sLaw p., =k, (T)-[CO, ]

Increasing atmospheric concentration
of CO, - increasing CO, solvation in
sea water - decreasing pH value
(increasing [H*]=[H;0*], complex set
of rxns)

NCADAC Report 2013

Consequences of ocean acidity

Bleaching of corals,
Dissolution of shells of marine animals

Example: Pteropod, “sea butterfly”:
Tiny sea creature (size of pea).
Pteropods = food for marine species
from krill to whales, major food for
North Pacific salmon.

Shell slowly dissolves after 45 days.

(Photo credit: National Geographic Images)



Earth’s Radiation Balance (incl. GH Effect)
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Radiation 342 Solar Longwave
107 Wm™? Radiation Radiation
‘ 342 Wm? 235 Wm?=
Reflected by Clouds,
Aerosol and
Atmospheric AEmittedhby 40
Gases Aiosphere g6 Atmospheric
30 Window

Emitted by Clouds
Absorbed by Greenhous
67 Atmosphere Gases

Svantp Arrhenius

&%y, 1859-1927
( “ .

FAQ 1.1, Figure 1. Estimate of the Earth's annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmosphere is balanced by the Earth and atmosphere refeasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation Is absorbed by the
ModifiEarth’s surface. This energy is transferred to the atmosphere by wamning the air in confact with the surface (thermals), by evapotranspiration and by longwave radiation that is

http: /amnedbydaudsandg!eemmsegases ﬂream;osphemmrwnradnteslonwaveenergybackmfmhas well as out fo space. Source: Kiehl and Trenberth (1997).



http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter1.pdf
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Mean Land and Ocean Temperature Trends
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http://berkeleyearth.org/global-temperature-report-for-2020/



Seasonal Trends In Average Global Sea Temperatures

7°c) 4 21.1 degrees Celsius, March 17, 2024
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Note: The temperatures shown, in degrees Celsius, include data from 60°S to 60°N across all longitudes.

Source: NOAA OISST v2.1, via ClimateReanalyzer.org, Climate Change Institute,

SCOTT DANCE / THE WASHINGTON POST
University of Maine.



Evidence for a Systematically Changing Climate

NH Land Surface Temperatures Jun-Aug

AT U.S. Jun-Jul-Aug Surface Temperature Anomaly (°C)
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US: World’s most extensive weather
and climate records publicly available.

2012 statistical study of changing
temperature patterns: Report Perception of
climate change by James Hansen et al.,
(NASA Goddard Institute for Space Studies
& Columbia University Earth Institute
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Ominous Correlation: Temperature vs. Atmospheric CO,

Systematic gradual rise of AT=1.59C correlates with experimental
record of atmospheric CO,, as measured from atmospheric samples
and air trapped in polar ice.

Solar variation does not seem to impact the mean temperature trend.
(Berkeley Earth Surface Temperature study, 2012)
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http://berkeleyearth.org/

Mean Temperature - GHG Inventory Correlation
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Anthropogenic Influences: Global Climate

Many correlations exist between human caused pollution and global climate
parameters: To what extent are there causal relationships ?

- Quantitative agreement between observation and robust physical models
- Absence of plausible competing scenarios
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Energy External Cost & Climate

Agenda

The grand picture (Sustainability @ “Anthropocene”)

Human habitat and resources.

Sustainability of Human Activity & Life on Earth,
Limit to growth, Club of Rome,
Socio-economic/ecological network.

Finite resources: arable land and water for food
production, materials for fabrication & construction,
fuels for machinery & transportation,

Human eco-footprint, choices, and dilemmas,

Energy utilization and environment,
Energy consumption and human development
Direct & external costs of energy use,
Planetary climate, greenhouse effect.

Stated (aspirational) and actual public policies,
mitigation vs. adaptation to environmental &
resource challenges.

W. Udo Schréoder, 2024
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Climate Wars: Apocalypse Soon ?
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Evidence for Large-Scale Changes

Global Land and Ocean Temperature Anomalies
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Important Q: Greenland surface

: SO ice layer melts
Natural vs. man-made within 4 days:

2 July 8=July 12, 2011

Economic Implications NASA/NOAA satellite image.




Recent and Ancient Sea Level Trends

NOAA Data,
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2021: Ah= + 67 mm since 1850, mean rate: (3.0 0.4)mm/a, slightly
increasing. Seasonal cycle (AH=x7mm) is superimposed on general trend.
Comparison (inset) sea levels since last glacial minimum (-125 m !), now
probably in pre-glacial rise (uncertainty AH=+10m), modified by
anthropogenic influences.




Context Paleo-Climate: Global Surface Temps

Anthropocene
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https://commons.wikimedia.org/w/index.php?curid=31736468
https://en.wikipedia.org/wiki/Paleoclimatology#/media/File:All _palaeotemps.svg/ NOW

Different methods to determine temperatures (etc.) of paleoclimate, ice
cores (=3Ma), isotopic ratios, ocean sediments (#100Ma) > direct satellite T

measurements (£0.1°C)


https://commons.wikimedia.org/w/index.php?curid=31736468
https://en.wikipedia.org/wiki/Paleoclimatology#/media/File:All_palaeotemps.svg/

Big Data: Weather & Climate Information Sources

One of many
weather stations
(Albany) of US
Network.

Remote |mag|ng of atmospherlc water vapor b
sateuu;e |m‘ages7(NOAA m il i

' Systematic studies to establish global historic trends require:
188 Excellent weather/climate information provided by several

M 1. U.S. Historical Climatology Network (USHCN): 1221 observing
stations in the 48 contiguous states (Europe equiv).

' composition, flows, ocean temperatures, etc., via many
50 NOAA/NASA/ESA/EUMETSAT satellites.

,I'ce coresmbored i thé i 3. Check theoretical models against known history.

Reie | L= WOESE b e o-climate information: isotope ratios, air bubbles in Greenland
National#ce Core Lab ', .. . . )
' (\ad 2010 =2 O Antarctic ice cores, tree rings, coral reefs, historical records.



Earth In Solar System

Earth climate is driven by solar radiation influx from Sun. Sun gets energy from nuclear fusion reactions.
Solar radiation is dominated by approximate thermal equilibrium of photons with solar matter (“black
body” @ T = 5,780 K). Solar activity (sun spots) and insolation on Earth vary in an 11-year cycle.

w ’ 5 . I
*\ Earth's axis of rotation Seasons on Northern Hemlsphere E&_)rth is a spinning gyro
e\ with an (approximately)
2\ K i e space-fixed orientation

o)..' - ;Z)Ea'r?ed:fgécf;zrt?c (September 22nd/23rd) now tOV\{ardS North
. Star. Axis precesses
:ggégnsbffgcﬁh,zm, Autumn and wobbles with 10ka-
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o
\\» Spnng /
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Revolution of Earth around Sun in 365.25 d, slightly elliptic orbit (e~6%).
Seasons are caused by tilt of rotational axis (spin angular momentum), determining angle of incidence
and intensity of solar insolation, as well as length of day/night.

Energy transfer Sun = Planets via emission and absorption of electromagnetic radiation

=



Climate Forcing Categories

Paleoclimatology achieved via study of Antarctic and Greenland ice cores, geological
sedimentation, tree rings, coral reefs, records, ...

Recent past via human records, oral history, temperature records

Now: various geophysical measurements on land and sea, e.g., remote satellite
sensing.

Climate forcing := change imposed on Earth’s surface energy balance/climate due to

1) External causes (solar radiation influx):
a) changes in Earth orbital eccentricity (Ae~(0.01-0.2)%, T... ~ 110,000 a),
b) orbital precession (T ~ 20,000 a)
c) obliquity (A6= £19, T_,, ~ 40,000 a) of rotational axis.
d) Solar activity, sunspots (T~ (9-14) a)
e) Impact of meteorites, asteroids.

2) Internal causes:
a) Volcanic eruptions producing aerosols.
b) Changes in oceanic currents.
c) Changes in ice and cloud coverage (albedo).
d) Human induced changes (emission of greenhouse gases,
tropospheric aerosols, CFCs and HCFCs producing “ozone hole”).

Correlate terrestrial observations with characteristic t-dependencies of potential causes |

=)



Elimination of Extra-Terrestrial Effects

After Taylor, Elementary Climate Physics
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Modeling of influences of peculiarities of
Earth planetary orbit and orientation
(Milankovich cycles) on solar insolation
gives somewhat irregular long-time
pattern, approximately accurate (Ice
Ages). Predicts no 11-year cycle.
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The sun's energy received at the top of Earth's atmosphere has been measured by satellites since 1978, It has
followed Its natural 11-year cycle of small ups and downs, but with no net Increase (bottom). Over the same

period, global temperature has risen markedly (top),

Average temperature trend = superposition
of sunspot insolation variation (11-year
cycle) on steadily increasing temperature
function T(t) not seen in upper atmosphere.




Paleo-Climate Correlated Trends: Global Surface Temps

Ice core data for past 800,000 years (x-axis values represent age before 1950
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“"Black Body” Radiations: Sun and Earth

North Pole |
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Solar radiation incidence during
summer on northern hemisphere

Earth is also an approximately a “black
body,” but with a low temperature
T=255 K (-189C).

Role of atmosphere - raises ambient

temperature (“good” greenhouse effect).

h=6.625-10*J -s Planck's constant
k =1.3-10*J -s Boltzmann's constant
€=2.998-10°m/s speed of light
sr = steradians = unit of angular
acceptance AQ = Area/4r - distance”

Except for occasional flares (outbursts/mass
ejections), the Sun emits thermal radiation like
any “black body” at the same temperature T.

Planck's Radiation Law ’VVU
"Radiance" for light of wave length A
emitted in random directions:

2hc? 1 W
R(A.T)= PE |:ehc/ikT _1:| [ms_srjm

Stephan — Boltzmann Radiation Law
Total power emitted

F=[R(4T)-di=c-T* (W/m?)
SB —constant : o =5.670-10° (W/K*m?)
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Random Motion - Black Body Radiation

Charged Particles

Bare Earth is also approximately a “black body,” but with a
low temperature, equilibrium (estim.): T=255 K (-189C). ’

Atmosphere
=blanket >
raises
ambient T
(“good” GHE)

Charged particles in random

motion - continuous “thermal” YT T Experiment
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Solar Insolation on Earth

Solar Constant

Earth area A, =5.1x10° km?
exposed to Sun =disk of area A, = 7RE :%AE
Ar
S- =0T, -(47RZ)| —=—
ARSE S ( 5) [47Z'R§E
R2
S=0c-T;- ( J 1.370kW /m?
RSE

Time averaged over spinningearth A; =4 A, _
S, euive = S/4=0.343kW /m?

Albedo « = reflectivity, o, = 0.3 (expt.)

— mean power absorbed by Earth's surface
Sty =(1-a)-S/4 =0.240kW /m’

T = 255K (=-18°C) T2 =288K(+15°C)
(More sophisticated models for Earth

energy balance are available)

2
AR

5
.
£

Solid Angle AQ.,,, = A, /R

@ A£)Edn:n —AAn —

RSE=1.50'108km

Effect of solar irradiation on Earth
surface is non-cumulative, non-
linear, possibly unstable.

System of several negative and
positive feed-back effects.

Possible: Thermal equilibrium ?




Selective Filter Effect of Atmosphere

Absorption of solar radiation by the atmosphere is
determined using spectroscopic satellite, aircraft, and
surface data. See recent Atmospheric Radiation

Measurement Enhanced Shortwave Experiment (ARESE)
See, e.g., F. P. J. Valero et al., J. GEOPHYS. RES., 105, 4743 (2000)

Radiation from Sun
100%

Reflected from
surface, clouds

U.S. weathier satellite
GOES-8 (decom.)

To p' of atmospm

Introduction to Atmospheric
Radiation, Academic Press,

Surface (fy= 60°)

Dispersion by Rayleigh
£ scattering (blue sky)

Z ¢

Solar irradiance (W m=2um=")

and atmosphere
4% 20% 6%
Top of

I t ‘ atmosphere

:

Strong absorption
of solar radiation in
H:0 IR by atmosphere

{0\

Wavelength (um)

Scattered or absorbed radiation not available for
warming Earth surface. > Ty < 255K 11?7?77

:

20% absorbed by
atmosphere

equm brated

50% absorbed by surface .

Earth's surface




Near-Surface Energy Equilibration

Solar.BIackb oY

11 km
(227mb)

Troposphere

Equilibration
of Energy @ T,

M%

Spectrui6000K I

1: Adiabatic lapse

rate in
Troposphere
10°C/km

\ 4

Thermal
equilibrium
T, = T,

Earth Surface @ T,

In actual calculations, atmosphere divided into

layers, consider also clouds, dust, etc. Albedos of

clouds, ocean, ice can be taken from
measurement.

Greenhouse Effect

Absorption of solar radiation by the
atmosphere is not lost into space.

Relaxation into IR thermal kinetic
spectrum of atmospheric particles.
Most of the energy content is
radiated back to Earth surface.

In equilibrium influx = outflux

1) Earth surface + atmosphere
receive P=S(1-a)/4.

IR radiation from surface is
absorbed by atmosphere, heating
it up.

2) Atmosphere radiates P=S(1-
a)/4 at low T back into space and
at higher T toward surface, heating
the surface in addition to direct
insolation.

Solve numerically consistently in
iteration. > T = 283 K (+10°C)

See, e.g., F. P. J. Valero et al., J. GEOPHYS.
RES., 105, 4743 (2000)



Simple Greenhouse Model

Incoming Solar Approximations: Atmosphere is

- - transparent to incoming solar
Outgoing Terrestrial
Absorbed by Earth 901 radiation. Earth surface absorbs part

(S/4)(1-a) (1-f)-o-Ty | (1 - a) of it. Emits absorbed energy
] as thermal radiation at T,. Part f of
f.o T/ I that is absorbed by atmosphere,
heating it to 7,. part (1 - f) is
I transmitted to space.

| T, | <= Energy Content
l T fooT!=2-f.0.T'>T,=2".T,

4
f-oT t Absorbed = Radiated Energy (Power F)
T

f
Earth Surface T, = constant "1 (8/4)(1-a)=(1- f)'O'-T04+E-(7-TO4

4 F=(1-f/2)-0-T;
T {(5/4)(1_05)}”

o-(1-1/2)
_ Improve model by accounting
Observed 'TO =288K — f =0.77 for altitude dependent,

— T, =2"*T, = 241K corresponds to z = 7km continuous absorption f(z).




Radiative Forcing

Perturbations in the atmosphere (different amounts of GHG) produce
changes in atmospheric absorption (f > f + Af) at a given (fixed) T,
- Forcing = AF = change in outgoing power flux

Additional consequences on H,O evap., clouds, etc. > “feed backs.”
Experience with model simulations: linear relation forcing and T,.

Check with simple GH model if: AT, =1-Af

For a fixed T,, perturbation Af changes the emitted power flux by

AT

AF =[1-f/2].0-T§ —[1-(f + Af/2)] o T4 = STy > AF < Af

Equilibration of the same absorbed solar flux : T, > T, =T, + AT,
F=(S/4)1-a)g(1-F2)-0 T =[1-(f +Af)[2]- 0| Ty + ATOT

T+ AT, | ~T4 (14 AT T, 1" ~ T4 + 4T4 (AT, /T, for AT, /T, < 1
0 0 0 0/ "0 0 0 0/"0 0/ "0

T 1
AT, ~ 0 -Af = AF =1 -AF _
AT g Y T a1 f2)eT ) AT, ~AF

Increasing GHG concentration - increases absorption of surface radiation
=>» increases surface temperature T,




Radiative Forcing

Perturbations in the atmosphere (additions of GHG) change atmospheric
absorption (f > f + Af) of thermal spectrum for a given (fixed) T,

- Forcing = AF = change in outgoing flux

(Additional consequences on H,O evap., clouds, etc. > “feed backs.”)
Model simulations start with linear relation between forcing and T,.

AT, =A-AF  Scale parameter A

For a given T,, perturbation Af in absorbance changes emitted power flux F by

AF ::[1—(f + Af)/Z] o Ty =[1-f/2] 0 -T§ = —A?f .o - Ty (T, = const. # equil.)

Equilibration of the same absorbed solar fluxwith Af : Ty >T, =T, + AT,
F=(S/4)1-a)=(1-F2) o TS =[1-(f + Af)/z]-a[To +AT0]4
[Ty + AT, | ~Tg - [14 ATy T, | = T + 4TS (ATy/T,y)  for AT,/T, <1

T 1 first order in Af,AT,
— ATy = 8(1 Of/z)-Af: 2 3 -AF =1 -AF { ) 0
— (1-£/2)oT; Can do numerically exact.

Increasing GHG concentration - increases absorption of surface radiation
=>» increases surface temperature T,




Selective Absorption of Atmospheric GHG
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Radiation Escape Hole

Scattered radiation is not
fully available for warming
Earth surface. 2 Tg < 255K

Absorption of radiation in
atmosphere - radiates back
to space and to Earth
surface.

CO, absorbs efficiently

@ maximum of the Earth’
surface spectrum;

N,O and CH, absorb in

atmospheric escape hole
for radiation.

GHG concentrations on
the rise during the last
century.

Adapted fro F.W. Taylor, ECP.



Absorption of elm Radiation: Beer-Lambert Law

|“C‘C'm!"!] 9 Transmitted
Intensity Intensity
o 9@ 1.(x)
- ! %
lNluminated e
Area A 6 dx
Atom Area £ — X
=cross section Absorber

(Volume=A-x)

Incoming intensity I, = I(x = 0) blocked by ¢ per atom
Intensity absorbed along pathlength Ax: - Al =f-1-Ax
......... (— calculus)

Probability (fraction) f for absorptionof —dI

in the next slice of absorber dx : dP,,.(x) «

abs( ) _dl

I(x)

Z—i =-u-I(x) — DEq for power law

= u-dx (fraction of I abs.)

Transmitted : |I, = I(x) = I - €| ui= poricie - €

Can use base 10 instead
of base e=2.718....

Absorbed : |I, = I, — I(x) = I, (1 _ e-u.x) Customary: use log,,

instead of €n.

I,
— Absorbance : Loglo[ J_ 1-x=¢c-x-C Units of Y7, and g depend on unit of c.

11

Specific for absorber material, depends on internal structure, electric
dipole moment. Otherwise, u # 0 only for ionized ideal gas.
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