Power from Nuclear Transmutation
Gen III-IV Fission Reactors

‘ o

= The Diablo Canyon NPPT produced
CO,-free electricity at 2¢/kwh, half
the state’s (CA) average cost.
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Small Modular NPPT (RF 2019)

Since 1955 1st nuclear powered USS Nautilus, 2024: 73 (=+7?) submarines,
1960: 1st nuclear aircraft carrier USS Enterprise with several PWR NPPts.

Russian nuclear-powered submarines operate with lead coolant.

Spacecraft (Voyagers, Cassini,..., Rover,...) have Pu-238 nuclear thermal
generators



Small Modular Reactors (SMR): Applications

Replace coal-fired power
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Small Modular Reactors: Current Development

Years of operation

Design . Company
mPower Babock & Wilcox 2 x 180 MWe
NuScale NuScale Power 12 x 45 MWe
Vernova General Electric 300MW
KP-X Hermes Kairos Power 2x75 MWe
SMART KAERI,S-Korea 100 MWe
KLT-40S OKBM, Russia 2x32 MWe
*Proiect currently suspended
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Thermal Output
Electrical Output
Passive Safety Systems

Core Design

Reactor Vessel Size

Upper Vessel Package

Containment Vessel Size

Reactor Coolant Pumps

Steam Generator
Pressurizer

Instrumentation and Control

Westinghouse SMR Technology

800 MWt
>225 Mwe
No operator intervention required for 7 days

17x17 Robust Fuel Assembly

8.0 ft. Active Length

< 5% Enriched U235

89 Assemblies

Soluble Boron and 37 Internal CRDMs
24-Month Refueling Interval

Outer Diameter: 12 ft.
Height: 81 ft.

280 Tons

Outer Diameter: 32 ft.
Height: 91 ft.
Fully Modular Construction

8 External, Horizontally-Mounted Pumps
Sealless Configuration

Recirculating, Once-Through, Straight-Tube
Integral to Vessel

Ovation®-based Digital Control System



Small Modular Reactor Design (Ontario Power/CND)

Compact “Nuclear Island” Input= feed water, Output= dry steam




GE-Hitachi Small Modular Type BWR X-300

Under construction in Ontario/Canada, planned also by Tennessee Valley Authority

Natural coolant circulation.
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MAIN STEAM

STEAM
SEPARATORS

CHIMNEY
Reactor type: Boiling water reactor

Electrical capacity: 300 MW(e) net to grid
Primary circulation: Natural circulation |
Fuel enrichment: 3.81% (avg)/4.95% (max) .

Refueling cycle: 12-24 months

[] SATURATED WATER Approach to safety systems: Fully passive
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Design life: 60 years
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Levelized Cost of Electricity (SMR vs. Rest)
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Figure 2. Comparison of levelized cost of electricity from on-grid SMRs with other options: Worst case (9%
discount rate, less innovative technology)



Developing: Super-Safe, Small, and Simple Modular Reactors

Prefabricated (GE A-1000 conventional PWR, comes in 300 prefab parts)
Only few standardized reactor designs.
Autonomous operation below grade without human interference,

- self-fueling breeder (traveling wave) U/Th fuel

b TerraPower Traveling-Wave

Additional companies: Hyperion 200 MW U/He
Babcock-Wilcox modular reactor

Core: enriched uranium U-235 rods surrounded by rods of depleted U-238/natural uranium.
U-235 initiates a slow-moving “traveling wave” fission chain reaction delivering first neutrons for

Th breeding.



Small Modular NPPT (RF 2019) w. Cogeneration

Two 35-MW reactors
KLT-40C,

| Outputs:

el. power=70 MW
Heat 50 Gceal/h (210
GJ/h)

= e oS

Akademik Lomonosov has now been fully commissioning (Image: Rosenergoatom)

The floating nuclear power plant (FNPP Rosenergoatom) Akademik Lomonosov has been
fully commissioned in the town of Pevek (Chukotka region of Russia's Far East).
Subsidiary of the state nuclear corporation Rosatom. (WNN 5/22/2020)

Russian arctic icebreakers are all nuclear powered.



Radioisotope Thermoelectric Generators (RTG)

73 Cassini RTGs

Pu-238 (t,=8.7a ) a/fission-decay (5.6MeV)->
heat
AT - bi-metal/SC Thermocouple - Electricity

RTG in many NASA space applications, also for
remote terrestrial instrumentation (Arctic
scientific or military outposts).

FIGUAT 24 DUAGRAM OF GENDRAL FURPOSE MEZAY SO0RCE MOOULE
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NASA Space Probes RTG Powered

238 2 238
wU +H -5 Np + 2n

238 2
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A NASA Pu-238 Radioisotope
Thermoelectric Generator
has been in use to power
space probes for many
decades.

Conversion of decay heat to
electricity via thermocouple.

Also:

Efficient combination with
Stirling engine.

Voyager I and II, Cassini
probe.



Strategic Issues of Nuclear Technology, Real and Perceived

Issues for any production technology:

Sustainability, reliability, safety, eco-footprint, cost, scalability

Specific issue for nuclear power: proliferation safety
- Relative risk/benefit analysis, levelized lifetime analysis.

Resource limits of nuclear fuel (23°U/Pu, Th,...) ...
Reactor reliability ...
Operational reactor safety/accidents .....................
Ecological/resources footprint ................c..cl.

Safe capture and sequestration of spent fuel .......
Proliferation resistance (nations, individuals) ......

Economy (Capital plus fuel costs) ........ccceevrereeeeenn,

R&D requirements ..o

O © N O U H W=

Capability for deployment/scalability ......................
10. Public perceptlion ........cccccooiiiiiiii i

Links to
sections

LNK



https://www.sas.rochester.edu/chm/courses/chm286_486/ILSN_2022/3-8-4_Nucl_Power-Str-Iss_Acc_2021.pdf
https://www.sas.rochester.edu/chm/courses/chm286_486/ILSN_2022/3-8-4_Nucl_Power-Str-Iss_Acc_2021.pdf

Conclusion: Nuclear Fission Power in a Sustainable Future (?)

Western Gen III plants have good safety record (safest dispatchable energy).
But 3 preventable accidents with core damage (“melt down”), 1 accident fatal,
temporary evacuation.

Gen III, III+ proven/mature technologies (PWR, U based), breeder reactors

To develop & deploy nuclear power in the U.S. (x 3 by 2050):

e Continue to improve the safety of nuclear reactors and processing plants.
e Test/construct modular nuclear reactors @ sites of existing (coal?) plants.
e Test/construct advanced breeder/incinerators - reduce radiotoxic waste.

e Import/develop closed nuclear fuel cycle technologies.

e Expand the radio-chemistry of actinides, trans actinides and fission products.
e Develop material chemistry of molten salt mixtures, molten salt reactor.

e Develop/test proliferation-safe reprocessing methods (e.g., UREX+).

e Further test/develop a closed Th/U breeder fuel cycle, advanced materials.
e Develop ADS systems, use mature current accelerator technology.

e Open a semi-permanent nuclear waste depository, flexible re-use strategy.

e Train personnel in nuclear and radiation technologies !



AKW Krimmel
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Mpzy < N*M, + Z:M, > AM x B(A=N+2)

Nuclear Rearrangement Energies

~In formation of nucleus A: B=AMc? is released
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Fusion of light nuclei not spontaneous
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Pass for high collision velocity v,
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Fusion Of Light Atomic Nuclei

Reactions between light atomic nuclei
are exothermic, for example

d+t>a+n+ Egu(l7.6MeV)

Deuterium (2H or d) abundance 0.015%
Tritium (3H or t) is radioactive half-life t,,=12.23a
Alpha particle (*He* or a), neutron (n)

Reaction heat shows up in kinetic
energy of alpha particles and neutrons.

Ey =E, +E, =14.1MeV +3.5MeV

power P,

A mixture of deuterium and tritium (50:50) can undergo exothermic fusion
reaction - powerful source of energy (powers our Sun!).

Fundamental Problem of Nuclear Fusion Technology:

Nuclei are positively charged - Coulomb repulsion ("Coulomb barrier”)
—->Reactions are not spontaneous upon contact. Need “ignition” to occur.

But energy E,,, input yields (ideally): |Q= Edt/Einput > 1




MCF Reactor Design: Tritium Fuel Cycle

FLiBe Blanket

7
~
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Heat
exchanger
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Plasma heating to the grid
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Not shown: fuel ash processing pumps, separators,..
FLiBe for in-situ tritium regeneration, mixture fluorides of lithium (LiF) & beryllium (BeF,);
melting point @ 459 °C, boiling point @ 1430 °C - molten salt at reactor wall T.



Plasma Ignition Temperature

Plasma temperature (million K)
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Approximate power gain-loss balance: For DT plasma @|T,,,= 4.3keV =50 MK
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No net power gain from fusion events for T<T,,, ignition temperature.
Independent of ion density of plasma.

Net power gain from fusion for

Omitted so far: additional thermal etc. Iosses»

I'>T,,~> self-sustained burn




Thermonuclear Plasma

Emulate in the lab reactor: d-t Sun plasma

Assumptions: thermally equilibrated gas of
ions'* and electrons el-in volume Vat T
p,=p, =p/2~10"cm® > Ideal-gas laws

Power density (per vol) produced by fusion /

P = <do||\:dt > E, =% {6, v,)-17.5MeV =P, +P,

10—28

kT

\\l % Volume

7N

Beams of particles,
laser beams, magnetic
constriction

1000

100
[keV]

Plasma

Internal heating mostly by stopping fusion « particles
14 —MeV neutrons leave plasma—— generate tritium
P . =External heating by elm (laser, X —ray) energy,
radiation, particle beam, mechanical compression

Power loss via heat conduction (thermal radiation)
P. =3/2(p, + p)-k,T /7. to reactor walls,
mean energy confinement time z_ (method depend.)

Loss via electron bremsstrahlung : P, =5.4-10% p, (p, + p,)y/K,T.



Hot Plasma Stability (Stationary State)

J Time dependent energy balance of plasma energy content:
E

e Pyain — Ploss = Pext + Py — (Por +Pi) (all densities)
E P, =~ %(GV)Ea for (p, = p, = p/2)

Loss via e-bremsstrahlung, additional loss through particle drift, collisions
with reactor walls, absorption, thermal conduction.

All particles have 3 degrees of freedom — energy density|E(0)=(p, + o4 + 24 )%kBT

Heat to ignition conditions : (ov). =10""cm®/s; kgT =KgT,,, = 4.3keV

9

L , : KgT
Cools down within "containment time" At = 7z — power 0SS |P,ss = AE _ 3p—B—
12k,T Al ‘E
- Require Py, =Poss = o7 = <O-V>BE
12kgT;
» @Balance: prg =—> 90 :3.102013 La?ws_on p-z.>3-107 83
(ov)r B m Criterion m



Lawson Fusion Criterion
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Technological progress:
1958-2021:

" | Actual LC pzeincreased by 107
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102

Several new U.S. startup
companies design and test
fusion demonstrators.

Commonwealth: SPARC
Expected demo in 2025/6

Helion: Different fuel,
a-neutron fusion
p+11B 2> 30+8.7MeV
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