Power from Nuclear Transmutation
Gen III-IV Fission Reactors

‘ o

= The Diablo Canyon NPPT produced
CO,-free electricity at 2¢/kwh, half
the state’s (CA) average cost.
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Principles of magnetic and inertial confinement

« Strategic Issues for Nuclear Power
Sustainability, reliability, scalability, safety, eco-footprint, cost



Radioactive Waste: Power Reactors/Weapons Stewardship
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Timeline of Reactor/Fuel Cycle Development

Generation 1

Generation I Generation III Generation 1T + Generation IV
2 | ] O e )
Early Prototype Commercial Power Advanced EvoNsiona - Highly
ry Economical
Designs S il
Safety
= Minimal
Waste
- Proliferation
Resistant
GenN |

2030

GNEP framework (now includes U.S., U.K.) 2By
2030: Gen 1V designs studied, modelled, tested:

e Simpler, enhanced-safety, prefabricated reactors e Operational reactor safety;
e Simple, small, super-safe modular reactors

e Sodium-cooled fast reactors (SFR)

e Gas-cooled fast (high-T) reactors (GFR, HTR)
e Lead-cooled fast breeder reactors (LFR) e Economy of nuclear plant

e Molten-salt reactors (MSR, LIFTR) €« ORNL construction, deployment, $$
e Accelerator Driven Subcritical (ADS) systems
e Cogeneration of district heat & electricity (EU)

e Storage, sequestration of

radiotoxic waste;

e 235U/Pu, Th fuel resources.

e Proliferation nuclear materials

eRussia: fast breeders BN-600/700 operating since & technology;
1980. Also tested Gen 1IV: France, Japan, S-Korea,
China, India. Current ADS: Belgium “Myrrha”




Nuclear Reactor Types Gen IV Systems

Very high temperature reactors

Molten salt reactors

Sodium-cooled fast reactors




Concepts: Gen III* Hybrid Energy Systems

Hybrid= electricity + co-production (of heat and new fuels)
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Cogeneration in the Krsko Nuclear Power Plant in Slovenia

Steam
Generator 1 Turbine and

Genaralor

Pressurzer \ Sava River

Heal Exchanger
Steamiwaier

Source: GEN Energija (2013).

Cogeneration schemes used in ~ Example in towns in Slovenia

Reactaor .
1. Heating

2. Domeshc water
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Europe. Available steam capacities:

e heating; e steam of 12 bar (abs) pressure, 188°C
e cooling; for Krka: 16 t/h;

e use of steam in industry; e steam of 4.6 bar (abs) pressure, 190°C
e use of heat in agriculture. for Vipap and Krka: 60 t/h.



Gen III+ Passive Safety Features: Westinghouse AP1000

!;Ji?tduir:clh%c:méection N 3,415 MW,;,=1,110 MW,,
W S ‘.3 2017: commissioned US$7B
:g&s‘g"‘i"“y drain o [>Modular prefab construction

Water fil tion —__ 5 i
ater fiim evaporatio ~— & Smart use of laws of physics:

| Air-cooled! Natural airflow cools

Outside . - large-surface shield & steel

cooling air intake —% : . -

containment buildings.

Damage-resistant pressure vessel

contains all primary components

Etgte;' nt vessel

s] inment vessel — . .
Core cooling by gravity feed >

cannot suffer major loss of

Air baffle | | coolant even if pipe breaks.
Ancillary water tanks on top
1l release water to cool containment
Coolant for up to 3 days.
Tank —*

Westinghouse FOAK default
China: 2 builds + take over
development/license APC1000




Passive Safety Features (Detail Westinghouse AP1000)

CONTAINMENT

f CONDENSATE
STEAM

— LINE

PRESSURIZER

jip— FEEDWATER
/ LINE

STEAM
GENERATOR

CMT
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Station blackout =2
automatic shutdown:

Control rods drop into
core - reactor shuts
down.

Recirculation pump
keeps running for hours
on flywheel energy.

Core remains hot for a
few days (decay heat).

Natural water circulation
starts automatically
(hot/cold density
differences) transfers
heat from reactor vessel
to containment building.

Can go on “forever,”
autonomously=without
operator intervention.

36 hrs: safe shutdown
conditions are reached



Passive Containment Cocling System (PCCS)

Gravity Driven Cooling System (GDCS)
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DPV = Depressurization Valve

i = Explosive Valve t = Safety Relief Valve
g = ElectroHydraulic Valve & = Solenoid Valve
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System (ADS)

7 days coolant supply
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Isolation Condenser System (ICS)
Standby Liquid Control System (SLCS)

ESBWR Passive Safety Systems (NRC Certified)

AT )

BilAC

Containment Boundary

Y Uses natural circulation, no pumps,
no manual valves, DC batteries




Advanced Gen IV Reactors: Pebble-Bed HTGR

1960/70s Germany, S-Africa, China: Modular (@250MW) > U+Th Mox
Uses Tri-structural-Isotropic (TRISO) fuel particles.

helium

(O

Modular HT gas reactor, He gas
coolant directly drives turbine

turbine

pebbles

& liner

reactor containment
vessel

recuperator water

coolant

He (inert gas) cooled
T = 950°C
C-moderator/reflector

Continuous throughput
sorting & replacement of

generator “pepple” fuel elements

->Strongly negative
reactivity

Core has high
surface/volume ratio, low
power density.

~>Fail-safe operation.



Modular Pebble Bed Reactor TRISO Fuel Pebbles

Small UO, spheres embedded
in graphite matrix, silicon
carbide/graphite shells

5mm Graphite layer

g _ Coated particles imbedded
~in Graphite Matrix

Dia. 60mm

Fuel Sphere

_—Pyrolytic Carbon 40/1000mm
- _-Silicon Carbide Barmier Coating 25/1000mm
[~ _-Inner Pyrolytic Carbon 40/1000mm
_Porous Carbon Buffer 85/1000mm

\_‘\\-\
Dia. 0.92mm oS
TRISO

o Dia.0,5mm
Coated Particle uranium Dioxide

Fuel Kernel
Proliferation resistant - difficult reprocessing, requires national facilities.

Section \

Extended test operations (D) terminated for non-technical reasons.



Gen IV Model: ORNL Molten Salt Reactor (Experiment 1964-69)

Reactor Vessel
Heat Exchanger
Fuel Pump

Freeze Flange
Thermal Shield
Coolant Pump
Radiator

Coolant Drain Tank

S~

.~

e L e b

. Fans

. Fuel Drain Tanks

. Flush Tank

. Containment Vessel
. Freeze Valve

Fuel = primary coolant:

7LiF-BeF,-ZrF,-UF, (65-29.1-5-0.9 mole %).
irstfuel: 33% 235U. Later: 233UF, was used.

‘'Secondary coolant: LiF-BeF, (66-34 mole %)


http://en.wikipedia.org/wiki/File:FLiBe.png

US Molten Salt Reactor Experiment

In pipes/containers of salt, low chromium, nickel-
molybdenum alloy, Hastelloy-N, was used in the MSRE and
proved compatible with the fluoride

salts FLiBe and FLiNaK. All metal parts contacting salt
were made of Hastelloy-N.

- Canrun as Th/U breeder-> LIFTR
Development efforts in U.S. & several other nations.

The MSRE operated for 5
years: 1964 - 1969.
Objectives of experiment
were achieved - viable
reactor technology.
Lifetime of moderator 4-5 a.
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Radiotoxicity of Spent Nuclear Fuel: Th vs. U

g Radiotpxicity of wastes.
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(David & Nifenecker, 2007)

Radio toxicity vs. time after
shutdown, of spent fuel from

pressurized water uranium reactor
(PWR),

« U/Pu breeder, and
« Th/U fuel cycle.

FP fast decay of fission products.

Multiple reprocessing, less residual
waste.

Transmute/incinerate transactinides
and FF solves waste issue

Store small amounts of HL waste
for ~100 years (use for decay-a's ?)
Needs small geological depository.

Gen 111+ [>




U and Th Nuclear Fuel Resources

World (US, 2010)
443 (103) reactors
365 (100) GW

U use: 2 kt/a
World reserves: 5 Mt known (15 est.)
Once-through cycle:200 years

Reprocessing: ~103 years
US:174 t weapons grade U +20t/a Pu
for fuel mix (= 0.2 Mt fuel)

Th use: little yet (India ramping up)
World reserves >15 Mt ~103 a
with reprocessing.

Gen IV breeder (238U, 232Th) reactors,
molten salt reactors

- essentially sustainable energy source

Reserves in Earth crust
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le Nuclear Fuels

Fissile and Ferti
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Fuel Breeding 243°Pu/233U Breeding

Technologically well understood, several working research/test reactors
Fast (neutron spectrum) U reactor: n-capture without prompt fission

Additional n capture
U — Pu Cycle +n7 +n?T

238 239 B . 239 B~ 239 104
U +n— 25U o 33Np —g— *34Pu (2.4 - 10%a)

_',>Fissile by ny,

Unwanted continued 239p, 4 n _)240 pu|240pu_|_n 241 p,

fast-n capture/p decay 94 94 ‘ A-decay
241
Isotope mix: Not useful for nuclear fuel/weapons Am

- extensive isotope separation

Need many neutrons: source is unimportant !
Could use nuclear spent fuel waste (=incineration) or heavy materials
like Pb, Bi,.... as spallation targets/neutron source )
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232Th/233U Fuel Breeding

Technologically well understood, several working research/test reactors
Fast = un-moderated (neutron spectrum) U reactor:
- n-capture without spontaneous fission

Isotope mix: Not useful for nuclear fuel/weapons > extensive isotope separation

Th-U Cycle

232Th +n— 233Th

B

Additional n capture
SiPa —L—%3U(2.5-10%a)

+n7T

> 235Pa—L

t1/2=22min

,233U(1 6-10°a )

:>Fissi|e by n,

India builds Th reactor fleet = large Th resources, small waste problem.
(Mumbay test reactor). Also France, Russia

Extensive studies with LIFTR
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Metal-Cooled Fast Breeder Reactor (1981-...)

238 239 ' 239 B 239
U+tn— U —"—>"3Np—"—> ", Pu Fast (E, = 0.5 MeV) neutrons

preferred Nrast= 2.35 vs 2.06
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. o/, 235(]- . _ -1

Core:45.5% #3~U; Blanket: 20 t UO, Taoubling = [(B—1)ops®, | =~ 44a

cooling/mod.: molten Na, K, magnetic pumps. _ _
Doubling time depends on

Na-23: little moderation, good heat transfer
7-melt=980C/ 7-boil = 883°C ﬂUX (Dn’ Oabs » geometry'
Na-23+n > Na-24 is p-active (t;,,= 15 h) |

Under study for Gen IV: modern alternatives to liquid-Na, e.g., Pb/Bi alloys |




TerraPower Traveling-Wave Fast-Neutron U Breeder

Coolant: liquid sodium
primary pool surrounding
core. Natural circulation.
Secondary Na loop heat
exchanger.

Operates at atmospheric
pressure. Gravity activated
control rods.

Fuel: depleted or natural

uranium -> gradually breed
fissionable material in situ =
Non-proliferation attribute.

Generates heat by Rankine
cycle and electricity over
decades of continuous
operation.

Core: enriched uranium U-235 rods
surrounded by blanket of depleted U-
238/natural uranium rods.

ESTS 4-3 Nucl Fiss Power 24b

U-235 initiates a slow-moving “traveling
wave” fission chain reaction delivering
fast neutrons for Th breeding. No

g I need for reprocessing.
W. Udo Schroder, 207 3msss==="



Transmutation/Breeding in ADS

Spallation: n multiplication = incineration of waste generates E
Advanced (ADS) reactor development under GNEP program

%
=5

Abgebrannte Brennstibe
aus Kermkraftwerken
werden zur Separa-
tionsanlage geliefert,
Sie enthalten rund

ein Prozent Plutonium
und 0,1 Prozent Minore
Actiniden (MA)

— e A

Transmutoren liefern mehr Energie, als
sie verbrauchen. Durch Erldse aus
dem Verkauf von Strom kdnnen sie inre
Kosten womdglich wieder einspielen,

Schieft Protonen in
den Reaktorkern

3
{

O Transmutor
Die Protonen treffen auf
flussiges Blel. Dessen
Kerne zerplatzen und

» setzen Neutronen frel,
\ die wiederum radioaklive
Nuklide spaiten.
b

Brennstabe werden in
Saure aufgelost, Pluto ‘
nium und MA chemisch = | 1 i Reaktor}
abgetrennt und Zu neuen | i Spallation

transmutorgeeigneten F fiissiges Blel als
Srennstaben veraroeitet. 7 Neutronenquelle

des Strahlenmulis in
ren geologischen For
nen ist nur noch furt
schaubare Zeitrdume

.m.,nr...,u,,‘,-”..h.h(,uc.c;amMountain = overkill
Much more than needed
with reprocessing




Myrrha ADS Demonstration Facility (Belgium)

Beam dump

SC spoke

SC elliptical cavities (700 MHi3 sections)

X MeV » cavities
u etween i (350 MHz, 1 or 2 \f
"0 V' sections) 100 MoV 200 MeV 500 MeV 600 MeV
Low energy Intermediate High energy
section energy secﬂon section

Spallation target
& sub-critical
core

Strong R&D & cons'rr'ucﬂon pr'ogr'ams for' LINACs

underway worldwide for many applications
(Spallation Sources for Neutron Science, Radioactive Ions & Neutrino Beam Facilities,
Irradiation Facilities)

Alex Miller, NN2012, San Antonio/TX, 2012



Nuclear Transmutation of Fission Products

LOAQ e Nutidl wikk Shart-tvwd nuctens maals
Imdoacive lor move han (radhoacive 100 lods than
10 000 ywars) 200 years)

99 100 B 100
Ic+n—->-""Tc > " Ru
15.8s } stable
1297, 5 _, 1307 1§;h , 130 ye Isotopes

Transmutation of actinides:

n-induced fission of Pu, Np, Am, Cm

- radioactive and nonradioactive fission
products (most with half-lives < 30 a ).

Transmutation of fission
products carried out by
specific nuclear reactions
induced by neutrons,
protons, photons, light
nuclei, e.g., resonant n-
capture.

Need high n flux
®,~1016/s.cm?

C.D. Bowman et a., NIM A320,
336 (1992)

H. Nifenecker et al., Accelerator
Driven Subcritical Reactors, IOP
Bristol, 2003



Uranlum Fuel Cycle vs. Thorium
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